
Abstract — Applying Lot Streaming (LS) technique, a new 
approach is applied to determine LS conditions in Job-shop 
Scheduling Problem (JSP) using Genetic Algorithms (GA). LS 
approach allows a job (lot) to be split into a number of smaller 
sub-jobs (sub-lots) so that successive operations of the same job 
can be overlapped. In this connection, the total completion time 
of the whole job may be shortened. The proposed approach is 
developed to solve two sub-problems. The first sub-problem is 
called LS problem in which LS conditions are determined and 
another sub-problem is JSP after LS conditions are 
determined. A number of benchmarked problems will be 
investigated to study the optimum LS conditions in 
Just-In-Time (JIT) environment. Experiment results suggest 
that the model works fairly well with different objectives and 
good solutions can be obtained within reasonable time frame. 

I. INTRODUCTION

For traditional Job-shop Scheduling Problem (JSP), jobs 
are processed on machines in different orders. The problem 
is to sequence jobs on each machine to optimize objectives 
like makespan, earliness, lateness, etc. Given (1…m) 
machines and (1…n) jobs, the total number of possible 
solutions is (n!)m. Thus, this problem is NP-hard. Over years, 
issues related to JSP are prevalent. One common assumption 
of classical JSP is that jobs (lots) cannot be split into smaller 
jobs (sub-jobs or sub-lots) due to single lot size [1-2]. If it is 
relaxed, non-single unit jobs can be split. However, this will 
increase the total setup time between distinct jobs and 
sub-jobs. Thus, extra setup may lengthen the overall 
schedule time. On the other hand, job splitting can improve 
the schedule by decreasing the number of late jobs and the 
total lateness. In this paper, the objective is the function of 
overall penalty cost and total setup cost (time). Overall 
penalty cost (OPC) is defined as the sum of earliness cost per 
hour early per unit of early jobs and lateness cost per hour 
late per unit of late jobs. Total setup cost (TSC) is the 
product of machining cost per hour of machines and total 
setup time during fixture changeover between lots (or 
sub-lots) on machines. “Fixture” is used to secure the jobs on 
the machine for completing the operations and each job must 
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have a unique fixture. The cost of splitting a lot can also be 
justified by the TSC. In this research, the objective is to 
minimize the objective value by determining the optimum 
LS conditions which are defined as the determination of (i) 
the split lots (which lots to be split), (ii) the split number (the 
number of sub-lots of each lot), and (iii) the split size (the 
size of each sub-lot of each lot). The current study thus is 
trying to address the optimum LS conditions to JSP using 
Genetic Algorithms (GA). 

II. LITERATURE REVIEW

In reality, it is a common practice to apply LS to improve 
the productivity of a manufacturing workshop. For instance, 
most of the LS approaches are dedicated to Flow-shop 
Scheduling Problem (FSP) [3-5]. For traditional FSP, lots 
are processed in the same order. Therefore, it is fruitful to 
split lots for expediting the production process. [3] present a 
new heuristic method for minimizing the idle time on 
bottleneck machine to equal size LS in FSP. [4] address LS 
in 3 elements, i.e. the number of sub-lots, sub-lot size and 
sub-lots processing sequence. [5] propose a Hybrid Genetic 
Algorithm which incorporates Linear Programming and a 
Pair-wise Interchange method for LS in FSP. [6] study LS in 
Open-shop Scheduling Problem (OSP) which processing 
sequence of lots is unimportant. 

In fact, the benefits of LS to FSP are much more obvious 
than that of LS to JSP. However, the application of LS to JSP 
is somewhat insufficient. From Figure 1, it shows that the 
application of LS can improve the overall schedule time in 
job-shop. It is assumed that the processing sequence of 
sub-lots follows the sequence of its original lot. In general, 
there are 4 types of LS approaches to general scheduling 
problems including (I) Equal size sub-lots without 
intermittent idling does not allow idle time between sub-lots 
on the same machine, (II) Equal size sub-lots with 
intermittent idling, (III) Varied size sub-lots without 
intermittent idling, and (IV) Varied size sub-lots with 
intermittent idling. For detailed description, please refer to 
the work done by [7]. The current manufacturing problem 
allows idle time between lots and sub-lots on the same 
machine, thus types I and III will not be considered. To 
examine the performance differences between equal and 
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varied LS types with idle time, LSGAei and LSGAvi will be 
developed respectively. Then comparisons will be carried 
out on these two models. Moreover, it is assumed that once a 
lot is split, the number and size of its sub-lots are fixed 
throughout the schedule. 

Fig.1. A job-shop problem without (upper) and with (lower) LS 

Despite of limited LS applications to JSP, some have 
attempted to address the benefits. [8] present an iterative 
procedure to determine the sub-lot size for a given sub-lot 
sequence and JSP with fixed sub-lot size using LP and GA. 
They have shown that results near to lower bound can be 
obtained, but no attention is given to the selection of split 
lots. [2] study a lot splitting heuristic for JSP in dynamic 
environment. Particularly, the importance of the pre-setup 
time to the schedule performance is highlighted. However, 
they did not explicitly explain the impact of different 
dynamic factors on this pre-setup time. If jobs are heavily 
delayed, pre-setup may lengthen the overall schedule time. 
Therefore, pre-setup is not considered here. 

This paper will be organized as follows. The mechanism 
of the proposed methodology will be explained in the next 
section. In section 4, computational results will be 
investigated to examine the performance of the proposed 
method. An illustrative example will be studied in section 5. 
Finally, conclusions will be drawn together with future 
research direction. 

III. THE PROPOSED ALGORITHM

A. Model Notations 

TABLE 1
MODEL NOTATIONS

Symbols Descriptions 
LSGAei
LSGAvi

W1 
W2 
m
n
n’
Ji
Jij
Si
Fi
Li
Qij

MSik
Ptik
Stijk
Cij
Di
suk
eci
tci

mck

Model with equal size LS with idle time 
Model with varied size LS with idle time 
Weightings on overall penalty cost 
Weightings on total setup cost 
Total number of machines 
Total number of original lots 
Total number of sub-lots 
Job i 
jth lot of Ji
Number of sub-lots of Ji
Fixture of Ji
Original lot size of Ji
Quantity of Jij
kth machine for Ji
Processing time on kth machine of Ji
Start time of Jij on machine k 
Completion date of Jij
Due date of Ji
Total setup time on machine k 
Earliness cost per hour per unit of early Ji
Tardiness cost per hour per unit of late Ji
Machining cost of machine k per hour 

B. Model Formulations 
The proposed model is trying to solve two sub-problems, 

Sub-Problem one (SP1): Determination of LS conditions 
and Sub-Problem two (SP2): Solving JSP after LS 
conditions are determined. Equation (1) is used to evaluate 
each pair of SP1 and SP2 solutions. Constraint (2) requires 
the sum of all sub-lot sizes should satisfy the original lot size. 
(3) ensures that the processing sequence of sub-lots 
corresponds to the predetermined order. Equations (4)-(6) 
specify the range of variables i, j, and k. Also, each machine 
can process at most one job and all variables  0. 

Min. Objective Value (OV) 
= W1 x OPC + W2 x TSC 

k
kk

i j
ijiijiij mcsuWQtcbecaW 2)(1

(1)
where
If Cij < Di, aij = Di – Cij and aij = 0. 
If Cij > Di, bij = Cij – Di and aij = 0. 
If Cij = Di, aij = bij = 0. 

iLQ i
j

ij 0  (2) 

J2 J1

J1J2

J2J1 J1 J2

J1J2

J1J2

Improvement 

J2 J1

J1J2

J2J1

J1: M1 M2 M3 
J2: M2 M3 M1 
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ni1  (4) 

iSj1  (5) 

mk1  (6) 

C. Genetic Algorithms 
GA is a kind of evolutionary optimization methods as 

proposed by [9]. Its principle is based on the natural 
evolution. In terms of GA, solutions are encoded in so-called 
chromosome to form a solution pool. Each chromosome in 
the pool is evaluated based on the objective function to 
obtain the FITNESS VALUE. Applying the rule of 
survival-of-the-fittest, chromosomes with higher fitness 
values will have more chances to survive. It means that good 
chromosomes will either proceed to the new pool or be 
combined to generate new chromosomes. This process is 
called CROSSOVER. For extensive review on genetic 
crossover operators, please refer to [10]. These new 
chromosomes then may be self-tuned called MUTATION 
with a probability MUTATION RATE (MR). Each pool 
then represents a GENERATION, thus the procedure will 
continue to run until the terminating criteria are met. The 
best solution is then obtained at the final stage. Noted that 
the size of solution pool refers to POPULATION SIZE (PS) 
and the total number of pools defines the MAXIMUM 
NUMBER OF GENERATIONS (GEN). 

D. Lot Streaming Technique 
1) Development of LSGAei 

SP1 is to determine the LS conditions. For equal size LS 
with idle time, LSGAei is developed. Using GA, a solution 
to SP1 is defined as a chromosome of size n and each gene 
represents Si. With respect to equal size LS, Qij = Li/Si

subject to Si  Li. In some cases, if Li/Si is not an integer, the 
last sub-lot of Ji equals to iji QL for j = 1…Si-1. After 

splitting n lots to n’ sub-lots, the next step is to solve JSP 
with n’ independent lots, i.e. SP2. The scheduling results 
will be used to evaluate the SP1 chromosome. The objective 
value will be transformed into the fitness value using 
equation (7). Then LSGAei runs until terminating criteria 
are met. Good chromosomes will be chosen to perform 
crossover operation. For LSGAei, a simple 2-cut-point 
crossover (2X) operator is implemented. To implement 2X, 
two random cut points “|” are generated. The genes enclosed 
by the cut points are interchanged between two 
chromosomes to form two new offsprings. Then these new 
offsprings will perform mutation operation subject to a MR. 
Mutation operation is defined as the re-assignment of Si

value to the genes. The evolutionary scheme is that only 
offsprings will enter the new generation. If the offsprings are 
illegal, the crossover and mutation operations will be 
re-executed to the parental chromosomes until feasible 

offsprings are obtained. 

AVERAGE
MINOVMAX

FVValueFitness )(  (7) 

MAX the maximum OV of the same generation 
MIN the minimum OV of the same generation 
AVERAGE the average OV of the same generation 

2) Development of LSGAvi 
For varied size LS with idle time, LSGAvi is developed. 

Applying LSGAvi, the string definition is (X, Y) as shown 
in Figure 2. (1, i) gives the same solution as LSGAei 
representing Si for all lot i. (j, i) defines the size of each 
sub-lot of lot i where j = 2 … Si + 1. 2X operation and 
mutation are illustrated in Figures 2a and 2b respectively. 
The main differences between LSGAei and LSGAvi are that 
the latter can determine the split lots, the split number, and 
the split size at the same time, but the former can only 
determine the split lots and the split number with equal split 
size. The fitness value of each chromosome is obtained using 
equation (7). The evolutionary scheme is the same as 
LSGAei.

Fig. 2. The mechanism of (a) 2X and (b) mutation operation of 
LSGAvi

Although LSGAei and LSGAvi adopt different 
approaches to determine LS conditions, both of them 

Not mutated Mutated

Solution 2: 
3 | Q11 Q12 …
2 | Q21 Q22
3 | Q31 Q32 …
1 | Q51
5 | Q61 Q62 …

Solution 1’: 
1 | Q11 
2 | Q21 Q22
3 | Q31 Q32 …
1 | Q51
5 | Q61 Q62 …

Solution 2’: 
3 | Q11 Q12 …
2 | Q21 Q22
2 | Q31 Q32 
5 | Q51 Q52 …
5 | Q61 Q62 …

Solution 1’: 
1 | Q11 
2 | Q21 Q22 
3 | Q31 Q32 …
1 | Q51 
5 | Q61 Q62 …

Solution 2’: 
3 | Q11 Q12 …
2 | Q21 Q22 
1 | Q31 
5 | Q51 Q52 …
5 | Q61 Q62 …

Solution 1: 
1 | Q11 
2 | Q21 Q22
2 | Q31 Q32 
5 | Q51 Q52 …
5 | Q61 Q62 …

X

Y

(a)

(b)
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employ the same algorithm to solve SP2: JSP after LS 
conditions are determined. This algorithm will be explained 
in the next section. 

E. Job-shop Scheduling Problem 
SP2 is to solve JSP after LS conditions are determined, 

thus SP2-GA is developed. Following SP1, a corresponding 
SP2 is formed after splitting n lots into n’ sub-lots. A 
chromosome for SP2-GA is defined as the preference list of 
job processing priorities on each machine. For example, if m 
= n = 2, L1 = 5, L2 = 8, S1 = S2 = 2 adopting LSGAei, n’ = 4 
sub-lots with Q11 = 2, Q12 = 3, Q21 = Q22 = 4. If LSGAvi is 
adopted, Si and Qij will be obtained after the algorithm 
terminates. Hence, a SP2 chromosome can be defined as {J11

J12 J21 J22 | J21 J11 J22 J12}. It means that the preference list on 
machine 1 is J11>J12>J21>J22 and so on. Then Non-Delay (ND) 
schedule will be generated [11]. In real life manufacturing 
environment, the conformity of lot priorities on machines is 
not always applicable because of dynamic factors. 

The fitness values of SP2 chromosomes are also 
calculated using equation (7) and will perform crossover 
operation according to roulette wheel selection scheme. This 
scheme assigns a portion to each chromosome based on its 
fitness on the wheel. Chromosomes with larger portions on 
the wheel will have more chances to be selected. The 
evolutionary strategy is the same as LSGAei. Job-based 
Order Crossover (JOX) which has been proven to preserve 
job order on all machines between different generations well 
[12], is applied to SP2-GA. Mutation operation is to swap 
two genes each time. Since SP2 chromosomes represent 
only the preference list of job processing orders, illegal 
offsprings will not be obtained. 

IV. EXPERIMENT RESULTS

To illustrate the performance of LSGAei, the lower bound 
(LB) value of makespan proposed by [8] is adopted. In this 
connection, the LB for any m machines n lots (mxn) is 
obtained via equation (8). Table 2 shows LB and the value 
obtained by LSGAei for 3x3. For each problem, 10 
experiments have been carried out. Ptik follows discrete 
uniform distribution [1, 10] and Li ranges from [1, 50]. Also, 
setup time is ignored. Mutation rate is excluded in SP1-GA 
such that the results can be used to examine the sequencing 
ability of SP2-GA with n’. The LSGAei parameters (GEN, 
PS, MR) are as follows: SP1-GA (10, 10, 0.0) and SP2-GA 
(20, 20, 0.01). 

iLPtLB
k

iik }max{  (8) 

TABLE 2
COMPARISON BETWEEN LB AND RESULTS BY LSGAei
3x3 LB LSGAei % diff.

1
2
3
4
5
6
7
8
9
10

824.00
716.00
490.00
741.00
512.00
782.00
520.00
802.00
560.00
486.00

825.00
716.00
502.00
772.00
520.00
782.00
525.00
804.00
568.00
487.00

0.12
0.00
2.45
4.18
1.56
0.00
0.96
0.25
1.43
0.21

Avg. 643.30 650.10 1.06 

From Table 2, the makespans obtained by LSGAei match 
very well to the theoretical LB on average. To model real 
problem, setup time is considered. Although the 
consideration of makespan leads to the reduction of the total 
production lead time, the benefit may be arbitrary. That’s 
why many researchers strengthen the study of Just-In-Time 
(JIT) concept such that timely delivery is highlighted. An 
example of LS to cost control in JIT manner can be referred 
to [13]. 

Applying JIT philosophy to the current model, eci and tci

are introduced. For the following experiments, SP1-GA 
(10,20,0.01) and SP2-GA (20,20,0.01) are implemented. 
mck varies from [1, 20]. A fixed setup time is counted during 
fixture changeover and pre-setup is not considered. 
According to [14], Di [P(1-T-R/2), P(1-T+R/2)] where P is 
the sum of processing times of all operations divided by the 
total number of machines. Lateness factor (T) ranges from 
0.1 to 0.5 and relative range of due dates (R) ranges from 0.8 
to 1.8. 

A. Experiment One 
Consider m = n = 3, the job data of the 1st 3x3 is as 

follows: 

F1 = 1, L1 = 50, D1 = 604, M3 (7) M1 (10) M2 (4) 
F2 = 2, L2 = 9, D2 = 322, M2 (8) M1 (10) M3 (1) 
F3 = 3, L3 = 26, D3 = 331, M1 (9) M3 (4) M2 (1) 
where ( ) stands for processing time per unit 

In this experiment, equal size LS with idle time is studied. 
The penalty costs (eci, tci) of the 1st 3x3 are given as (3, 7), (4, 
1) and (9, 10). Over ten 3x3 problems, three different 
scenarios: (i) No LS; (ii) Max. LS; (iii) With LS are 
examined. In general, the OPC and average deviation from 
due date (dev) can be minimized by splitting lots. However, 
splitting lots into single unit doesn’t guarantee that the 
minimum OPC can be obtained. It is noted that for the 
scenario (ii) has reduced the OPC only by 20.49% and dev 
by 7.24% on average as compared to (i). Using LSGAei, i.e. 
the scenario (iii), a suitable level of splitting achieved a 
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remarkable reduction in OPC and dev by 72.07% and 
53.27% respectively as compared to (i). The results show 
that LSGAei is capable of deriving a suitable level of 
splitting with respect to the objective function. 

Figure 3a shows the completion date of all sub-lots with 
W1 = 1 and W = 0 for the first 3x3. The final solution gives 
the OPC = 33657 and TSC = 1740 with S1 = 27, S2 = 1, S3 = 1. 
Figure 4 shows the result with W1 = 0 and W2 = 1 for the 
first 3x3. The final solution gives the OPC = 218566 and 
TSC = 1590 with S1 = 1, S2 = 3, S3 = 1. To compare the 
solutions shown in Figures 3a and 4, it is observed that 
LSGAei can work well with different weightings. 

(

(

Fig. 3. Completion time of sub-lots from 1st 3x3 by (a) LSGAei and 
(b) LSGAvi 

B. Experiment Two 
Using the same setting from experiment 1, varied size LS 

with idle time is examined. According to [8], their algorithm, 
LPGA, can determine the sub-lot size for each lot with given 
(fixed) Si. One shortcoming is that the result cannot tell 
whether it is appropriate to split a job. To deal with varied 
size LS, another approach is inspired by modifying the 
LPGA called LSGAvi. Since LPGA only works with fixed 
Si, the results may not be intelligent. It is believed the 
selection of the split lots may improve the LS decision. To 
examine this point, LSGAvi is further improved in which the 
split lots, the split number, and the split size are all variables. 
Recall that the development of LSGAvi has been depicted in 
section III-D. 

Fig. 4. Completion time of sub-lots from 1st 3x3 by 
LSGAei

For makespan minimization, the comparison between 
LSGAei and LSGAvi will be made for 3x3. Table 3 shows if 
LSGAvi is employed, the performance is improved. The last 
column indicates the difference between LB and LSGAvi. If 
the objective is OPC, it is observed that LSGAvi still 
outperforms LSGAei as shown in Table 4. Using the 1st 3x3 
as example, the distribution of sub-lots completed using 
LSGAei and LSGAvi is plotted in Figure 3. Applying 
LSGAei, n’ = 29 with OPC = 33657 while n’ = 19 (reduced 
by 34.5%) with OPC = 24401 (reduced by 27.5%) by 
LSGAvi. Using LSGAei (Figure 3a), it is seen that sub-lots 
tend to be finished beyond due dates. Using LSGAvi (Figure 
3b), sub-lots are finished around due dates. Since most of the 
split lots come from J1 which L1 is big (50 units), it costs less 
to finish it earlier as ec1 < tc1. This is one possible reason 
LSGAvi can obtain solutions with lower OPC. 

TABLE 3
COMPARISON BETWEEN LB, LSGAei AND LSGAvi

3x3 LB LSGAei LSGAvi % 
diff.

1
2
3
4
5
6
7
8
9
10

824.00
716.00
490.00
741.00
512.00
782.00
520.00
802.00
560.00
486.00

825.00
716.00
502.00
772.00
520.00
782.00
525.00
804.00
568.00
487.00

825.00
716.00
502.00
752.00
520.00
782.00
525.00
804.00
568.00
487.00

0.12
0.00
2.45
1.48
1.56
0.00
0.96
0.25
1.43
0.21

Avg. 643.30 650.10 648.10 0.85 
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TABLE 4
OVERALL PENALTY COST BY LSGAei AND LSGAvi

3x3 LSGAei 
(A)

LSGAvi
(B)

[(A)-(B)] / (A) 
* 100% 

1
2
3
4
5
6
7
8
9
10

33657.00
29645.00
71108.00
29163.00
28119.00
54019.00
19288.00
53149.00
22924.00
6550.00

24401.00
21357.00
84324.00
30143.00
19762.00
42206.00
14614.00
31939.00
25059.00
4745.00

27.50%
27.96%
-18.59%
-3.36%
29.72%
21.87%
24.23%
39.91%
-9.31%
27.56%

Avg. 34763.20 29855.00 - 

V. ILLUSTRATIVE EXAMPLE

 In this section, a workshop with a number of Computer 
Numerical Control (CNC) machines is chosen. Each part 
will go through 2 machines and Ptik [1,10]. Moreover, due to 
administration policies, only lots with Li > 10 are allowed to 
be split and lots can only be split into Si  10 sub-lots where 
i = 1…n’. Also, eci and tci vary from [1, 10] for all lot i. 
Noted that the existing splitting policy of the company 
follows LSGAei. 

Comparison between LSGAei and LSGAvi will be made 
on 5x10, 5x15 and 5x20. Table 5 shows that LSGAvi 
outperforms LSGAei for all test problems and the 
improvement increases with the problem size. This result 
may imply that varied size LS may help to improve the 
overall workshop performance. However, LSGAvi tends to 
increase n’. As a result, smaller sub-lots can help to offset 
the penalty cost induced by larger sub-lots of the same 
original lot. Because ecj and tcj are calculated per unit, small 
amount of early or late hours by larger sub-lots can be 
obtained in sacrifice of large amount of early or late hours by 
smaller sub-lots. For example, a lot of 30 units can be split 
into 6 sub-lots which sub-lot sizes are 20, 2, 2, 2, 2 and 2. 
Then those smaller sub-lots with 2 units can be completed in 
a way that the 20-unit sub-lot can be finished closer to its due 
date. On the other hand, LSGAei can only split lots into 
sub-lots of equal size. Thus, a lot with 30 units can only be 
split into 6 sub-lots with equal size 5 units. To this end, the 
offset effect cannot be applied in equal size splitting. 

In the current study, a new GA approach is proposed to 
determine LS conditions in JSP. In general, it has been 
shown that varied size LS (LSGAvi) works better than equal 
size LS (LSGAei). Experiments have also suggested that 
LSGAvi performs much better if problem size grows. More 
importantly, LSGAvi can solve LS problem by determining 
the LS conditions and the sub-lot processing order 
simultaneously. According to authors’ knowledge, there is 
no similar approach to determine LS conditions in JSP. 

Although the proposed model works well to the objectives, 
an intelligent method will be studied to obtain the optimal 
weightings of the objective function. 

TABLE 5
COMPARISON BETWEEN LSGAei AND LSGAvi ON TESTING PROBLEMS

Proble
ms 

LSGAei (A) LSGAvi (B) [(A)-(B)] / 
(A) * 100%

5x10
5x15
5x20

295653.00
214203.00
456283.00

275668.00
177698.00
376998.00

6.76%
17.04%
17.38%
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