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Abstract - This article introduces a new adaptive 
Lomb periodogram for time-frequency analysis of time 
series, which are possibly non-uniformly sampled. It 
extends the conventional Lomb spectrum by windowing 
the observations and adaptively selects the window 
length by the intersection of confidence intervals (ICI) 
rule. To further reduce the variance of the Lomb perio- 
dogram due to time smoothing alone, time-frequency 
smoothing using local polynomial regression (LPR) is 
proposed. An orientation analysis is performed in order 
to derive a directional kernel in the time-frequency 
plane for adaptive smoothing of the periodogram. The 
support of this directional kernel is also adaptively se- 
lected using the IC1 rule. Simulation results show that 
the proposed adaptive Lomb periodogram with time- 
frequency smoothing offers better time and frequency 
resolutions as well as lower variance than the conven- 
tional Lomb periodogram. 

I. INTRODUCTION 

Time-frequency distributions are useful tools for joint 
time-frequency analysis and visualization of signals. A con- 
ventional time-frequency distribution is the short-time Fou- 
rier transform (STFT) which is given by 

STFT(t, w) = x(.r)w(.r -t)e-jard.r, (1) 

where x(t)  is the signal and w(t)  is the window function. 
The Fourier transform of x(.r)w(r-t)  describes the local 
spectral content of x(r) at a given time location t . The 
support of the window w(t )  is crucial to the analysis because 
it determines the bias and variance trade-off of the STFT. 

For sinusoidal components in the signal, a long time 
window is desirable because more samples can be used to 
determine their amplitudes around the given time location. 
Hence, the variances of the spectral coefficients are reduced 
and better frequency resolution is obtained. On the contrary, 
for fast time-varying components in the signals, a smaller 
window support is preferred in order to reduce the bias in 
estimating these components. As a result, a better time reso- 
lution is achieved for tracking these fast changing compo- 
nents. However, a small window support also reduces the 
frequency resolution of other slowly varying frequency com- 
ponents. Therefore, a fundamental problem of time- 
frequency analysis is the design of the windows in order to 
achieve the best bias-variance trade-off in estimating the 
various components. In [I], Jones and Parks address the bias- 
variance tradeoff problem in STFT by using an adaptive 
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window in the time plane and the concept of “concentration 
measure”. The basic idea is to select the parameters of a se- 
ries of local windows with different time and frequency sup- 
ports in order to maximize the “concentration measure”. An- 
other interesting approach is the adaptive window selection 
approach of Katkovnik and Stankovic [3, 41, where the 
window size is selected by the intersection of confidence 
intervals (ICI) rule. It has been successfully applied to esti- 
mate the instantaneous frequency (IF) of a time-varying com- 
ponent for the Wigner distribution [3] and the M- 
periodogram [4]. Recently, Hussain and Boashash [6] further 
developed this algorithm to multi-components signal. 
However, their algorithm is based on the IF estimation to 
choose optimal window size only at time instant t , not at 
frequency instant w .  

In this paper, we consider the problem of time-frequency 
analysis of time series, which are possibly non-uniformly 
sampled. Our approach is based on a novel extension of the 
Lomb periodogram [7, 81, which is a conventional method 
for carrying out spectral analysis of non-uniformly spaced 
samples. Lomb periodogram has been adapted in many areas 
such as biomedical sciences, astronomy and finance. Its basic 
idea is to estimate the amplitude of a given sinusoid with a 
certain angular frequency w by least squares fitting the sinu- 
soidal to the observed non-uniform data points. The power of 
this sinusoid is then denoted by Lomb periodogramP(w) . 
One significant drawback of the Lomb periodogram is that it 
is obtained by fitting the whole data block to the signal 
model. Therefore, its tracking ability is severely limited. In 
order to track time-varying signals and produce a time- 
frequency Lomb spectrum or distribution, we first propose a 
windowed version of the Lomb periodogram. To achieve the 
best bias-variance trade off, the support of this window is 
optimally selected at each time instant and frequency by the 
IC1 rule. This significantly improves the time-frequency reso- 
lution of the windowed Lomb spectrogram. To hrther reduce 
the variance of the new distribution, which is also a problem 
in most time-window based distributions, smoothing in the 
time-frequency plane using local polynomial regression 
(LPR) is proposed. In order to exploit the time-frequency 
localization of the adaptive Lomb periodogram, an orienta- 
tion analysis is performed in order to derive a directional 
kernel in the time-frequency plane for adaptive smoothing of 
the periodogram. The support of this directional kernel is also 
adaptively selected using the IC1 rule. Simulation results 
show that the proposed adaptive Lomb periodogram with 
time-frequency smoothing offers better time and frequency 
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resolution as well as lower variance than the conventional 
Lomb periodogram. 

The paper is organized as follows: in Section 2, the 
windowed Lomb periodogram is introduced. The adaptive 
Lomb periodogram and window selection using the IC1 rule 
are introduced in Section 3. Section 4 is devoted to the orien- 
tation analysis and directional filtering of the time-frequency 
distribution (TFD). Simulation results and comparisons are 
described in Section 5. Finally, conclusions are drawn in Sec- 
tion 6. 

11. WINDOWED LOMB PERIODOCRAM 

The Lomb method [7, 81 is a very useful method for 
spectral analysis of non-uniform sampled data. The basic 
idea of the Lomb periodogram is to estimate the amplitude of 
a given sinusoid with a certain angular frequency w by least 
squares fitting the sinusoidal to the observed non-uniform 
data points. The power of this sinusoid is then denoted by 
P(w) . In other words, P(w) is computed from the observed 
data points using a least-squares fit to the model: 

where n(t)  denotes the additive noise and other components 
in the signal. Since the Lomb method weights the data on a 
“per point” basis instead of on a “per time interval” basis, it 
can be applied to non-uniform data. 

The detailed computation can be summarized as follows: 
given a set of non-uniform discrete-time observation 
x, =x(t,); i=1,2 ,... N ,  the mean X and variance 0’ of 
the data are first computed. 

To evaluate the Lomb spectrum at an angular frequency 
, a least squares fit to the sinusoid in (5) is per- 

formed on the zero mean and normalized observations. It 
yield the following Lomb normalized periodogram: 

~ ( t )  = A cos(wt + 6)  + n(t) , (3) 

= ’Cf > 

where I is given by 
C, sin 2wt, 

tan(2wr) = c, cos 2wt, . ( 5 )  

The constant is an offset that makes the periodogram 
invariant to time translation. It can be seen that the conven- 
tional Lomb spectrum is obtained by fitting the whole data 
block of N samples to the signal model. Therefore, its track- 
ing ability is severely limited. In order to track time-varying 
signals and produce a time-frequency Lomb spectrum or 
distribution, we need to include a window, which should be 
ideally adapted to the observation to achieve the best bias- 
variance tradeoff. To this end, we introduce a window w(t, ) , 
which is centred at time t , so that we can calculate the Lomb 
periodogram on the windowed data x ‘ ( t , )  = x(l,)w(t, - t )  at 
a given time instant t . Hence, we can obtain a series of pe- 

riodograms (or more precisely a TFD) P(t,w) of the signal 
x(t) at different time locations t .  This yields - 

{Ci(X’(ti) - x’)cos(w(x’(t,) - 5))12 

2 0 ”  . C8cos2(w(x’(ti) - 5)) 

{zi(x’( t i )  - x’)sin(w(x’(t,) - 5)))’ 

20’2 . CisinZ(w(x’(ti> - I)) 

P(t ,w)  = 

- (6) 
+ ’ 

where 7 is the mean of the data in the window w(t,) , o‘ is 
the standard deviation of the data in the window w(t,) . 
Similar to STFT, the selection of window length is crucial to 
the time-frequency resolution of the Lomb TFD P(t,w) . 
Again, for a long window, the frequency resolution for sinu- 
soids will improve, while the time resolution of the varying 
components will be reduced, and vice versa. Motivated by 
the novel bandwidth selection rule in [5], we propose to use 
the IC1 rule for determining the window size of w(t,)  at 
each time t . Also, to reduce the variance of the frequency 
distribution, smoothing in the frequency domain using local 
polynomial regression is also performed as suggested in [9] 
for convention periodogram (which is not time-varying). 
Finally, directional smoothing in the time-frequency plane 
will be performed to cater for time varying components. The 
details will be given in the following sections. 

111. ADAPTIVE LOMB PERIODOCRAM AND WINDOW 
SIZE SELECTION 

Now, we will employ the IC1 rule to determine the win- 
dow length of the Lomb periodogram at every point ( t ,  w )  in 
the time-frequency plane. Suppose that we are given a set of 
finite window sizes in ascending order of magnitude: 

H = { h , I h ,  < h ,  < . . A h , } .  (7) 

For each window size h,  , we obtain a Lomb periodo- 
gram P,,, ( t ,  w) (i=l,. . .a. The variance, Vur(.), and the bias, 

bias(.), of these Lomb periodograms are functions of the 
window hj , so is the mean square error (MSE): 

MSE(t,w;h,) = Var[P,,,(t,w)]+bias2[Ph,(t,w)]. (8) 
We know that the variance and bias are respectively 

decreasing and increasing functions of the window size. 
Therefore, there exists an optimal window hop, such that the 

two terms are equal and MSE(t,w;hi) is minimized. To 
determine this optimal bandwidth, the IC1 rule examines a 
sequence of confidence intervals of the estimates 4, (I,@) : 

(9) 
L ,  = P,, ( t ,w)  - l- ‘ d h ,  1 9  

where o(h , )  is the variance of the estimate using the window 
with length 17,  , and r > 0 is a threshold parameter of the 
confidence interval. Define the following quantities from the 
confident intervals 
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The largest value of these j for which U ,  2 z, gives j' 

and it yields a bandwidth h,' , which is the desired optimal 

bandwidth. In other words, the optimal bandwidth h,' is the 

largestj when U ,  2 x, is still satisfied. By using an adaptive 
window for each sinusoid and at each time t, better bias and 
variance trade off can be achieved for multi-component with 
different time-frequency variations. Hence, a better perform- 
ance in time-frequency resolution is obtained. 

Laguna, Moody and Mark [lo] make clear that in fact 
the Lomb periodogram is the IX,(f]* spectrum, where 

X,(f) is the DFT of the unevenly sampled signal x, . x, is 
defined as: 

1 ,  

So, the values of Lomb periodogram are correlative with 
the window sizes. Before we select the optimal Lomb perio- 
dogram values from different periodograms with different 
window sizes, a normalization process must be applied. The 
normalization method is to divide the Lomb periodogram by 
its corresponding window size. 

Iv. ORIENTATION ANALYSIS AND DIRECTIONAL 
SMOOTHING OF PERIODOGRAMS 

The adaptive Lomb periodogram (TFD) we obtained in 
Section 3 has a significantly better time frequency resolution 
than the conventional Lomb spectrum with fixed time win- 
dows (as we shall demonstrate later at section 5). However, it 
is well known that the variance of the periodogram at each 
frequency is still very high. This can be seen as spurious 
components and blurring in the adaptive Lomb periodogram, 
for example in Figure l(c). One method to reduce this vari- 
ance is to smooth the periodogram in the frequency domain 
[9]. Although there are many methods for smoothing a 2D 
signal, for example using a low-pass 2D filter, it is still desir- 
able to achieve the best bias-variance tradeoff so that both 
over- and under- smoothing can be avoided. This can be 
achieved by performing a 2D local polynomial regression 
(LPR) to the TFD using again the IC1 rule for adaptive 
bandwidth selection. However, the shape or orientation of the 
window plays a important role during the smoothing. Most 
work considered for multidimensional LPR considered only 
isotopic window, which is symmetry in all the dimensions. 
Clearly, this is undesirable in TFD because the spectrum 
components are usually localized in the time-frequency plane. 

To overcome this problem, we propose to employ a di- 
rectional window and adaptively vary its window size using 
the IC1 rule to achieve better time-frequency resolution. To 
determine the orientation of the window at a certain point on 
the time-frequency plane, an orientation analysis is first per- 
formed using a set of filters with different orientations. Since 
the output energy of a filer at a given orientation is measure 

of local energy of the TFD at the given orientation, by using 
a sufficient fine angular resolution, we can identify different 
orientations of the TFD at a given location from the maximal 
values of the energy plot. These directions are also estimates 
of the instantaneous frequencies and chirp rates of the TFD at 
a point ( I ,w) .  For simplicity, we have used 32 orientations 
between 0 and 4 2  , and then interpolated the signal to a 
finer grid for locating the maxima. 

After we get the directions of every point in the time- 
frequency domain, we can use a directional Gaussian filter to 
smooth the periodogram using LPR. During directional 
smoothing of the TFD, the window lengths of the directional 
filters are determined again by the IC1 rule to achieve better 
bias-variance tradeoff. In general, more complicated 
nonlinear directional smoothing can be applied. For the pre- 
sent work, the frequency of a component is assumed to be a 
linear function of time t . In other words, for frequency 
component that varies nonlinearly with time, we are essen- 
tially approximating them locally by a straight line over a 
short time interval. More research will be left for future work. 
Finally, we remarked that in time-frequency analysis, it is 
usually desirable to depict the TFD on an evenly sampled 
time-frequency plane. For non-uniformly spaced observa- 
tions, only spectrums at non-evenly sampled points in time 
coordinate are available. So, it is necessary to interpolate the 
periodogram to a uniform grid for visualization purpose. This 
can be achieved after the directional smoothing of the TFD 
using 2D LPR. 

V. EXPERIMENTS RESULTS 

Example 1: Our first example is an evenly sampled mono- 
component nonlinear frequency modulated signal. The IF of 
the signal is: 

w(nT) = 0 . 0 8 ~  .asinh(nT - 50) + 0 . 5 ~  . (12) 
The time interval is T = 1 , and the number of points are from 
n = 0,1,2...100 . The signal is assumed to be corrupted by 
additive Gaussian noise and the SNR is 10 dB. The windows 
lengths considered are 16, 32, 64, and 128. Fig.1 shows the 
Lomb periodogram obtained by using fixed as well as the 
adaptive window lengths. We can see that when the window 
length is small, the time resolution is high but the frequency 
resolution is low, while when the window is long, the fie- 
quency resolution is high but the time resolution is low. The 
proposed adaptive Lomb periodogram with adaptive window 
is able to achieve good time as well as frequency resolutions. 
From the adaptive window length, it can be seen that when 
there are fast changes in the frequency component, a small 
window is selected to strive for a better time-resolution. On 
the hand, when the signal changes slowly, a long time win- 
dow will be selected for better frequency resolution. How- 
ever, we can see that the variance of the adaptive Lomb spec- 
trum in Fig.2(a) is still considerable because of the limited 
performance of using just a time window for smoothing as in 
many other approaches [6]. AAer using the proposed direc- 
tional smoothing in the time-frequency domain, a much bet- 
ter performance is obtained as shown in Fig2 (b). Detail 
examination of Fig.2 also reveals that the amplitude fluctua- 
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tion (blurring) of the signal component is much less for the 
proposed directional TF smoothing than adaptive time 
smoothing alone. After the directional smoothing, the vari- 
ance of the periodogram at the instantaneous frequency point 
changes from 8.72 to 7.58. Since the frequency model we 
used is a linear function of time while the signal is nonlinear 
frequency modulated, there is still some blurring of the pe- 
riodogram. In all cases, the IC1 rule is used to select the filter 
length of the TFD. 

Fig. 1: Windowed Lomb periodogram with (a) h=16, (b) h=128, 
(c) adaptive window lengths, (d) local periodogram orientation, 

the pixel values become bigger when angles (from 0 to n/2 ) 
become larger. 

Fig. 2 (a) Lomb periodogram with adaptive time window, 
(b) adaptive periodogram with directional TF smoothing. 

Example 2: Our next example is a non-evenly sampled 
multi-component linear FM signal given by 

9, ( n ~ )  = 0.008nT + 0. I, 
o)? ( n T ) =  -0.008nT + 0.9. (13) 

The time interval is T = 0.5, and the observation is in 
the time interval n = 0,1,2...,200 . The non-uniform observa- 
tion is obtained by randomly sampling 100 points from these 
observations, so the average interval is 2T = 1 . Again, the 
signal is assumed to be corrupted by additive Gaussian noise 
and the SNR is 10 dB. The possible window lengths are 
again chosen from the set { 16, 32, 64, 128). We can see the 
periodogram can detect frequency which is larger than Ny- 
quist frequency 1/(2T) = 0.5 . After the directional smoothing, 
the variance of the periodogram at the instantaneous fre- 
quency point is lowered from 1 .  I O  to 0.48. This is because 
the frequency components of the signal is changing linearly 
with time, so the improvement of smoothing are more sig- 
nificant than the last example. 

Fig. 3: (a) non-uniform Lomb periodogram with adaptive time 
window, (b) adaptive periodogram with directional TF 

smoothing and time interpolation. 

VI. CONCLUSION 

This paper has presented a new adaptive Lomb periodo- 
gram for time-frequency analysis of time series, which are 
possibly non-uniformly sampled. It extends the conventional 
Lomb spectrum by using an adaptive directional time- 
frequency window. It addresses the bias-variance tradeoff 
problem by means of a directional window with varying 
time-frequency support, which is selected by the IC1 rule. 
Simulation results show that the proposed adaptive Lomb 
periodogram with time-frequency smoothing offers better 
time and frequency resolutions as well as lower variance than 
the conventional Lomb periodogram. The time-frequency 
smoothing is also applicable to reduce the variance of related 
periodograms such as the STFT. 
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