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AssrRAcr 
This paper proposes a novel algorithm for the design and hardware 
reduction of a class of multiplier-less two-channel PR filter banks 
(FBs) using sum-of-powerssf-two (SOPOT) coefficient. It 
minimizes a more realistic hardware cost, such as adder cells. 
subject to a prescribe output accuracy taking into account of the 
rounding and overflow effects, instead of using just the SOPOT 
terms as in conventional method. Furthermore, by implementing the 
filters in the FBs using multiplier-block (MB), significant overall 
saving in hardware resources can be achieved An effective 
random search algorithm is also proposed to solve the design 
problem which is also applicable to PR W FBs with highly 
nonlinear objective functions. 

I. INTRODUCTION 
Perfect reconstruction (PR) multirate fiter banks (FB) have 

important applications in signal analysis, signal coding and the 
design of wavelet bases. A number of techniques for designiug 
linear-phase and low-delay PR two-channel filter banks are now 
available [1][2][3]. Recently. there is an increasing interest in 
designing PR filter banks with very low implementation complexity. 
One of the applications is to provide efficient hardware 
implementation of the 9/7 wavelet filter for the PEG2000 standard 
FBs using sum of powers-of-two (SOPOT) coefficients are 
particularly attractive for VLSI or hardware implementation because 
multiplication of SOPOT coefficients can be implemented 
efficiently using hard-wired shifters and adders only (i.e. multiplier- 
less). The design of such SOPOT PR FBs using the 2-channel 
lossless lattice structure and genetic algorithm was studied in [6]. 
Another family of multiplier-less PR two-channel FIRAR FB and 
wavelets, using SOPOT coefficients and the structure in [l], was 
studied recently by the authors in [4][7]. They are attractive because 
of their low hardware and design complexities. Furthermore, the PR 
condition is structurally imposed and is robust to c&icient 

It is well known that there are two sources of error in 
implementing a digital filter: coefficient round-off error and signal 
round-off error [lo]. Coefficient round-off error happens when the 
real-valued coefficients of the filter. obtained say by the Park- 
McClellan algorithm, are rounded to their fured-point 
representations to simply the hardware implementation. The 
frequency response of the filter is therefore changed, and might not 
satisfy the specification any more. On the other hand, signal round- 
off error occurs when overflow occurs due to insufficient internal 
wordlen=$b and improper scaling; and when rounding is performed 
for long intermediate data after multiplications with the filter 
coefficients. Signal round-off mor is usualiy more difficult to 
handle in hardware implementation because complicated hardware 
for detecting overflows, etc., would significantly slow down the 
throughput of the system The SOPOT FBs mentioned above are 
free from coefficient round-off noise because the FBs are optimized 
using the SOPOT coefficients as variables. Unfortunately, most of 
these methods only focused on minimizing the number of SOPOT 
terms to meet a given frequency specification. and pay little 
attention to signal round-off error. In order to satisfy a given output 
accuracy, one usually employs a fixed and long wordlength for all 
intermediate data, which means increased hardware complexity. 
Therefore, the design problem should be to minimize the hardware 
complexity of the system while satisfying the given frequency 
specification and the output accuracy. The hardware complexity 
could be the number of adder cells and registers used in the FBs, 
which is related to the exact wordlength used for each intermediate 
data. The output accuracy of a digital fdter is usually specified 
statistically by its output noise power due to the rounding operations 
performed, using a given noise model. For fine quantization, round- 
off noise is usually modeled as white and is uncorrelated with the 
signal and other noise sources. To satisfy a given output accuracy 
(say ]&bit), one has to determine the appropriate scaling and 

quantization. 

wordlength of each intermediate data to avoid signal overklow and 
to achieve a noise power less than the given specification (say - 
96dB for 16-bit accuracy). 

The purpose of this paper is to provide a solution to the above 
problem, with particular emphasis on the SOPOT FBs that we have 
proposed in [4][7]. This class of PR FBs is chosen because the 
required stopband altenuation and system delay can easily be 
achieved using simple design formula for order estimation and the 
efficient Park-McClellan design algorithm Using the real-valued 
coefficients so obtained as initial guess, the SOPOT coefficients and 
the internal wordlength of all intermediate data are jointly optimized 
using a novel random search algorithm to minimize some measure 
of the hardware complexity, while satisfying the given specification. 
In this work, both the number of adders and their adder cells are 
minimized because they constituted over 70% of the total hardware 
cost as compared with other components such as latches. The 
random search algorithm is similar to the mutation of genetic 
algorithm (GA) and the random walk in stimulated annealing. The 
main difference here is that we have limited its search space to a 
small neighborhood of the real-valued solution obtained in [4][7] 
using the Park-McClellan algorithm. This greatly shortens the 
search time to a few minutes. Moreover, for IJR FBs, excellent 
SOPOT solutions can be obtained in a reasonably time, which 
cannot be acheved by GA even with design time several orders of 
magnitude longer. The latter is mainly due to high sensitivities of 
the poles. The number of adders required to implement the SOPOT 
multiplications is further reduced by using the technique of 
“multiplier-block” (MB) [9]. By using MB, redundancy in the 
SOPOT coefficients is removed. Design examples d e m m t e d  
that our design method is very efficient and capable of reducing 
dramatically the hardware complexity of the FBs, while meeting the 
given specifications. More difficult 2-channel SOPOT IIR PR FBs 
can also be designed using the proposed method Our paper is 
organized as follows: in section 11, the SOPOT FBs considered and 
the MB technique will be described The round-off-noise and 
overflow problems will be addressed in Section III. Section IV is 
devoted to the ‘Random search’ design algorithm This is followed 
by several design examples in Section V. Finally conclusions are 
drawn in section VI. 

II. 2 - c ” N E L  PR SOPOT FB 
Fig. 1 shows the structure of the PR FE3 proposed in [5]. The 

functions a(=) and b(z) can be linear-phase FIR, nonlinear-phase 
FIR or W fmctions, without affecting the PR conditions. It can be 
shown that the lowpass and highpass analysis filters are given by 
H o ( ~ ) = ( z - m  +~-‘b(z*))/Z a d  Hl(,-)=-a(z’)Xo(r)+=-~-’, 
respectively. It is also possible to realize wavelet bases from this 
F B s  by imposing catain regularity condition on H&) and 

H , ( z )  . Details regarding their design can be found in [4]. In the 
multiplier-less FB [4][7], each coefficient in a(=) and b(z) is 
represented as the following sum of powers-of-two coefficients 

L-1 

(SOPOT) or canonical signed digits (CSD), b = a, . Tb‘ , where 
X r O  

at is either 1 or -1, and b, E {-I,  ,.... 1,0 ,... I,). The larger the 
numbers I , ,  I,, and L, the closer the SOPOT approximation will 
be to the original real number. In practice, the number of non-zero 
terms i s  usually kept to a small number while satisfying a given 
specification so that the multiplication can be implemented as a 
limited number of shift and add (subtract) operations, giving rise to 
multiplier-less realization. Multiplier-less filter banks and wavelet 
bases with linear-phase and low system delay can be obtained &om 
this sbucture by searching for the SOPOT coefficients using the 
genetic algorithm [6][7]. As mentioned earlier, the number of 
adders needed to implement a(=) and j ( z )  can further be reduced 
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by rewriting them in transposed form It cm be seen that instead of 
multiplying the delayed input samples with the filter coefficients as 
in the direct f o r q  the input sample is now multiplied with all the 
coefficients. This can be efficiently implemented using a multiplier 
block (h4B) [9]. Let's consider a simple example with two hlter 
coefficients: 3 and 21. The SOPOT representations of these two 
numbers are: 3=2' +1 and 21=2' +2' + l .  This requires 3 adders 
and 3 shifts. If implemented in a MB, the multiplication of the input 
with the coefficient 3 will also be generated by decomposing 3 as 
2' + 1 , requiring one addition. The multiplication with 21, however. 
can be simplified by re-using the intermediate result generated by 
the fmt filter coefficient '3' as 21 = 3.7 = 3.(24 - 1) . Actually, the 
intermediate result, after multiplication by 3, is multiplied by 7, 
which reqwes one less adder than generating 21 directly. In 
principle, it is possible to remove all the redundancy found in the 
constant multipliers leading to a reahation with the minimum 
number ojadders. This can drastically reduce the number of adders 
required for realizing such FBs when there is a large number of 
filter coefficients to be implemented in the transposed form FIR 
struuure (around 50% in our example). 

Ill. ROUND-OEFNOm AND OVERFLOWANAtYSES 

1. Analvsis of Round-off Noise 
As mentioned earlier, round-off noise occurs when rounding 

is performed during arithmetic computation. In fixed-point 
arithmetic. round-off operation is usually performed after 
multiplication to limit the wordlength of the intermediate data in 
order to save hardware resources. Round-off error is thus generated 
Due to the difficulty in analymg exactly the rounding error, they 
are usually treated as white random process, unmelated with the 
signal and other noise sources. For rounding operation, quaatization 
noise will have zero mean and a variance o2 = A2 112, where A 
is the quantization step-size, which is determined by the number of 
fractional bits that is retained after multiplication. 

Consider the &msposed form FIR filter in figure 2. The 
blocks D and Q(.) represent respectively a register and the round-off 
operator. Any signal in this filter, for example the input signal x(n] , 
has a fuced-point representation of the form < n I m > , which means 
that the total wordlength is n + m  bits where n represents the 
integer bits (including the si@ bit) and m the hctiwat bits. For 
notation convenience. any signal will be represented as 
4n]  :< n I m >, meaning that it has n integer bits and m fractional 
bits. Now, consider the input sample x[n] :< 1 I 7 > , which is a %bit 
number gated into the digital filter at every clock cycle. It will be 
multiplied by h[O] :e 1 19 > and h[l] :< 11 7 > . If no rounding is 
performed, the fixed-point formats of the products xfn]yO] and 
x[n]h[l] will be < 11 16 > and < 1 I14 > , respectively. Suppose that 
the products are rounded by the operator Q(.) to the format: 
<1114>. Since the wordlength of x[n]h@] before and after 

rounding is equal, so there is no round-off noise (e-l[n] = 0 ). 
While for the signal x[n]YO] ,  the wordlength is shortened from 
< I ]  16 > to < I ]  14 > , hence, a round-off noise, e - q n ]  z 0, with a 

power of P = (2-l')' /12 is generated In general, if R ,the number 
of bits in the fractional part of the fixed-pomt representation, is 
rounded to E (B<@ , then the round-off noise power is given 
by: =2-"""112 [lo]. If there are M such rounding noise 
sources in the transposed form, the total noise power at the output is 

given simply by their sum: r$, = ZP,, = ~ 2 - 4 4 - 1 '  112. For a 

general digital filter. the kth noise source might pass through a 

transfer function with z-transform H,(=) = C h ( n ) ~ - ~  , then the 

Y M 

1 4  k 4  

4 

n=o 

total output noise power is = 5 P,, P(O~* , assuming that they 
k=l 

are unmelated. The output accuracy, in terms of the number of 
fractional bits, is therefore f$ven by (1/6)-10~10gl,,(P~,). In 

general, to have I &bit output accuracy, the output noise-power must 
be below -96 dB level. From these results, we can see that, the 
larger the number of noise sources, the lower will be the accuracy of 
the computation. The noise power can however be reduced by 
increasing the wordlength for the fractional bits, at the expense of 
increased hardware complexity. 
2. Preventing Overflow 

Another important source of error is signal overflow [lo]. 
which occurs when the &located wordlength in the integer part is 
insufiicient to represent comedy the fured-point representation of 
the output after addition (such as the adders in Fig. 2). In order to 
avoid overflow, we must allocate more bits to the integer part of the 
register (say D in Fig.2). We me given the option to retain or 
decrease the number of bits in the hctional part, depending on the 
required accuracy. To determine whether overflow will OCCUT for a 
given adder, we can compute certain measures of the transfer 
function from the input to this particular adder. Here, we prefer a 
more conservative measure using the absolute sum of the impulse 
response, i.e. L1 s-. For example, let x, be the maximum 

input to a FIR transposed form digital filter H ( z )  = z h ( k ) z - *  as 

shown Fig. 2. Then the maximum (or worse case) value at the 
output of the rh adders of the hlter is 

L 

t 4  

ti, = x lh(R]  ma .I = O,.. .L . From these values, it is possible to 
(k:l ). 

determine the required integer wordlength at each position to avoid 
any overtlow. The number of fractional bits will be optimized to 
satie the given output accuracy. It should be noted that there are 
other scaling method such as L2 scaling which can also be used 
However, there is stiU a small probability that overflow will OCCUT. 
In digital signal processor, special hardware is usually used to detect 
the present of overftow and the result will be clipped to the 
m&dmjnimum values of the representation (saturation 
arithmetic). 

Our design method consists of two parts. First, the parameters of the 
filters a(=) and /3(z) such as their coefficients and their order 
(parameters N and A4) are determined from the frequency 
specification (system delay, stopband attenuation, cutoff 
frequencies) using the method in [4]. Then, the SOPOT coefficients 
are determined using a random search algorithm to generate the ME 
(see 1 below). The hardware complexity of the FBs are then 
minimized while maintainins the output accuracy using the noise 
models mentioned earlier (see 2 below). 
1.  Search for the SOPOTjIter coeficienfi. 

The Optimization procedure consists of two stags. F&L a 
random search algorithm, to be discussed in the sequel, is used to 
search for the SOPOT coefficients of a(;) and p(=) such that a 
given performance measure is minimized Thep the minimum 
number of adders needed in the multiplier block is determined The 
generation of the multiplier-block from the SOPOT coefficients 
follows the algorithms proposed in [9]. Let I, be the vector 
containing the real-valued coefficients of a(=) and p(=) obtained 
by the method in [4]. The principle of the random search algorithm 
is to generate random candidate SOPOT coefficients in the 
neighborhood of x, so as to search for the optimal discrete 
solution More precisely, a new coefficient vector xNm is 
generated by adding to it a random vector to the original coefficient 
vector x, to form xNEw = [s, +a -x,~,, , where a is a s a l e  
factor which controls the size of the neighborhood to be searched, 
xR is a vector with its elements being random numbers in the range 

[-1,1], and [-b, is the rounding operator which converts its 
argument to the nearest SOPOT coefficients with maximum number 
of terns in each coefficient being L and dynarmc range 1" and I, . 
The following objective function, which is the minimax error 
between the desired frequency response H d ( e J " )  and the 
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frequency response H(e'",i) calculated using the candidate i in 
the frequency band of interest o E S , is minimized. 

score = ma(H(eJu  ,*s ,i) - H, (e.-$. (1) 

The process is repeated with merent vector i so that the SOPOT 
space in the neighborhood of i is sampled randomly. Since the 
sampled solutions are close to the real-valued optunal solution, their 
frequency responses will also be close to the ideal one. but with 
Merent hardware complexity. The set that yelds the minimum 
score with a given number of terms is recorded As this is a random 
search algorithm, the longer the searching time, the higher the 
chance of finding the optimal solution. 

2. Minimization of the jiIter banks hardwore structures with 
prescribed outpul accuracy 

After the MB is generated the maximum wordlength of all 
the products, x[n]h[i], i=O ,... L, in Fig. 2, is calculated Ifwe do not 
perform any rounding using the operator Qf.) , and sufficient 
wordlength is allocated to all adders, then there is no rounding error. 
Of come. this will require excessive hardware cost, especially 
when the output accuracy is low. Our god is to determine the 
format of the rounded signals, Q(x[n]h[i]), i-0,. . . J, to sahsfy the 
output accuracy. Suppose that the formats are stored in a vector 6 . 
Given the rounded output format of the MB, 6 ,  one can tietennine, 
using the method described in Section III.2, the formats of the 
registers, D's, and the structure of the adders, in order to avoid any 
ovefflow. The fractional part for those scaled output, to prevent 
overfIow, can either retain its wordlengh or reduce it by one as 
mentioned in Section IlI.2. This option is stored in a vector d, , to 
be optimized together with 6 .  The noise power at the filter output 
of the fdter is readily computed accordingly to the analysis 
described in Section IlI.1. Note the output noise power from 
a(z)  and p(z)  wd1 be evaluated and their mmbutms at the 
lowpass (and highpass) analysis filters will be properly summed, 
using their respective power transfer functions mentioned in Section 
m.1. Our design algorithm seeks to lower the wordlength of each 
intermediate data and hence the complexity format as specified in 
6 and S, to minimize the hardware cost. Using 6 and a,, the 
hardware cost, C, given by the adder cells in the MB and the 
subsequent adders in Fig. 2 can be evaluated In summary, the 
design problem is 

C(d,d,) subject to Pd 5 eF , (2) (a*),) 

whexe F&, is the output noise power at the lowpass and highpass 

filters and Pvc is the specified output accuracy. Using a random 
search algorithm similar to that mentioned in Section IV.l, the 
vector (6,6,) is searched in the neighborhood of their full 

precision values (6,6,), (that is no rounchng) for feasible 
solutions that satisfymg the given output accuracy. The one with 
the minimum hardware cost C(6.6, ) is declared as the solution of 

this problem There are several advantages of this algorithm First 
of all, with the computational power of nowadays personal 
computer (PC) the time for obtaiuing high quality solutions is 
manageable, especially when an initial real-valued solution is 
available by some means. In fact, for the problem considered here, 
the overall design time is less than 10 minutes using a Pemium-400 
PC with Matlab 5.3, including both the design of SOPOT 
coefficients, generation of the MB and the intmal wordlength 
allocation. Secondly, it is applicable to problems with general 
objective functions probably with very complicated inequality 
constraints, as illustrated in this work It is also possible to combine 
the search with the MB generation processes together for better 
performance but the computational time will be greatly increased 
We now present a few design examples. 

V. DESIGN EXAMPLES 
5. I .  Tiso-channelPR FBs with p(:) and a(:) FIRJ%rs 
To demonstrate the effectiveness of our algorithm for solving the 
complicated design problem, a two-chaunel FB with the following 

frequency specification is designed: passband and stopband curoff 
frequencies %= 0.47 and os=0.6n, respectively; stopband 
attenuation is 39 dB, system delay = 23. From the design procedure 
in [4]. the parameters N and M are d e t e h e d  to be 3 and 8, 
respectively. The wordlength of the input is 8-bit and is normalized 
to be less than 1. i.e. in dl72 format. The required output accuracy 
is at least l&bit for fractional part without ovefflow. The frequency 
response of the fmal SOPOT FB is shown in figure 3, and the details 
of its optimized structure are summarized in table 1. The reduction 
of the number of adders obtained by using MBs to implement p(:) 
and a(:) is around 50%. It can also be observed that the number of 
adder cells is sigmficautly reduced by 27% (compared with a fixed 
wordlength of 24 bits using MBs to satisfymg the same output 
accuracy) using the proposed random search algorithm to minimize 
the necessary internal wordlength, while satisfymg the prescribed 
output accuracy of l&bit. The overall design takes about 10 minutes 
on a typical Pentium-533 computer. 
5.2. Two-channel PR FB with p(z) IIR and a(:) FIR 
To demonstrate the effectiveness of our random search algorithm in 
designing SOPOT PR W FB, p(z) is chosen as an W filter while 
a(.) as an FIR filter. In order to guarautee the stability of the W 
filter, the denomhator of p(z) is factorized as a lattice structure 
and the magnitude of the lattice coefficients are forced to be less 
than 1. They are then used as optimization variable in the random 
search algorithm. The design specifications are: passband cutoff 
frequency q, =0.47 stopband cutoff frequency o, =O.& N and M 
are determined to be 4 and 11, respectively. The real-valued filter 
coefficients are obtained by the method in [ll]. The SOPOT 
coefficients of the FBs obtained by the proposed algorithm are 
shown in table 2, and the frequency response is shown in figure 4. 
The frequency charaderistic is very good despite the high 
nonlinearity of the objective fuuction for the W FBs. From our 
experience, similar results cannot be achieved by GA even with 
design time several orders of magnitude longer. The latter is mainly 
due to high sensitivities of the poles. Since only the SOPOT 
coefticient optimization is performed, the computation time is much 
shorter, only 6 minutes in this case. The hardware is 
omitted here due to page length limitation. 

n CONCLUSION 
A novel algorithm for the design and hardware reduction of a class 
of multiplier-less two-channel PR FBs using SOPOT is presented It 
minimizes a more realistic hardware cost, such as adder cells, 
subject to a prescribe output accuracy taking into account rounding 
and overflow effects. Fwther, by implementing the filters in the FBs 
using multiplier-block w), sigdicant overall saving in hardware 
resources can be achieved. An effective random search algorithm 
is also proposed to solve the design problem, which is also 
applicable to PR IIR FB with highly nonlinear objective functions. 
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n 

WZ) -39.084dB, HI(z) -39.48dB. 
avg. SOPOT term = 2.38 
p(z) (nonlinear F R  filter) 

avg. SOPOT term = 2.13 
$2) (nonlinear FIR filter) 

I PWL 1 Res. 1 PWL I Res. 

Design Results 
Overflow Possibili 

Output Accuracy (fractional side) -96.- (accuracy > 16-bit) 
Output wordlength 23-bit 

Number of Adders in the MB 
KZ) I $2) 
i n  0 

I 1 Edmated number of adder cells (with 
6xed wordlength of 24-bit using MBs) 1104 

825 (saved 27%) Estimated number of adder cells (with 
optimized wordlength using MBs) 

Table 1. Filter banks results of example 5.1. PWL : product word 
length. Reg. : register. 

5 1  2-7+28-2'0 
6 1  -29-2-11 

Table 2. Filter banks results of example 5.2. 

Analysis Filter 

Fig. 1. The biothogonal filter banks (analysis fiter) 

1 - 1  
e-O[nl e-r[nl 

Fig. 2. Typical &gitaI FIR filters with round-off noise model 
n,(r)6 HJr) Frequency Responle 

I I I l f l i l  I I I 

Fig. 

Fig. 4. Frequency responses of the two-channel FB in example 5.2. 
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