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ABSTRACT

The extent to which minimum-time control policics are
necessarily bang-bang is investigated. It is shown that
this very important issue can be conveniently examined
by means of genetic algorithms. These general results
are illustrated by the genetic design of a minimum-time
controller for a second-order plant. It transpires that
the control policies generated by a two-level hierarchy
of genetic algorithms evolve towards a bang-bang
form as the performance of the associated controller
evolves towards time-optimality.

1. INTRODUCTION

In many tasks in industrial automation, the use of

minimum-time controllers is very important. Thus, for
example, controlling industrial robots as rapidly as
possible is obviously a very direct means of increasing
industrial productivity. It is therefore not surprising
that the design of minimum-time controllers continues
to be an important activity in control engineering many
years after the completion of the early pioneering work
in this field described, for example, by Athans and
Falb [1]. But this design activity is constrained by the
computational difficulties involved in the solution of
minimum-time  control problems using  design
methodologies based upon such theoretical foundations
as Pontryagin's minimum principle [2].

However, it was shown by Porter and Mohamed [3]
that genetic algorithms [4] [5] provide a
computationally attractive alternative approach to the
design of minimum-time controllers. This genetic
design approach [3] is applicable to complex non-
linear plants such as robotic manipulators and is
readily able to take into account hard constraints on
controller outputs. In the genetic design of minimum-
time controllers, it was shown by Porter and Mohamed
[3] that two genetic algorithms are required (operating
locally and globally, in tandem). This genetic
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methodology was validated [3] by using it to solve

um—ume control problems for which non-genetic
theoretical sOlutxons are known: it was thus shown that
the genetically determined results agree very closely
with the theoretlcally optimal results

In this paper the genetlc methodology of Porter and
Mohamed [3] is used to investigate the extent to which
time-opnmzll control policies are - necessarily - bang-
bang. Indeed; it is shown that this very important issue
can be very conveniently examined by means of
genetic aléomhms These general results are
illustrated by the ‘genetic de51gn of a minimum-time
controller for a second-order plant. Thus, it transpires
that the control pohmes generated” by the two-level
hierarchy of genetic algorithms introduced by Porter
and Mohamed [3] evolve towards a bang-bang form as
the performance of the associated controller ‘evolves
towards time-optimality. ~ In this sense, the results

presented lll this paper indicate’ that bang-bang
minimum-time control policies are evolutionarily
inevitable.

N
2. | GENETIC METHODOLOGY

The genetic \methodology of Porter and Mohamed [3]
for the deslgn of minimum-time controllers can be
convemently described in relation. to - . linear
multivariable plants governed on:the continuous-time
set T=[0, t+o0) by state equations of the form.

%(t) = Ax(t) + Bu(t) - (D
In equationl! (1), x(t)eR" is the state vector,
u(t) eR™ is the input vector, A e R*** is the plant
matrix, B E\R“xm is the mput matnx, and the dot
denotes differentiation with respect to t. It is desired to
find the control policy u(t):€R™(0 <t<ty), subject
to the hard constraints o

]un (t)]rS o; (i -‘-jl;2,$..:,xm) e ’,  @)




which drives this plant from any initial state
x(0)=x, €eR" to the origin x(t;)=0€R" in
minimum time. The genetic solution of this minimum-
time control problem is greatly facilitated by the
introduction of a dimensionless time variable

t=t/ty , 3
where t, is the final time whose unknown minimum
value is to be determined. Indeed, it is clear that, by

using equation (3), equation (1) can be expressed in the

form

x' (1) =tsAx(t) + t¢Bu(r) , 4
where the prime denotes differentiation with respect to
T.

In relation to equation (4), the minimum-time control

problem can be solved as follows:

() Select ts .

(i) Determine, for each selected value of tg, the
control policy u(t) eR™(0< 1<),
,ui(t)ISai (1=1,2,...,m),such that the final
positional error ||x(1)|| is minimal.

~ (i) Repeat this process with different values of t;
until the minimal t; such that |x(D]=0 is
obtained.

The resulting value of t; is the required minimum

final time, and the associated control vector

u(t) eR™(0<t<ty), Iui(t)l <a; (i=12,..m),

is the required minimum-time control policy.

This formulation was exploited by Porter and

Mohamed [3] to design minimum-time controllers

using a two-level hierarchy of genetic algorithms in the

following way:

(1) Use a local genetic algorithm (GA), to
determine the control policy
u(t) eR™ (0<t<l), Ju;(v)|<a; (i=12,.,
m), that minimises the final positional error
|x( 1)| for each value of t; from a population of
N® values of t;. This local genetic algorithm
employs a fitness function

@, =1/x] , ©)

a population of N© values of the control vector
u(t) eR™ for each value of tg, and evolves

over v(9 generations.
(i) Use a global genetic algorithm (GA); to

generate the population of N® values of t;
that constitute the next generation of values of
ts. This global genetic algorithm employs a
fitness function

@, =1/(t¢ + 7»||x(l)||) , ()

where A is an appropriately large weighting
parameter, and evolves over v® generations
before the entire two-level evolutionary process is
terminated.
In (GA),, the range 0<1<1 is divided into equal
intervals, within each of which each element, u;(t),
of u(t) e R™ is piecewise-constant. The control
amplitudes of u;(t) for these intervals are
represented by sub-sub-chromosomes of binary digits
which, when concatenated, yield a sub-chromosome
representing u; (t) over the entire range 0<t<1.
Then, the entire vector u(t) € R™ is represented by a
chromosome obtained by concatenating the sub-
chromosomes for u;(t), uy(7), ...,up(r). In
(GA),, each value of t; is represented by a

chromosome of binary digits.

It is evident that this genetic methodology of Porter and

Mohamed [3] for the design of minimum-time

controllers can be used in either of the following two

principal modes:

(i) It can be assumed that the optimal control policy
is bang-bang, so that |ui (t)l =a; (i=1,2,...,m). In
this case, the genetic algorithms yield the
appropriate value of either + «; or - a; for
each control signal u;(t) (i=1,2,...,m) at each
sampling period.

(ii) It can be assumed that the optimal control policy
is not necessarily bang-bang, so that
Iui(t)l <a;({=1,2,...,m). In this case, the genetic
algorithms yield the appropriate value on the
closed interval [-a;+o;] for each control
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signal u,(t) (@=1,2,.,m) at each sampling
period.
By using the genetic methodology in the second of

these modes, it is possible to investigate the extent to-

which time-optimal control policies are necessarily
bang-bang by monitoring the two-level evolutionary
process generated by the local and global genetic
algorithms.

This use of the genetic methodology in the second
mode involves the use of longer chromosomes to
represent each control policy within (GA), than are
required in the first mode (since more quantization
levels for u;(t) (i=1,2,..,m) are involved in the
seccond mode than the two quantization levels
+a; or — o; (=1,2,..,m) involved in the first
mode). However, as is shown by the illustrative
example in the next section; this use of relatively long

chromosomes does not compromise the computational

attractiveness of the genetic methodology for exploring
the evolutionary inevitability of bang-bang minimum-
time control policies.

3. ILLUSTRATIVE EXAMPLE

This general genetic methodology can be conveniently

illustrated by investigating the minimum-time control -

of the linear second-order plant governed by the state
equation

o) =[S Bo o

In this case, it is required to drive the plant from the
initial state xo =[-3, 1] to the origin [00]" in
minimum time with the requirement that Iu(t)ls 1.

The second mode of the genetic methodology was used
to design the required minimum-time controller, with

N® =30, v(¢) =400, N® =20, v® =100, and
A= 1000 In these genetic computations, a

crossover probability @, = 0.6 was used in both

(GA), and (GA),, but mutation
Ty,=00l ‘and m, =01 were used in
(GA), and (GA),, respectively. The control
signals associated with the best-of-generation values of

probabilities

t; in the Sth, 10th, and 100th generations obtained
from (GA), are shown in Figs 1, 2, and 3. It is
evident that these control policies evolve towards a
bang-bang form, in. which either u{t)=+1 or
u(t)=-1. The best-of-generation values of t;
associated with these: control policies evolve towards
the theoretlcally mlmmal value of tf :

4. CONCLUSION

In this paper, the genetic ,methodolog’y‘of Porter-and.
Mohamed [3] has been used to investigate the extent to:
which time-optimal control policies are necessarily
bang-bang. The general results have been illustrated
by the genetic design of a minimum-time controller for
a second-order plant. In this case, it has been
demonstrated that the control policies evolve towards a’
bang-bang form as the performance of the associated
controller evolves towards time-optimality. ‘
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