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Abstract ~Recent research has shown that chaos can actually be
useful under certain circumstances, and there is growing
interest in utilizing the very nature of chaos. Thus, a
controllable chaotic motor drive, namely chaotifying a motor
drive, is highly desired for practical engineering systems. This
paper firstly proposes and implements a time-delay feedback
method to chaotify a practical permanent-magnet synchronous
motor (PMSM) drive. Based on the current-fed model and field-
oriented control, the corresponding system dynamics will be
approximated by first-order differential equations. Hence, the
electromechanical torque will be adjusted according to the time-
delay speed feedback. Consequently, chaotic motion can be
achieved by tuning the feedback gain of the torque coutroller.
Moreover, the resulted chaotic motion is easily controllable in
the sense that the rotor speed boundary can be controlled
precisely by the value of the speed ratio. This controllable
chaotic PMSM drive potentially offers some special applications
desiring chaotic motion such as fluid mixing and surface
grinding. Theoretical analysis, computer simulation as well as
experimental results will be given to verify the proposed method
of chaotification.

I. INTRODUCTION

Starting from the late 1980’s, chaos has been identified to
be a real phenomenon in power electronics. Then, many
investigations into chaotic behavior of dc-dc converters were
conducted in the 1990°s. Recently, the investigation of chaos
in motor drives has been accelerated [1]-[4]. Moreover,
recent research has shown that chaos can actually be useful
under certain circumstances, and there is growing interest in
utilizing the very nature of chaos. For example, chaos is
thought to be important in fluid mixing, in the human brain
and heartbeat regulation, and in secure communication and
signal processing. In electrical and mechanical engineering,
chaos can be utilized for reducing -electromagnetic
interference (EMI) and acoustic noise of switched-mode
power supplies, preventing mechanical resonance and
improving the efficiency of abrasive machines. It was also
proved that a chaotic vibratory roller has 12.2% higher
efficiency than a traditional one. Thus, a controllable chaotic
motor drive, namely chaotifying a motor drive, is highly
desired for practical engineering systems.

Chaotification or unticontrol of chaos, which aims at
making a nonchaotic dynamical system chaotic, has attracted
increasing attention of engineers in recent years, because
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some very desirable features of chaos provides new ways of
solving many non-traditional problems. Both non-feedback
methods, or called open-loop control, and feedback control
methods such as OYG method and time-delay feedback [5]-
{7] have been developed in power electronics for different
applications like secure communication and EMI reduction.
However, to the best of authors’ knowledge, the investigation
of chaotification of motor drives was almost absent in
literature.

This paper firstly proposes and implements a time-delay
feedback method to chaotify a practical permanent-magnet
synchronous motor drive. Based on the current-fed model
and field-oriented control, the corresponding system
dynamics will be approximated by first-order differential
equations. Hence, the electromechanical torque will be
adjusted according to the time-delay speed feedback.
Consequently, chaotic motion can be achieved by tuning the
feedback gain of the torque controller. Moreover, the resulted
chaotic motion is easily controllable in the sense that the
boundary of the rotor speed can be controlled precisely by
the value of the speed ratio. This controllable chaotic PMSM
drive potentially offers some special applications desiring
chaotic motion such as fluid mixing and surface grinding.
Theoretical analysis, computer simulation as well as
experimental results will be given to verify the proposed
method of chaotification.

II. SYSTEM MODELING AND ANALYSIS

A three-phase PMSM can be modeled in d —g frame by
the following equations:

di . .

B4 = (04 - Ry + 0L i) L 2
di, , :

@ Ry — 0 Lyiy ~ 0y,)[L, @
do |3P . -

Z=[55[w"ﬂq -y _Lq)’d’q]“Bm—TL:l/‘] ®

where i, i, and v, , v, are the stator currents and voltages

q
in the d -axis and ¢ -axis, respectively; L, and L, are the

stator inductance in the d -axis and g -axis, respectively; R
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Fig. 1. Control diagram of a current-fed 3-phase PMSM.

is the stator resistance; . is the constant magnetic flux; P
is the number of poles; ®, is the electrical speed and
®=2w,/P is the mechanical rotor speed; J is the rotor
inertia and B, is the viscosity friction coefficient.

Fig. 1 shows the control diagram for chaotification of the
PMSM.
In order to utilize the advantages of vector control, i, is
set to zero so that 7, can simply be expressed as:
3P .
T, = E;Wm’q @

If the current tracking loop is sufficiently fast enough,
equation (1) and (2) can be eliminated. Thus, the system
dynamics can be simplified as

do
J 717 = Te -B m® (5)

By choosing the feedback law as
T, = &uB, f(&(t—1,)/8) (6)
where f(-) is an integrable bounded function, ¢, is the time-
delay constant, & and W are two adjustable positive

constants, the systems dynamics can be rewritten as:

d—‘gﬁ‘—)=—nm<z)+§nuf(w<r—td)/é) ™

where =B, /J . Dividing time ¢ into intervals #,, the
solution of (7) can be expressed as an iterative form:

W (1) =€, (1)
e [ e f(@, (5)/E)ds

If the time-delay constant f, is much

@®)

where te[0,2,).
larger than the system time constant 1/1, ™™ can be well

approximated by a scaled delta function 3(t)/n.
Consequently, the iterative solution (8) can be written as:

@, 1 (1) = Epf (0, (1)/8) ®
Defining the normalized rotor angular speed Q as:
®
=— (10)
&

Solution (9) becomes
Q. =W (Q,) 3]
The criterion of chaos for this iterative map is the famous
period three imply chaos theorem [8]: Let J be an interval
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Fig. 2. Bifurcation diagram of the normalized rotor speed.

and map F:J —J be continnous. Assume there is a point
ae J for which the points b= F(a), ¢ =F(b)=F*(a) and

d = F3(a) satisfy
d<a<b<clordza>b>c) (12)
Then for every k=1,2,---, there is a periodic point in J
having period & .
If the function f(-) is defined as f(x) = sin(x), equation
(11) becomes:
Q. =usin(€2,) (13)
Different searching methods can be used to verify the
existence of points that satisfy condition (12) for fixed
sufficiently large . For example, a = 0.3 is such a point for

W =3.54. Hence the map defined by equation (13) is chaotic
for sufficiently large p.

The bifurcation diagram of map (13) is plotted in Fig. 2.
This figure shows that for a small value of p (0<pu<2.25),
map (13) will finally reach a stable fixed point. In the middle
range of p (2.25 <P <2.69), map (13) becomes a periodic
oscillation. With the further increase of p (p>2.69),
complicate behavior occurs since both chaos and periodic
oscillations can appear with different value of .

Although equation (8) can be approximated by equation
(9) when mt; >>1, it should be pointed out that the
dynamics described by equation (8) and equation (9)
respectively are not the same completely even though
nt; >>1. Beyond the chaotic regime, similar bifurcations of
equation (8) to those of equation (9) can be expected if
n¢, >>1. However, inside the chaotic regime, the memory

effect in equation (8) makes its dynamics singular free,
which differs from equation (9) [9]. In the practical PMSM
drive system, this memory effect is caused by the viscosity
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force of the rotor. Obviously, no matter how fast the motor
dynamical response is, the rotor speed can only change
smoothly, which means singular free. Despite this,
nevertheless, equation (9) still can be used to predict the
motion tendency of equation (8) when n¢, >>1.

III. IMPLEMENTATION CONSIDERATIONS

From the previous discussion, with the proposed time-
delay controller, the close-loop PMSM drive system may
either reach an equilibrium point, or oscillate periodically, or
even exhibit chaotic behavior. No matter which kind of
motion the system will finally demonstrate, for practical and
safety consideration, the controller, first of all, should be
such a one that makes the system behavior bounded.

Although there is difficulty in investigating directly from
differential equation (7) or its iterative solution (8) whether
the rotor speed will converge as time ¢ goes to infinity, the
rotor speed can be easily found bounded when nz; >>1.

From equation (9), for finite positive u and &,

|1 (O] = M (@, (1)/8) (4
Therefore, the rotor speed will be bounded if f()) is

bounded. According to the proposed controller, the stator
currents will be finite as well once the rotor speed is kept
finite.

On the other hand, it should be noted that the values of
parameters 1 and & are not totally chosen free. They are
limited by motor torque capability. From equation (6), they
should satisfy the following condition:

where | f (~)| <M and T, is the maximum torque that the

motor can generate.

For chaotic motions, although the instantaneous behavior
can not be predicted, this motion is known to be bounded in
certain range since chaos is a bounded random-like state,
which is one attracting advantages of utilizing chaos. Thus, it
is important to control the boundary of chaotic states.

To generate such chaotic motions with desired boundaries,
parameters U and & can be adjusted according to the
normalized speed bifurcation diagram as shown in Fig. 2.
The merit of the normalized speed bifurcation chart lies in
the fact that it provides a base to control the boundary of the
chaotic motion. Namely, in order to obtain a chaotic motion
in certain required speed region, the normalized speed
bifurcation diagram can be plotted firstly using the given
initial condition. Then fix the bifurcation parameter p
according to the bifurcation diagram. The required chaotic
motion can be achieved consequently by adjusting the speed
ratio £. For example, with a combination of p=4 and

£ =10, a chaotic speed bounded in [-40,40]rad/s can be
realized.
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Fig. 3. Simulated periodic waveforms with it =2.55 and £=10:
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IV. SIMULATIONS AND EXPERIMENTAL RESULTS

A practical three-phase PMSM by Sanyo Denki with
J =0.144x10"*Kg-m? and B,, =5.416x10~*Nm/rad s,
P=8, L, =11.5mH, Lq =11.5mH and v, =0.0283Wb is

used for exemplification. When the time-delay constant is
chosen to be ¢, =1s, nt; =37.6>>1 can guarantee the

validation of solution (13).

A dSPACE DS1102 DSP control board is used as the
controller. In order to obtain a prototype working
environment and to save code development time, MATLAB
Real Time Workshop and SIMULINK are adopted as
interfacing software with the DSP controller. The sampling
frequency of the DSP controller is SKHz. The time-delay is
realized digitally by the DSP controller. Namely, the rotor
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Fig. 4. Measured periodic waveforms with L =2.55 and §=10:
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speed sampled from A/D is passed to and stored in the DSP.
Then the DSP controller generates the reference current
commands according to the delayed rotor speed stored in
memory and passes them to the current tracking amplifier.
Based on the proposed time-delay feedback, the motor
initially operates at a fixed point with a small value of p.

With an increase of u, periodic motion occurs. With a
further increase of [, the system exhibits chaotic motion.

Fig. 3 shows the simulated speed and current waveforms
under period-2 operation when p=255 and £=10,
whereas Fig 4 shows the measured speed and current
waveforms under the same p and &. As expected, the
experimental measurement closely matches with the
simulation waveforms. Furthermore, this period-2 oscillation
can be easily visualized in Fig. 2 with p =2.55.
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Fig. 5. Simulated chaotic waveforms with p=4 and £=10: (a)
©,; (b) iy

On the other hand, Fig. 5 shows the simulated chaotic
speed and current waveforms when L =4 and & =10, while

Fig 6 shows the measured chaotic speed and current
waveforms with the same p and £ . It can be found that they

are chaotic and offer similar boundaries. Notice that chaotic
waveforms cannot be directly compared since they are
random-like but bounded.

V. CONCLUSION

In this paper, a time-delay feedback method has been
proposed and implemented to chaotify a practical PMSM
drive. This controllable chaotic PMSM drive potentially
offers some special applications desiring chaotic motion such
as fluid mixing and surface grinding. Theoretical analysis,
computer simulation as well as experimental measurement
have been given to verify the proposed chaotification.
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