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ABSTRACT

This paper addresses the problem of blind separation of
linear convolutive mixtures. We first reformulate the
problem into a blind separation of linear instantaneous
mixtures, and then a statistical approach is applied to solve
the reformulated problem. From the statistics of the
mixtures, two kinds of matrix pencils are constructed to
estimate the mixing matrix. The original sources are then
separated with the estimated mixing matrix. For the
purpose of computational efficiency and robustness, in the
matrix pencil, one mairix is constructed from the second
order statistics, and the other is constructed from the third
order statistics. The proposed nove! methods do not
require the exact knowledge of the channel order.
Simulation results show that the methods are robust and
have good performance.

1. INTRODUCTION

Blind separation of convolutive mixtures has attracted
much attention recently, for both theoretical development
and practical applications {1-6]. The problem of blind
separation of convolutive mixtures is also known as blind
multi-channel deconvolution or blind multi-channel
equalization. This technique, when well developed, can
have many practical applications in various areas such as
wireless communication, radar, sonar, speech recognition,
echo cancellation, and so on. Blind separation of
convolutive mixtures has two essential problems to be
solved jointly. One is blind signal separation, and the
other is blind deconvolution. Blind signal separation was
proposed from the viewpoint of signal processing in the
middle 1980s, and was later developed into the concept of
independent component anatysis (ICA), which has a close
relationship with an rather older concept, factor analysis,
in the discipline of statistics. Interestingly, it has been
shown that the two problems, blind signal separation of
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instantaneous mixtures and single channel blind
deconvolution, are closely related [6-8]. Therefore, in the
literature, many approaches to blind separation of
convolutive mixtures are based on efther blind separation
of instantaneous mixtures or single channel blind
deconvolution. For details and references, the reader is
referred to [6-9]. In this paper, our approach to blind
separation of comvolutive mixtures will be based on the
methodology of reformulating the problem to blind
separation of instantarneous mixtures.

Though it has been suggested in [6-8) that convolutive
model can be reformulated into instantaneous mode! and
thus classic methods for blind instantaneous source
separation can be directly used to solve the problem of
blind convolutive source separation, in the literature there
are not too many works investigating this methodology on
its validity, performance, and special problems involved.
Indeed, the resulting high-dimensional instantaneous
model has a very special structure of its mixing matrix,
and this special structure may make the problem difficult
and complicated by inducing rank deficiency of the mixing
matrix. Recently, this methodology was investigated in [4]
using a second order statistical approach and in {2] using a
fourth order statistical approach.

In this paper, we propose a matrix pencil approach by
jointly using second order and third order statistics, and
extend our earlier results in [10,11] to the general case
with convolutive mixtures. Qur major concern is on
computational efficiency and robustness. For this purpose
we use lower order statistics, that is, second order statistics
and third order statistics. For higher order statistics, only
third order statistics will be used, because the computation
efficiency and robustness of the statistics with order higher
than three will be degraded comparing to their
counterparts of third order statistics. For using third order
statistics, the signals need to be asymmetric in their
statistical distributions. ~ Asymmetrical distribution is
common in many practical applications, but not in QAM
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communication. However, the treatments used in [12-13]
can be adopted for applying our method to the area of
communication.

2. PROBLEM STATEMENT
For simplicity in denvation, we consider a noiseless

convolutive mixing model with M sources and N mixtures,
as follows:

x(1) ) ay () ap ()] 150
Pl=x(= A0 s =| N P
xy(2) a, () s (D] |5, @)

ey
where “*” denctes the operator of convolution. Assume

that the filters a,(f) are FIR with maximal length as L,

then we have
M L-1

x{=> > a,Ds,(t=1) for i=1,--,N . )

. =l =
Stacking the mixtures K times, we have the reformulated
instantaneous mixing model:
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where
x(O=[x® -~ x-K+1]
s,(0=[5,0) s,(t-L-K+2)|
a,(0) - a(L-1) - 0
Ay=| 1 : “
0 a0 a(L-1)

Note that the dimension of A is K x(K +L-1), and the

dimension of A is NKxM(K+L-1). For (3) to be

solvable, we need the following assumptions:
Al) Components in $(f) are mutually independent.

A2) A has full column rank.
Equivalently, we need the original convolutive system:
1. Each source signal 5,(¢)is i.i.d.

2. Sources are mutually independent.

3. More mixtures than sources for nontrivial cases, i.e.,
N>Mfor L>1.

4. There is no common zero among the convoluting
filters.

Points 1 and 2 are due to A1, while points 3 and 4 are due

to A2. These requirements are commonly used in higher

order statistics based approaches to blind separation of

convolutive mixtures.

3. ALGORITHMS .

Due to the assumptions in section 2, higher order statistics
is needed to solve the blind separation problem (1) or (3).
Here we assume that third order statistics exists for all the
source signals. Due to the property of cumulant [14],
define a third order cumulant matrix as

C, (k) = cum, {X(DX" (1)x,(1 - k)}
= Acum, {§(/)§" (z)i a,(Ds (t—k-D}A )
=0

= Adiag{D, (k),-,D,, (k)}A”

= AA, (AT
where
D, (k) = diag{0 0 a,(0)y, a,(L=Dy, 0 - 0}
& blocks K—&-1 hlocks
with y, =cum,{s (£)s,(1)s; (")} .

3.1 Matrix pencil method based on cumulant matrix

Arbitrarily select two indices i and i,, we can formulate a
matrix pencil

{C, (K),C, ()} ={AA, (AT, AA, (AT} (6)
Apply ESPRIT {10] or generalized eigenvalue
decomposition [10] on this matrix pencil, then we get L
columns {column £+ to celumn k+L) of A, for each pair

i, le,

a,(L-1) 0
a,(L-2) a,(L-1) |<k+]
a;(L-3) ay(_L—Z)

o (1) a,(2)
Ky. =1 a;(0) a,{1)
0 a0

™
From ;&jj we can get a;{/), /=0,---,L—1, and then we

can construct A, based on (4), and at last we get the

mixing matrix A . With A available, the source signal
vector, s(f), can be filtered through the mixtures, x(¢), by
standard methods.

To improve the computational efficiency and
robustness of the algorithm, we can replace one of the
cumulant matrices in the matrix pencil by the second order
cumulant matrix, i.e., the following correlation matrix
R, = cum, {Z(HX (1} = Acum, {s(1)5" (1JA” = AR, AT
Simulation results show that using R; will improve the

performance. In the simulation section we will use the

algorithm based on {C,(k}.R.}.

V- 306



3.2 Matrix pencil method based on weighted
summation of cumulant matrices

To improve the robustness of the algorithm, we formulate
a weighted summation of the above definred cumulant
matrices, as follows:

K-{
C, =2 wCk)
k=0

—cum, (KX (03w, ~ )} ®
k=0

= Adiag({D, D, }A"

=AAAT

K-l K-l
where D, =Zw,‘Dj(k) » A =Zw,(A,.(k), and {w,} are
k=0 k=0

randomly selected from [0,1].
Then we can formulate a matrix pencil {C,,C,} or

{C..R .}, and apply the same approach as in section 3.2.

4. NUMERICAL SIMULATIONS

Numerical experiments are carried out in the MATLAB
environment to evaluate the performance of the developed
algorithms. We consider a system with parameters as
M=2 N=3, and L=2. The two random source signals
have exponent distribution with the parameter equal 1o 3.
The multi-channel FIR system, which represents the
convolutive mixing matrix, is described as

a, =[-1.1844 1.8042], a, =[0.2255 —1.8634],

a, =[0.6813 —0.8221], a,, =[-0.5328 -0.3542].

Let K =2, the mixing matrix can be written as

(~1.1844 1.8042 0 0.2255 -1.8634 0
0 -1.1844 1.8042 0 0.2255 -1.8634

0.6813 -0.8221 0 (.5328 -0.3542 0
0 0.6813 -0.8221 0 05328 -0.3542

-0.5626 —0.6966 0 0.3565 -0.4997 0
0 -0.5626 —0.6966 0 0.3565 -0.4997]

'1-'he algorithms described in Section 3.1 and Section 3.2
have been applied to solve the blind separation problem.
In both algorithms, the correlation matrix R, is used in the

matrix pencil. Two types of experiments have been done
to demonstrate the performance of the two algorithms. In
one experiment, different numbers of data points are used
to evaluate the performance, while the signal to noise ratio
{SNR) is fixed. In the other experiment, various SNR are
used with fixed number of data points. Results are shown
in Figure 1 to Figure 4. It is demonstrated in the figures
that the performance of the algorithm in section 3.2 is
better than that of the algorithm in section 3.1, especially
when the number of data points is relatively small. When

a large number of data points is adopted, the two
algorithms have similar performance. -

5. CONCLUTIONS

In this paper, the problem of blind separation of
convolutive mixed mixtures is considered. Novel methods
based on second order statistics and third order statistics
are developed to solve this problem. The approach in this
paper reformulate the convolutive mixing system to an
equivalent instantaneous mixing system, and then matrix
pencils are formulated based on second order and third
order cumulant matrices. Numerical simulations show that
the methods have good performance. Further improvement
of the methods, and performance comparison with other
approaches, will be studied later,
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Figure 1. Performance of the a_léo;itim'ciésc;i—l;(i in -sEEt.ibrn-?).-lA, N

where the SNR is fixed, but the number of data points varies
from 100 to 7400.
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Figure 2. Performance of the algerithm described in section 3.1,
where the number of data points is fixed, but the SNR varies
from 10dB to 64dB.
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" Figure 3. Performance of the algorithm described in section 3.2,
where the SNR is fixed, but the number of data points varies
from 100 to 7400,
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Figure 4. Performance of the algorithm described in section 3.2,
where the number of data points s fixed, but the SNR varies
from 10dB to 64dB.
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