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ABSTRACT 

The extent to which minimum-time control policies are 
necessarily bang-bang is investigated. It is shown that 
this very important issue can be conveniently examined 
by means of genetic algorithms. These general results 
are illustrated by the genetic design of a minjmum-time 
controller for a secondader plant. It tmnspires that 
the control policies genemkd by a two-level hierarchy 
of genetic algorithms evolve towards a bang-bang 
form as the performance of the associated controller 
evolves towards time-opthdity. 

1. INTRODUCTION 

In m a y  tasks in industrial automation, the use of 
minimum-time controllers is very imporkqt. Thus, fbr 
example, controlling industrial robots as rapidly as 
possible is obviously a very direct means of increasing 
industrial productivity. It is therefore not surprising 
that the design of minimum-time controuers continues 
to be an important activity in control engineering many 
years after the completion of the early pioneering work 
in this field described, for example, by Athans and 
Falb [I]. But this design activity is constrained by the 
computational difficulties involved in the solution of 
minimum-time control problems using design 
methodologies based upon such theoretical foundations 
as Pontryagin's minimum principle [2]. 
However, it was shown by Porter and Mohamed [3] 
that genetic algorithms [4] [5] provide a 
computationally attractive alternative approach to the 
design of " U m - t i m e  controllers. This genetic 
design approach [3] is applicable to complex non- 
linear plants such as robotic manipulators and is 
readily able to take into account hard constraints on 
controller outputs. In the genetic design of minimum- 
time controllers, it was shown by Porter and Mohamed 
[3] that two genetic algorithms are required (opera- 
locally and globally, in tandem). This genetic 

- 
methodolo& was validated [3] by using it to solve 

thus shown that 

and Mohaqed [3] evolve towards a bang-bang form as 
the perfiomhnce of the associated controller evolves 
towards de-op-ty. 
presented iLl this pape 
minjmum-dne control 
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which drives this plant fiom any initial state 
x(O)=x, ER" to the origin x(tf)=OER" in 
minimum time. T h e w c  solution of this minimum- 
time control problem is g r d y  fkilitated by the 
introduction of a dimensionless time variable 

where t, is the final time whose unknown minimum 
value is to be determined. Indeed, it is clear that, by 
using equation (3), equation (1) can be expressed in the 
form 

where the prime denotes differentiation with respect to 

t = t / t ,  , (3) 

x'(T) = tfAx(T) + tfBU(7) , (4) 

2 .  

In relation to equation (4), the minimum-time control 
problem can be solved as follows: 
(i) Select tf  . 
(ii) Determine, for each selected value of t,, the 

control policy U(T) E R ~ ( O I T I ~ ) ,  

/ u i ( ~ ) ) S a i  (i=1,2 ,..., m),such that the final 
positiod error 11x(1)11 is minimal. 

(iii) Repeat this process with different values of t f  
until the minimap t f  such that 11x(l)i=O is 
obtained. 

The resulting value of t, is the required minimum 
final time, and the associated control vector 
u(t) €Rm(OI  t I t f ) ,  lui(t)l l a i  (i = 1,2, ... m), 
is the required minimum-time control policy. 

This formulation was exploited by Porter and 
Mohamed [3] to design minimum-time controllers 
using a two-level hierarchy of genetic algorithms in the 

(i) Use a local genetic algorithm (GA), to 

u ( T ) E R ~  ( O I t I l ) ,  l u i ( ~ ) l I a i  (i=1,2,.., 
m), that minimises the final positional error 
lx( 1)1 for each value of t fi-om a population of 

~ ( g )  values of t f.  his 10cal genetic algorithm 
employs a fitness function 

@ l  = 11 l1x(1>11 9 (5 )  

following way: 

determine the control policy 

a population of N ('1 values ofthe control vector 
U(T) e R m  for each value of t f ,  and evolves 
over de) generations. 

(ii) Use a global genetic algorithm (GA), to 

generate the population of ~ ( g )  values of t f  
that constitute the next generation of values of 
tf . This global genetic algorithm employs a 
fitness hct ion 

where h is an appropriately large weighting 
parameter, and evolves over dg) generations 
before the entire two-level evolutiomy process is 
terminated. 

In (GA),, the range 0 1 ~ 5 1  is divided into equal 
intervals, within each of which each element, ui (T) , 
of U(T) E Rm is piecaviseconstant. The control 
amplitudes of ui(z) for these intervals are 
represented by sub-sub-chromosomes of binary digits 
which, when concatenated, yield a subchromosome 
representing ui (T) over the entire range 0 I T I 1. 
Then, the entire vector U(T) E Rm is represented by a 
chromosome obtained by concatenating the sub- 
chromosomes for U ~ ( T ) ,  u2(7), ..., u,(T) . In 
(GA), , each value of t is represented by a 
chromosome of binary digits. 

@ g  = 11 (tf + hllx('>ll> 9 (6) 

It is evident that this genetic methodology of Porter and 
Mohamed [3] for the design of minimum-time 
controllers can be used in either of the following two 
principal modes: 
(i) It can be assumed that the optimal control policy 

is bang-bang, so that Iui (t)l =ai (i=1,2 ,..., m). In 
this case, the genetic algorithms yield the 
appropriate value of either + ai or - ai for 
each control signal ui(t) (i=1,2, ..., m) at each 
sampling period. 

(ii) It can be assumed that the optimal control policy 
is not necessarily bang-bang, so that 
tui (t)( I ai (i=1,2 ,___, m). ~n this case, the genetic 

algorithms yield the appropriate value on the 
closed interval [--ai,+ai] for each control 
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signal u,(t) (i=S,2, ..., m) at each sampllng 
period. 

By using the genetic methodology in the second of 
these modes, it is possible to investigate the extent to 
which time-optimal control policies are necessarily 
bang-bang by monitoring the two-level evolutionary 
process generated by the local and global genetic 
algorithms. 

This use of the genetic methodology in the second 
iode  involves the use of longer chromosomes to 
represent each control policy 
required in the first mode ( 
levels for ui(t)  (i=1,2, ..., m) are involved in the 
second mode than the two quantization levels 
+ ai or - ai (i=lY2,...,m) in in the first 
mode). However, as is shown by the illustrative 
example in the next section, this use of relatively long 
chromosomes does not mise the computational 
attractiveness of the logy for exploring 
the evolutionary inevitability of bang-bang minimum- 
time control policies. 

a. ILLUSTRATIVE EXAMPLE 

This general genetic methodology can be conveniently 
illustrated by investigatmg the minimum-time control 
of the linear second-order plant govemed by the state 
equation 

In this case, it is required to drive the plant fiom the 

minimum time with 
The second mode of 
to design the required 
N(') = 30,  ~ ( 1 )  =40 
h= 1000 . In 

zm = 0.01 and xm = 0.1 were used in 

signals associated with the best-of-generation values of 
(GA), and (GA), , respectively. Th 01 

evident that these CO 

bang-bang form, in 

the theoretically minimal 

by the genetic design of 

controller evolves towards tim 

[l] M Athans and P L 
MeGraw-Hill, 1966. 
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