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ABSTRACT 

In this paper, the application of Radial Basis Function 
Neural Network (RBF NN) to fault section estimation 
in power systems is addressed. The orthogonal least 
square algorithm has been extended to optimize the 
parameters of RBF NN. In order to assess the 
effectiveness of RBF NN, a classical Back- 
Propagation Neural Network (BP NN) has been 
developed to solve the same problem for comparison. 
Computer test is conducted on a 4-bus test system 
and the test results show that the RBF NN is quite 
effective and superior to BP NN in fault section 
estimation. 

1. INTRODUCTION 

To enhance service reliability and to reduce power 
supply interruption, rapid restoration of power system 
is essential. As the first step to system restoration, 
fault section estimation should be implemented 
quickly and accurately in order to isolate the faulted 
elements from the rest of the system and to take 
proper countermeasures to recover normal power 
supply. However, fault section estimation is difficult, 
especially for the cases with failure operations of 
relays and circuit breakers, or multiple faults at the 
same time. Therefore on-line automatic fault section 
estimation is significant to the restorative operations. 

Several approaches have been investigated such as 
expert-system-based ['I, optimization-based [*I and 
artificial-neural-network-based [3-61 approaches. 
Among them, research endeavors have been directed 
to the Artificial Neural Network (ANN), because it 
has the capabilities of learning, generalization and 
fault tolerance. In addition, the neuron computations 
are parallel which make it suitable for on-line 
environment. Among all the applications, the most 
widely used model is Back-Propagation Neural 
Network (BP NN)[3'51. As we known, the BP NN 
structure has to be priori known and the algorithm 
might converge very slowly and reach a local 
minimum. These disadvantages limit the applications 
of BP NN in fault section estimation. 

In this paper the Radial Basis Function Neural 
Network (RBF NN) is proposed for fault section 
estimation in power systems. The RBF NN[6.71 can be 
designed in a fraction of the time as compared with 
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other design approaches in training standard feed- 
forward networks. Theoretically with enough RBF 
neurons, the RBF NN can realize zero error to all the 
training samples. Besides the number of RBF neurons 
in the hidden layer can be determined during the 
parameter optimization process. These features make 
it very attractive in practical use. The orthogonal lest 
square algorithm [*I has been extended to optimize the 
parameters of the,RBF NN. In order to assess the 
effectiveness of RBF NN, a classical BP NN has been 
developed to solve the same problem for comparison. 
Computer test is conducted on a 4-bus test power 
system [51 and the results show that the RBF NN is 
quite effective and superior to the BP NN in fault 
section estimation. 

2. RBF NEURAL NETWORK FOR FAULT 
SECTION ESTIMATION 

2.1 The structure of RBF NN for fault section 
estimation 

The suggested RBF NN has input, hidden and output 
layers with the hidden layer composed of EU3F 
neurons (See Fig. 1). The input space can be either an 
actual or a normalized representation. The input 
signals are forward to the hidden layer, i. e. RBF 
neuron (RBFN) layer. The i '' neuron in the RBFN 
layer examines the distance between the input vector 
x and its weight vector ui and evaluate the radial basis 
fimction (Rl3F) qi(x) to yield the output. The 
investigation ['I shows that the choice of the RBF is 
not crucial to the performance of the RBF network. In 
our study we take the Gaussian function as the RBF: 

where q, (.) is the output of the i ' neuron of the 
hidden layer; nh is the number of the hidden neurons; 
x is the input vector; ui and oi are the center (or 
weight, a vector with same dimension as x )  and the 
spread (a scalar ) of the i& Gaussian function. 

Output layer 
Linear combination 
RBF layer 
Nonlinear transformation 

Input layer 

Fig. 1 A schematic diagram of a RBF neural network 
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The spread ai (M) represents the range of 11. -U( 11 in 
the input space to which the RBF neuron should 
respond. Usually the spread should be no more than 
the possible maximum distance between the input 
vector and the center of the RBF and is determined 
based on experiments. 

The output layer generates the desired outpub through 
linear mapping of the output of the RBF hidden layer. 
The output of the neuron j in the output layer will be: 

n h  

i= l  
0 ,  = v u  . q i ( x )  ( j  = ~ , . . . , n , )  

where no is the total number of the output neurons. 
v,is the weight or the contribution factor of the i Ih 

hidden neuron to the j Ih output neuron. 

It is clear that to fast and effectively determine the 
centers {u i }  of the RBF and the weights { vg } of the 
output layer based on the given training samples are 
the key tasks in RBF NN design. Indeed once the 
RBF centers {e} have been futed, the output weights 
{vu} can be solved for based on (2) without difficulty 
since bi (x)$:, and the corresponding desired output 

b.)Io are known for all the training samples. 

Therefore the key question in building up the RBF 
NN is how to work out RBF centers appr0p;iately 
based on the training sets, which is addressed in the 
following section. 

J j=1 

2.2 The training algorithms of RBF NN 
Assume we have ni and no neurons in the input and 
output layer respectively. We also assume there are N 
sets of training samples, i.e. ~ " i ,  t = 1, ... , N . To 
determine the number of neurons in the hidden layer 
nh and the corresponding centers for hidden neurons, 

[71 the simplest method is the Exact Design method . 
The method can generate a RBF NN with its outputs 
exactly equal to the desired outputs and free of errors 
when it is fed with an input vector xexisting in the 
training samples. In this method we create as many 
hidden neurons as the number of training samples N, 
and set the hidden neuron weights to 
ui = x(i),i = 1 ,..., N . It is clear that according to (1) 
and (2) for the input ?(i)=u, , the corresponding 
output equal to the desired output. However if the 
nwnber of training samples N is large, the number of 
hidden neurons will be too large to be acceptable. In 
order to solve the problem, the Orthogonal Least 
Squares (OLS) algorithm suggested in [8] will be 
extended in this paper to optimize the number of 
hidden neurons, the centers of the RBFs and the 
weights of the output layer. 

In the OLS approach, the two mappings in the RBF 
NN can be denoted in a matrix form: 

D z 0 . V  + E  (3) 
where matrix Orcorresponds to the first mapping and 
is called as regression matrix. It takes the form: 

Its 1 * column and t 'h row element pl ( x ( t ) )  is the 
output of the 1 " hidden neuron corresponding to the 
input vector of x(t). Matrix is the weight 
matrix defined in (2) corresponding to the second 
mapping (see Fig. 1). Matrix D(Nxno) = [d ,  ... d,... 
dno] = [d(l) ... d(t) ... dw)lT, with similar structure as 
matrix @, is the desired output for all the trainin 
samples. The error matrix qNxn,) = El . . .E, ... Eno 

represents the deviation of RBF NN output from the 
desirea output D. E is assumed to be uncorrelated 
with the regressors 0 and should be as small as 

w m h )  = [VI. .  . VI. . . V n h ]  = [dl). . . &). . . m)]'. 

'i 
possible after training of the RBF NN. 

In the OLS method the regression matrix 
decomposed into: 

0 z W . A  (4) 

where A is an nh x nh upper triangular matrix: 

( 5 )  

0 is 

while w(,,, X n h )  = [w, . . . w1 . . . wnh ] is an orthogonal 
matrix, i. e. 

W".W = H (6)  

or 
N 

wf . wl = t=1 wi ( I ) .  w1 (t)= hi 1 S f 2 nh (7) I w; 'Wj = o ,  ( I # j )  

where H ( ~ ~ ~ ~ ~ )  is a diagonal matrix and h, is its th 
diagonal element. Substitute (4) into (3) and define: 

According to the property of the orthogonal matrix 
W, the ideal orthogonal least square solution for G is 
given as: 

A 

G = H - ' . W T . D  (9) 

with its element calculated by 

Then (3) can be re.written as (with on G omitted): 

D = W * G + E  (1 1) 

or in the .vector form: 
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(12) d ,  = W e g ,  +E, ,  l l m l n ,  

Since w,and wp are orthogonal to each other for 

1 f p and E,,, is uncorrelated to wl, we can define an 

energy function ( dmT . d ,  ) for the m output neuron 
and have: 

(13) 
"r  

dmT . d ,  = C g k w r w ,  +E: -E ,  
/=I  

Then the mean total output energy for all training 
samples will be: 

n. nh 

It is clear that N-'xxg;w;w, dominants the 

right hand side of (14). A relative error reduction 
ratio [err - redl related to the I'h regressor w, can be 
defined as: 

m=l /=I 

This ratio offers an effective index for seeking a 
subset of significant regressors { w , } ~ ~ ,  for the given 

training sample set {x(r)jE, . 
The training is implemented through iterations. In 
each iteration a new RBF neuron is added to the 
hidden layer. The input vector, which results in the 
largest error reduction ratio, will determine the center 
of the new added neuron. Then the error of the new 
neural network is checked. The iteration will be 
terminated when the error is small enough. 

Through the suggested training process the RBF NN 
has leamed the knowledge implied in the training 
samples and is ready for fault section estimation. It 
can be seen that the RBF NN designed by the OLS 
algorithm will be the same as that designed by the so- 
called exact design method when the number of 
hidden neurons is up to the number of the training 
samples. Therefore the exact design method can be 
considered as a special case of the OLS algorithm. 
This means that the maximum iteration number of the 
OLS algorithm will be no more than the number of 
the training samples and the output error reaches zero 
for the training samples at this situation. Therefore 
the RBF NN is very attractive for fault section 
estimation. 

2.3 RBF NN versus BP NN 
In fault section estimation, the RBF NN is superior to 
the BP NN although the latter has been successfully 
used in various aspects. The two neural networks are 
both multi-layer feed-forward neural networks. It is 
known that their performances are strongly dependent 
to the number of hidden neurons. In RBF NN case the 

optimal number of hidden neurons can be obtained 
during the training process, however it is difficult for 
BP NN to determine the optimal number of hidden 
neurons. In RBF NN case, the maximum number of 
iterations will be no more than the number of the 
training samples and the output error reaches zero for 
the training samples at this situation. However the BP 
NN uses gradient decent method to minimize the 
error and the error might converge very slowly and 
the residual error might be unacceptable. Therefore 
the RBF NN can be built up in a fraction of time as 
compared with the BP NN with convergence and 
accuracy guaranteed. Generally speaking, the BP NN 
stores the knowledge globally in its neurons while the 
RBF NN locally. For the fault section estimation in 
power systems we think the RBF NN is superior as 
compared with the BP NN. 

3. COMPUTER TEST RESULTS 

3.1 Training and performance of the RBF NN 
A simple 4-bus power system [I4] is used as the test 
system (Fig. 2), in which there are 9 protected 
components: 4 buses, 1 transformer and 4 
transmission lines. The protection relay system 
considered in the computer test is a simplified 
system, which includes transmission lines main 
protection (MLP) and backup protection (BLP), main 
protection for buses (MBP) and the transformer 
(MTP). 

Fig. 2 Test system diagram 

In computer tests, forty typical fault scenarios (N40) 
are worked out to constitute the training sample set. 
For each fault scenario, the states of all relays and 
circuit breakers (0 or 1) are taken as the NN inputs (n ,  
=33). The states of the 9 system components (4 buses, 
1 transformer and 4 lines) are the outputs (no+). If a 
certain output approaches to 1, then the 
corresponding component is considered in fault. 

Based on the given traindg samples, RBF NN 
designed by both the exact design method and the 
OLS algorithm have been implemented. For the Exact 
Design method, the number of the hidden neurons 
equals to the number of the training samples 
nt,=N=40. The RI3F NN has zero error for the training 
samples via setting its hidden neuron centers equal to 
the input samples. For a large system the number of 
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hidden neurons will be too large to be acceptable in 
practical use. 

Table 1 shows the number of hidden neurons, number 
of iterations when the OLS method is used to build up 
the RBF NN with the spread CT= 2 and the tolerance 
p = 1 0-2 and 1 0-3 respectively. It can be seen that when 
p increases, the number of hidden neurons is reduced. 
It is indeed a compromise between estimation 
accuracy and traininglworking CPU time. We shall use 
p =IO-' in the rest ofthe paper. 

Table 1 RBF NN with different error tolerance 
No. of hidden neurons 31 39 
No. of iterations 37 39 
Tolerance o=10-2 0=10-3 

3.2 Comparison with the BP NN 
A BP NN is developed for comparison with the RBF 

NN. It has same maximum tolerance p 1 0 2  with 
learning rate H . 0 9  and momentum ~ 4 . 8 .  When 
the number of the hidden neurons of the BP NN is 37, 
i. e. equal to that of the RBF NN, the error curve of 
its training process is given in Fig.3. It can be seen 
that 5326 iterations should been conducted in order to 
make ~ 1 0 ' ~ ,  which is much slower than that of the 
RBF NN. The CPU time for training is listed in Table 
5 for comparison. 

Convergence curve of the BP NN 

Table 2 presents one training result as an example. 
Suppose a fault occurs on bus 4. If the main 
protection MBP4 of bus 4 refused to operate and the 
back-up protection BLP2 and BLPs operate correctly 
to trip the CB2 and CB8 to disconnect bus 4 from the 
rest of the system. The diagnosis outputs and the 
desired outputs of the RBF NN based on the OLS 
method are listed in Table 2. We can see the two 
outputs are very close to each other. Similar results 
are obtained for all the other training samples, which 
are not listed here. 

Table 2 Diagnosis results of one training sample 

d , O  0 0 1 0 0  0 0 0  
0, -0.Ooo 0.00 -0.000 1.000 0 0.000 0.000 0 -0.00 

In order to examine the generalization capability of 
the designed NN we select other fault scenarios not 
existing in the training set for testing. Only 12 cases 
are listed in Table 3. All of them are severe cases 
with up to 2 mal-operations of relays and circuit 
breakers or up to 2 simultaneous faults. The 
corresponding diagnosis results are listed in Table 4. 
From the output vectors, we can conclude that for all 
the test cases the faulted elements are recognized 
correctly. 

The test results show that the RBF NN based on the 
OLS algorithm has very good performance in fault 
section estimation. 

Table 3 Severe test cases 

Bi Bz B3 B4 TI L I  L2 La L4 

Fault 
section 

1. MBPI BLPz CBI Bi 
2. MBP2 MLP? CBz CB3 CB4 CBI Bz 
3. MBPj BLPs BLPq CBs cB.5 CBq B3 
4. MBP4 BLP, CBq CBI0 B4 
5. MTRl BLPm CBI CB3 CBI0 TI 
6. MLP4 MLP6 BLPs BLPq CB4 CBs CBq L f  

8. MLP8 MLPq BLPz CB8 CB9 4 
9. MLPt BLPa CBI CBa L4 
10. UT€'/ MLPa MLPq CBI  CBJ CBa CBq Ti L3 
11. MBP4 MLPz MLPlo CBz CBI CBio B4 L4 

Operated relays and tripped CBs 

7. MLP7 BLPI BLP6 BLPm CBI cB6 CB7 CBI0 Lz 

12. MLP4 MLps MLP6 MLP7 CB4 CBs cB6 CB7 Li L2 

A 

Fig. 3 Convergence of the BP NN 

Table 5 Training time for neural networks 
BP NN RE3F NN 

No. of hidden neurons 31 31 
No. of iterations 31 5326 
CPU time (sec.) 1.54 133.14 

The same 12 severe cases are used to test the 
performance of the BP NN. The results are listed in 
Table 6. We can see the output from the BP NN is 
quite poor as compared with the RBF NN. Besides it 
yields mal-estimation in case 1 and unclear outputs 
for severe cases 7,9, 11 and 12 in real applications. 

From this test, we can see that the RBF NN can work 
much better than the BP NN in fault section 
estimation under the same training error. 

4. CONCLUSION 

The RBF NN for fault section estimation in power 
systems is investigated in this paper. The OLS 
algorithm has been extended to optimize the 
parameters of the RBF NN and is proved to be very 
efficient. It can be seen that the RBF NN has very 
attractive features in fault section detection. 
Computer test results show that the RBF NN can be 
built up in a fraction of time as compared with the 
widely used BP NN. Computer tests also show that 
the RBF NN performs very well in fault section 
estimation especially in the severe cases when there 
are mal-operations of relays and circuit breakers, 
which is superior to the BP NN. 
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Table 4 Diagnosis results for the severe test cases 
B /  Bz k B4 TI Ll L1 L3 14 

1 S ! & D  0.0433 -0.040 0.1224 0.1258 0.0764 0.0764 0.0588 -0.060 

3 -0.187 0.0291 0.0973 0.0178 0.2287 -0.047 -0.049 -0.033 
2 -0.260 .!a!U -0.064 0.1 100 0.0448 0.0683 0.0062 0.0605 -0.027 

4 -0.163 0.0377 -0.027 1.1200 0.0532 0.0468 0.0468 0.0686 -0.063 
5 -0.182 -0.001 -0.037 0.1082 0.0559 0.0458 0.0546 -0.073 
6 -0.083 -0.113 0.0247 0.0167 0.0036 p948h -0.028 -0.006 0.0589 
7 0.1206 0.1 114 0.048 1 -0.045 .-0.031 -0.056 p,66aI -0.015 0.0072 
8 -0.219 0.0286 -0.014 0.0223 0.0368 0.0477 0.0477 1.0225 -0.073 
9 0.0392 0.0121 0.0007 0.0018 0.0266 0.0242 0.0242 0.0195 0.8724 

0.2166 0.2166 0.7877 -0.0732 
0.0787 0.2178 0.0959 0.6047 

QZm 0.1599 -0.1019 
0.1299 

10 0.2042 0.0824 -0.0805 0.4012 
11 -0.0211 0.0854 -0.0263 0.8228 
12 -0.0230 0.0419 -0.0789 0.3 106 0.1 299 u&o!! 

Table 6 Diagnosis results of the BP NN - 
B /  Bt  B3 B4 TI LI L2 L3 14 

1 1.2520 -0.123 -0.042 -0.189 0.0111 -0.089 -0.103 0.3211 
2 -0.122 1,2282 0.2223 -0.067 -0.088 -0.017 0.4762 -0.164 0.2652 

4 0.3696 -0.147 01330 0.0632 0.0459 0.0972 -0.232 0.2714 
5 -0.038 0.0599 -0.036 0.0558 0.8181 0.0764 0.1014 -0.194 0.2502 
6 4.913 0.4115 0.1598 0.3779 -0.393 0.9267 0.1216 0.4251 0.1755 
7 0.3257 0.1357 0.0082 -0.139 0.1839 -0.003 0.4774 -0.023 -0.181 
8 -0.078 -0.364 -0.090 -0.043 0.2948 0.1027 0.1955 0.4074 

3 -0.488 0.4371 0.8769 -0.183 -0.308 -0.034 0.2926 -0.197 -0.132 

9 -0.039 0.1225 -0.138 -0.199 0.1367 0.0271 -0.116 -0.198 0.4382 
10 0.1213 -0.2257 -0.3323 -0.3273 p,9e4h 0.1217 0.3311 -0.6055 
11 -0.0053 -0.2192 -0.4905 0.4408 0.1367 0.2847 0.1222 0.2208 0.7455 
12 0.4011 0.4818 -0.1127 -0.0620 -0.3644 0.4862 0.1615 -0.0095 
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