
Evolutionary Synthesis of Optimal Control Policies 
for Manufacturing Systems 

B Porter 
and 

T Merzougui 

Department of Industrial and Manufacturing Systems Engineering 
The University of Hong Kong 

Pokfulam Road 
Hong Kong 

Abstract - In this paper, evolution strategies are used to synthesise optimal control policies for manufacturing systems. The 
evolutionary procedure is illustrated by synthesising optimal control policies for a manufacturing system previously considered in 
the context of genetic synthesis. The performance of evolution strategies and that of genetic algorithms are compared in detail for 
this system, thus indicating that the evolutionary synthesis procedure is faster than the genetic synthesis procedure. 

I. INTRODUCTION 

The synthesis of optimal control policies for 
manufacturing systems is of fundamental importance in 
industrial automation. Indeed, it is imperative that such 
systems be controlled optimally in order to minimise 
manufacturing costs and to meet production schedules. 
However, the synthesis of optimal control policies for 
manufacturing systems is a non-trivial task in view of the 
need to satisfy hard constraints on both control variables and 
state variables. The presence of these constraints makes it 
necessary to use classical optimal control techniques such as 
dynamic programming [l] or the maximum principle [2]; 
but this frequently leads to conceptual or computational 
difficulties. It was therefore shown by Porter and Allaoui [3] 
[4] that genetic algorithms [ 5 ]  provide a straightforward 
alternative technique for the synthesis of optimal control 
policies for manufacturing systems. In particular, it was 
shown [3] that this genetic synthesis procedure can deal 
readily with the hard constraints on both control variables 
and state variables simply by assigning zero Darwinian 
fitness to any control policy that fails to satisfy these 
constraints. 

However, the evolutionary processes generated by the 
genetic synthesis procedure of Porter and Allaoui [3] [4] are 
rather slow in producing the required optimal control 
policies for manufacturing systems. In order to accelerate 
these processes, an alternative methodology is therefore 
presented in this paper for the evolutionary synthesis of such 
control policies. This alternative methodology involves the 
use of evolution strategies without recombination [6] rather 
than genetic algorithms [ 5 ] .  Such evolution strategies 
involve mutation and Darwinian selection but not 
chromosomal crossover, and are therefore less 

computationally onerous than genetic algorithms. The 
resulting increased computational speed is especially 
important for the synthesis of optimal control policies for 
large-scale manufacturing systems. In this paper, the 
evolutionary procedure is illustrated by synthesising optimal 
control policies for the manufacturing system previously 
considered by Porter and Allaoui [3] [4] in the context of 
genetic synthesis. The performance of evolution strategies 
and that of genetic algorithms are compared in detail for this 
system, thus indicating that the evolutionary synthesis 
procedure is faster than the genetic synthesis procedure. 

11. EVOLUTIONARY SYNTHESIS PROCEDURE 

The manufacturing systems under investigation comprise 
m machines (with n associated buffers) and produce p part 
types. The dynamical behaviour of such systems is governed 
by linear differential equation of the forms [7] 

q(t) = A, u(t)+A2 i(t) (1) 

and 

for the buffer dynamics and for the production dynamics, 
respectively. In these equations, q(t) ER"  is the vector of 

buffer levels, x(t) e R P i s  the vector of finished parts, 

u(t) E R" is the vector of production rates, i(t) E RP is the 

vector of part-release rates, and d(t)  ER^ is the vector of 

partdemand rates. In addition, A,  ER"^ is the buffer 
routing matrix such that AI u(t) represents the flows of 
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parts between buffers; A2 €RnxP is the buffer loading 
matrix such that A, i(t) represents the arrivals of external 

parts at the buffers; and A3 eRpxn is the output matrix 
such that A, u(t) represents the flow of finished parts. 
Also, if z j  is the processing time of parts in buffer j and 

B(k) is the set of buffers for machine k(k=1,2,..,m), then the 
buffer production rates must evidently satisfy the capacity 
constraints 

In addition, the state and control vectors must satisfy the 
constraints 

u(t) 2 0 ( 5 )  

and 

i(t) 2 0 (6) 

However, x(t), the state vector of finished parts, is not 
required to satisfy such a non-negativity constraint (since 
there may be either a surplus or a backlog of finished parts). 

The optimal control synthesis problem is to find, over 
some time period of duration T, the vectors i(t) E RP and 

u(t) E R "  of part-release rates and buffer-production rates 

required to meet a specified vector d(t) e R P  of part- 
demand rates. More precisely, the objective is to choose the 
control vectors i(t) e R P  and u(t) E R "  so as to minimise 
the cost function 

T 

0 
r = j [Aq(t)+p'x+(t)+p-x-(t)] dt (7) 

where 

the buffer contents and for the finished parts surplus or 
backlog. It is evident that the control vectors i(t) E RP and 

u(t) E R" that minimise this cost function, r, are optimal in 
the sense that the entire cost function associated with work- 
in-progress (as measured by the buffer levels, production 
surplus, and production backlog) is minimised. However, 
the solution of this optimisation problem is non-trivial 
because the control vectors i(t) e R P  and u(t) E R "  must 
satis0 the constraints (3), (3, and (6) whilst the state vector 
q(t) ER" must satisfy the constraint (4). 

Nevertheless, procedures developed by Porter [8] in 
connection with the genetic design of control systems can be 
readily used to solve this optimal control synthesis problem 
for manufacturing systems. Thus, let the control interval [0, 
TI be divided into N sub-intervals, and let the elements of 
the vectors i(t) e R P  and u(t) E R "  be piecewise-constant 
functions on these sub-intervals. In this way, each element 
of i(t) E RP can be represented on the control interval [0, TI 
by an ordered set of N numbers so that the entire vector can 
be represented by an ordered set of pN numbers; and, 
similarly, each element of u(t) E R "  can be represented on 
the control interval [0, TI by an ordered set of N numbers so 
that the entire vector can be represented by an ordered set of 
nN numbers. It follows that the entire control vector 
[iT(t),uT(t)lT e R P + "  can be represented on the control 
interval [0, T] by an ordered set of (p+n)N numbers. 
'Therefore, if each of these numbers is represented by a sub- 
string of binary digits, it is evident that the entire control 
vector [iT(t),uT(t)IT eRP+" can be represented on the 
control interval [0, TI by the string of binary digits formed 
by concatenating these (p+n)N sub-strings. The Darwinian 
fitness of each such string is normally given by 

where r is the value of the cost function (7) associated with 
the entire control vector. However, if any of the constraints 
(3), (4), (5) ,  and (6) are violated, the Darwinian fitness is 
then given by 

is the parts surplus vector, 

X- (t) = max {-X(t),O} E RP , (8b) 

is the parts backlog vector, and 
A  ER'^, p-  ER'^^, p+ E R ' ~ P  are weighting vectors for 

These procedures for encoding entire control vectors as 
binary strings, and for determining the Darwinian fitness of 
each such string, facilitate the use of evolution strategies in 
synthesising optimal control policies for manufacturing 
systems. The evolutionary design procedure begins by 
randomly generating an initial population of p binary 
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strings. These p parental binary strings are then randomly 
mutated to form h binary strings representing offspring. 
Evolution then occurs according to a @+A) strategy without 
recombination [6], In this evolutionary process, the p fittest 
binary strings representing the p best control policies are 
selected from the entire population of p parents plus h 
offspring to form the next generation of p parental binary 
strings. This evolutionary process continues until no 
significant further increase is obtained in the fitness of the 
fittest binary string. This fittest binary string is then 
decoded, and thus yields the optimal entire control vector 
[ iT(t), uT(t)] E Rp+" which minimises the cost 
function, r, defined in equation (7) (whilst respecting the 
constraints expressed by the inequalities (3), (4), (5) ,  and 
(6)). It is important to note that this evolutionary synthesis 
procedure is much simpler (and therefore much faster) than 
the genetic synthesis procedure of Porter and Allaoui [3 J [4], 
since the latter involves chromosomal crossover as well as 
mutation. 

111. LLUSTRATIVE EXAMPLE 

and 

i(t) 2 0 . (17) 

The initial state of the system is assumed to be such that 

q1(0) = 5 7 (W 

x(0) = 0 

It is further assumed that control is to be exercised on the 
time interval [0,10], and that the part demand rate on this 
interval is 

d(t) = 

This general approach to the evolutionary synthesis of 
optimal control policies for manufacturing systems can be 
conveniently illustrated by considering a simple system in 
which m=2, n=2, and p=l. In this case, equation (1) for the 
buffer dynamics assumes the scalar form 

. (19) 

The objective of such control is to choose i(t), ul(t), and 
u2(t) so as to minimise the cost function in equation (7) 

with T = 10, h = [5,10], p+ = p- = 5, and N = 20.  

lo) 

(lo) i l l  (t) = i(t) - U1 (t) 

and 

whilst equation (2) for the production dynamics assumes the 
scalar form 

X(t) = ~ 2 ( t ) - d ( t )  . (12) 

It is assumed that z1 = 0.5 and z2 = 0.5 so that, in view 
of the inequalities ( 3 ) ,  the production rates must satisfy the 
constraints 

The results of solving this optimal control problem using a 
(100 + 100) evolution strategy without recombination [6] are 
shown in Figs 1 and 2. In th~s case, a mutation probability 
x, = 0.02 was used and evolution was allowed to continue 
over 1000 generations. In Fig l(a), the full line shows the 
best-of-generation value of the cost function whilst, in Fig 
l(b), the full line shows the associated generation - average 
value of the cost function: in each case, the dotted line 
indicates the corresponding values of the cost function in 
case genetic algorithms are used in the manner of Porter and 
Allaoui [ 3 ]  [4] with the same mutation probability but with a 
crossover probability nc = 0.6. It is thus evident from Fig 1 

Ul(t) < 2 

and 

that evolution occurs much more rapidly with the 
evolutionary synthesis procedure than with the genetic 
synthesis procedure. In the case of evolutionary synthesis, 
the state variables ql(t), q2(t), and x(t) of the 

(13) 

manufacturing system behave as shown in Figs 2(a), 2(b), 
U2(t) 2 2 . (I4) and 2(c), respectively, when the controls i(t), ul(t), and 

u2(t) shown in Figs 2(d), 2(e), and 2 0 ,  respectively, are 

production rates and the optimal part-release rate, and are 

In addition, it follows from the inequalities (41, (51, and (6) implemented. These controls give the optimal buffer- that the state variables and control variables must satisfy the 
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obtained by decoding the best-of-generation string from the 
last generation of the evolutionary process. It is important to 
note that these controls obtained from the evolutionary 
synthesis procedure are very close to the following 
theoretically optimal values: 

(a) i(t)=O, O I t < 5 ;  i ( t )=l ,  5 1 t I 1 0 ;  
(b) q ( t ) = l ,  O l t I l O ;  
(c) U2(t) = 1, 0 I t I 10; 

The corresponding theoretically optimal value of the cost 
function is r = 68.75 . 

IV. CONCLUSIONS 

In this paper, evolution strategies have been used to 
synthesise optimal control policies for manufacturing 
systems. It has been shown that the resulting evolutionary 
synthesis procedure is much faster than the genetic synthesis 
procedure [3] [4] previously used for such systems. Thus, 
even in the case of large-scale manufacturing systems, it is 
expected that the evolutionary procedure will provide an 
effective practical technique for the synthesis of optimal 
control policies. In this way, such manufacturing systems 
can be controlled optimally in order to minimise 
manufacturing costs and to meet production schedules. 
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Figure 1 : (a) Best-of-generation values of cost function. 
(b) Generation-average values of cost function. 

308 



X 

. . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i 

2 
1 
0 

- I  
-2 
-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

U1 

U2 

1 

3 
2 
I 
0 ' : " - " " " " " "  

309 

1 

3 
2 
I 

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i 
3 
2 

1 


