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ABSTRACT

In this paper, a new method for robust local polynomial 

regression (LPR) using M-estimator with adaptive bandwidth is 

proposed. This is motivated by the limitation of traditional LPR 

in detecting and removing impulsive noise or outlies.  By using 

M-estimation technique and the intersection of confidence 

intervals (ICI) rule for choosing an adaptive local bandwidth, a 

robust LPR algorithm is developed. Simulation results show that 

the new M-estimation-based LPR performs considerably better 

than the traditional LS-based method in removing the impulsive 

noise as well as preserving the jump discontinuities, which are 

frequently found in image and video processing. 

1. INTRODUCTION 

Local polynomial regression [1, 2] is a very flexible and 

efficient nonparametric method for data smoothing and density 

estimation.  Given a set of noisy samples of a signal, the data 

points are fitted locally by a polynomial using a least-square (LS) 

fit with a kernel function having a certain bandwidth. Selecting a 

proper local bandwidth is very critical to achieve the best bias-

variance tradeoff in estimating non-stationary signals.  For slow 

varying parts of a signal, we would like the window size or 

bandwidth to be large so that more accurate estimations can be 

obtained by averaging out the additive noise as much as possible.  

At fast varying parts of a signal, however, we would like to have 

a smaller window size so that excessive bias errors due to the 

limited order of the fitting polynomial will not occur.  The 

determination of local adaptive bandwidth has been a subject of 

intensive research in the statistics community.  For a survey of 

this topic, see [3] and references therein.  One very useful 

method is called the empirical-bias bandwidths selection (EBBS) 

proposed by Ruppert [4].  Unfortunately, the complexity of the 

EBBS is rather high. More recently, Goldenshluger and 

Nemirovski [5] and Katkovinik [6] studied a new bandwidth 

selection rule called the intersection confidence intervals (ICI), 

which is very simple to use and yield reasonable and efficient 

results.  

When it comes to nonparametric regression, LPR with ICI 

performs very well in removing Gaussian noise, while 

preserving signal edges, especially when the observed signals 

exhibit so called “jump discontinuities”.  The main reason 

behind this nice property is that the filter bandwidth (effective 

window size) can automatically be adjusted to a small value in 

the neighborhood of these jumping points, so that excessive 

smoothing is avoided to preserve the jump discontinuities.  This 

is also a reminiscence of the adaptive nature of local bandwidth 

selector in striking for the best bias-variance tradeoff.  Data 

smoothing under jump discontinuities has also been studied in 

[10] for image smoothing.  To avoid the jump discontinuities 

from affecting the signal estimates, robust statistics using M-

estimator is introduced.  Basically, the M-estimator de-

emphasizes or ignores those samples on the other side of the 

discontinuity to stabilize the estimate.  However, the bandwidths 

for the M-estimator (the scale parameters) and the kernel 

function are fixed and their selection usually requires human 

intervention.   

Although the performance of LPR with ICI efficiently 

handles jump discontinuities, they are still sensitive to impulsive 

noise, because the algorithm is based on least square estimation, 

which implicitly assumes that the additive noise is Gaussian.  

For noises with long tail in their probability distribution 

functions, we observed that the estimates are substantially 

affected and they cannot be removed satisfactorily. This 

motivates us to replace the LS estimation with M-estimation in 

the LPR with ICI rule.  It can also be viewed as incorporating an 

ICI adaptive bandwidth selector into Chu’s M-estimator-based 

LPR.  The M-estimator serves two major roles here: to combat 

the impulsive noise, and to stabilize the estimates across jump 

discontinuities.  After that, the ICI rule will try to strike for the 

best bias-variance tradeoff.   

Our paper is organized as follows: in Section 2, the basic 

principle of LPR is introduced.  The ICI rule and its application 

to LPR are introduced in Section 3. Section 4 is devoted to the 

proposed M-estimation-based LPR algorithm with ICI rule. 

Simulation results and comparisons are described in Section 5. 

Finally, conclusions are drawn in Section 6.   

2. LOCAL POLYNOMIAL REGRESSION 

In LPR, we are given noisy samples of a signal:  
)()()( )( iii mY X , i=1,…,n, (1)

where )(Xm  is a smooth function specifying the conditional 

mean of )(iY  given )(i
X , and )(i  are independent identically 

distributed additive noise with zero mean and variance 2 .   We 

need to estimate the original signal )(Xm  and its derivatives 

)(Xkm  from the noisy samples )(iY  at location 
T

dxx ),...,( 1x .   In LPR, the observations around a point x  is 

approximated locally by the following polynomial: 

p

K

d

j

k

jjkk

Kkk

p
j

d

d

xXP
0 1

,..., )(),:(
1

1

xX ,

)( xXPp

T , i=1,…,n,

(2)

where },...,0and...:{ 21,...,
1

pKKkkk dkk
d

 is a 

vector containing the coefficients of the polynomials, and 



},...,0and...:)({)( 21

1

pKKkkkxX d

d

j

k

jjp
jxXP .

We can estimate  from ),( )()( iiY X  by the weighted least 

square method.  Let )():( xXXxh hKw  be the weighting 

function for a sample at X for estimating  at x . To allow 

efficient tradeoff between bias and variance, ):( Xxhw  is 

usually chosen as a d-dimensional non-negative function 

)( xXh iK , where h is a bandwidth matrix and 

))((||)( 11 xXhhxX hh KK .  For separable windows, 

we have 
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The LS solution of  is 
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Differentiating ),( hxLSE with respect to  and setting the 

derivative to zero, we can get 
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From ),(ˆ hxLS , we can also estimate the derivatives of 
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from the polynomial )(ˆ xm  as follows: 
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where ]0,...,0,1,0,...,0[1T
k

 is a vector with a one in the k-

location.

3. INTERSECTION OF CONFIDENCE INTERVALS 

Unlike plug-in bandwidth method, where parameters in 

certain analytical optimal bandwidth formulae are estimated and 

“plug” into the formulae, empirical method usually starts with a 

finite set of window sizes: 

JhhhH 21 , (9)

and determines the optimal bandwidth by evaluating the fitting 

results (note, in multivariate data, windows are order according 

to the volume of their support).  Let ),(ˆ
jhxm  be the estimate for 

the window jh .  The variance and the bias of these estimators at 

x are functions of the filter bandwidth h, so is the mean square 

error (MSE). In fact, we have: 

)],(ˆ[)],(ˆ[),( 2
hxhxhx mbiasmVarMSE . (10)

As mentioned earlier, the bias of the estimation will 

increase rapidly if the bandwidth h becomes so large that the 

underlying data at x cannot be modeled by the local polynomial 

of a given order.  On the other hand, the larger the window size, 

the smaller will be the variance of the estimator. So there exists 

an optimal bandwidth )(xopth where the MSE(x,h) is minimized.  

To determine this optimal bandwidth, the ICI rule examines a 

sequence of confidence intervals of the estimates ),(ˆ
jhxm :
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where ),( jhxkstd is the standard deviation of the estimate and 

0  is a threshold parameter of the confidence interval. 

Define the following quantities from the confident intervals 
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The largest value of these j for which jj
LU  gives j+ and 

it yields a bandwidth hj
+, which is the required optimal ICI 

bandwidth.  In other words, the optimal bandwidth hj
+ is the 

largest j when jj
LU  is still satisfied. Note, the ICI window 

sizes are different for different position of x.

Because the optimal bandwidth is decided by ,  plays a 

crucial part in the performance of the algorithm. When  is 

large, the segment Dj becomes wide, and it will cause the value 

of hj
+ to be bigger. This will result in over-smoothing. On the 

contrary, when  is small, the segment Dj would become 

narrow, and it will yield a small value of hj
+ so that the noise 

cannot be removed effectively. In [2], Katkovnik used Cross-

Validation to determine a reasonable threshold .

4. M-ESTIMATION AND IRLS 

“M-estimation” refers to “generalized maximum likelihood 

estimation”, which is a formal approach to robust estimation 

developed by Huber in 1964. Later, Härdle & Gasser [9] 

combined M-estimation with nonparametric function fitting. 

More recently, Chu et al. [10] employed M-smoother with local 

linear fit to address the problem of smoothing with jump 

discontinuities. They have also been employed in robust 

adaptive filtering under impulsive noise [11,12,13] 

We apply this local polynomial regression combined with 

ICI using LS method algorithm to 1-D signal and obtain results 

that preserve edge well, jump discontinuities included. In a jump 

point, the algorithm can provide a small bandwidth that ignores 

other neighbor points that have large difference with the 

preference point. But when the signal contains many outlies, 

such as impulsive noise, the method cannot perform well.  



In order to smooth these outlies, it is generally preferred to 

estimate ),( hx  by minimizing the M-estimate function. 
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where (.)  is an M-estimate function, where the estimation 

error )( )()( i

p

Ti

i Ye XP  is de-emphasized when ie .

Since the main purpose of the scale parameter is to “reject the 

outlies”, it exact value is not that sensitive, provided it is not 

chosen too large or too small. A simple estimate is 

)(576.2 )(iX . Using the robust variance estimator, the 

robust estimate of )( )(2 iX  should be 
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where })(,,){()( 2)2()1(2)1()( ww
NiNiii

e YYYYiA , wN  is 

the length of the estimation window and 

151483.11 wNc  is a finite sample correction factor. 

After determining a rough estimate of )( )(2 i
X , it can be 

scaled appropriately to obtain the scale parameter of the M-

estimate function.

Differentiating ),( hxME with respect to  and setting the 

derivative to zero, we can get 
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Note, this is a nonlinear equation, because the entries of 

YX_P  and XX_P  depend on )( )()( i

p

Ti

i Ye XP , which in 

turns depend on the parameter to be estimated. We can solve 

),(ˆ hxM  using iterative reweighed least squares (IRLS or 

IWLS).  Here are the details: 

Start with an initial estimate of ),(ˆ )0(
hxM , solve (15) as   
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We can relax this nonlinear equation, by replacing T  in 

)( )()( i

p

Ti

i Ye XP  by )1(ˆ l . Therefore, the matrix 

YX_P  and vector YX_P  can now be approximated as 
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T  in )1(ˆ l .  Since )1(ˆ l  is already known, the last estimation 

),(ˆ )( hxl

M  can be computed by solving (16), where the right 

hand sides are all constant matrix and vector. Since each 

iteration progress requires the solution of a LS problem, it is 

called IRLS method.  Alternatively, (15) can be solved using 

Newton type of algorithms. Let us use a 1-D scenario to explain 

why M-estimation works even for impulsive noise. When the 

LPR is performed using LS fit and the ICI rule, the adaptive 

bandwidths at the locations of the impulses and jump 

discontinuities, are normally very small to limit the bias errors. 

Therefore, not only the edges, but also the impulsive noise are 

preserved. On the other hand, the M-estimate function, (.) ,

with an appropriate scale , help to de-emphasis the effects of 

these outlies by assigning them a smaller weights.    

5. SIMULATIONS 

We now evaluate the proposed algorithm using a 1-D noisy 

signal with jump-discontinuities and impulsive noise. The 

additive noise is Gaussian with zero mean and variance 0.3.  The 

amplitude of the impulsive noise is generated randomly with a 

variance of 1.8.  To better visual effects, their locations are fixed 

at x=0.05, 0.3, 0.5, 0.6 and 0.9. The following are stimulated: 

1:- LPR using LS and ICI;  

2:- LPR using M-estimation and ICI. 

The original observation signal and the two estimation 

results were shown in Fig.1. We can clearly see from Fig.1 that 

M-estimation can achieve better result than that of LS method, 

especially in the vicinity of the impulses. LS-based LPR can 

only preserve those jump discontinuities or edges, but it can’t 

distinguish the isolated impulses and remove them. On the other 

hand, M-estimation not only preserves those jump 

discontinuities and edges but also removes effectively the 

impulsive noise. The M-estimator (.)  we used is the Huber 

function
otherwise

ee
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.  Other M-estimate function 

such as cauchy or Hampel three parts redescending function can 

be used.  Here we can use (14) in Section 4 to compute an 

appropriate value of the threshold .

Fig.1 “x” is observation data, “...” is the estimate signal using LPR with 

LS method and “---” is the estimate signal using LPR with M-estimation 

function. Impulsive noise are added at positions x = 0.05, 0.3, 0.5, 0.6 

and 0.9. The error distribution used to simulate the data still includes 



Gaussian noise with mean 0 and variance 0.3. Iterative operation of IRLS 

is only once. 

Fig.2 Adaptive bandwidths here are represented by h in the kernel 

Gaussian function )(xKh . m=1, =0.002.  

Fig.3 Adaptive bandwidths here are represented by h in the kernel 

Gaussian function )(xKh . m=1, =0.004. 

We can see from Fig.2 and Fig.3 that in the discontinuities 

and impulses, the bandwidths of the LS-based method and M-

estimation are both forced to a small value to reduce the bias in 

fitting them. We can still see that the bandwidths in Fig.3 are 

generally much bigger than the corresponding bandwidths in 

Fig.2. The reason is that in M-estimation, the Huber function can 

de-emphasize the effects of the impulses, which usually have an 

error much greater than , and consequently the bandwidths 

can be bigger.   

6. CONCLUSION 

A new method for robust LPR under jump discontinuities 

and impulsive noise is presented in the paper.  It is based on M-

estimation, which can effectively combat the impulsive noise, 

while stabilizing the estimator around jump discontinuities.   The 

ICI rule is used to select an adaptive local bandwidth for 

smoothing.  Simulation results showed that the proposed method 

performs considerable better than traditional LS-based LPR 

using ICI rule. These techniques are expected to have interesting 

applications in image and video processing. 
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