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Abstrucf-Self-similar traffic is distinguished by positive correlation, 
which can be exploited for better traffic management. Inspired hy 
measurement-based admission control schemes, a measurement-based 
congestion alarm is proposed. The aggregate traffic at an output port 
of a switch or router in a high-speed network is modeled by a fractional 
Gaussian noise process. Traffic measurements are performed in regular 
time intervals to determine the current traffic loading. This information 
is then used to predict the loading situation in the near future. If con- 
gestion is likely to occur, a congestion alarm is set off and appropriate 
network management functions taken to alleviate the possible conges- 
tion. The above constitutes a closed loop feedback control mechanism 
that maintains high resource utilization. Simulation results show that 
the proposed scheme, when used with dynamic bandwidth allocation, re- 
duces bandwidth requirements by more than 20%. 

I .  INTRODUCTION 

Traffic measurements [ l ] ,  131, [12], [14], 1161 over the past 
few years have shown a common phenomena about packet 
traffic over a wide variety of modern networks: they are self- 
similar. One distinctive characteristic of self-similar traffic is 
the existence of positive correlation over long period of time. 
This nontrivial correlation can be exploited such that future 
traffic load can be predicted statistically. In [7], the authors 
studied the continuous-time optimal predictor for the frac- 
tional Brownian motion (fBm) process. From the analysis, 
a rule of thumb is found which says that one should predict 
the nexl second with the latest second, the next minute with 
the latest minute and so on. In other words, if one wants to 
predict the next second, history of more than one second does 
not reduce the prediction error significantly. The result for the 
continuous-time fBm is of theoretical interests. In practice, 
only the samples of the continuous-time process are available. 
Hirchoren et a1.[9] considered this practical discrete-time ver- 
sion, the optimal predictor for the increment process of fBm, 
that is. the fractional Gaussian noise (fGn). They verified the 
rulc of thumb mentioned. This discrete-time estimator pro- 
vides a practical tool for traffic prediction. 

Duffield et al. [4] proposed a framework for network de- 
sign and control based on the likelihood that the aggregate 
demand will exceed capacity. where the demand is predicted 
using a specification of the sources and their corresponding 
source models. In this paper, we consider an alternative ap- 
proach whereby a priori traffic specification is not required 
for sources. This is made possible by employing the idea 
of traffic measurement in measurement-based admission con- 
trol schemes [2], [6],  [lo], [ l l ] .  Consider an output port of a 
switch or router in a high-speed network, the actual aggregate 
traffic load is measured periodically. Modeling this aggregate 
traffic by an fGn process and using the measured traffic load 
in the past, the traffic load in the near future is predicted. If 
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congestion is likely to occur, appropriate network manage- 
ment functions will be taken to alleviate the congestion. In 
particular, we study the use of dynamic bandwidth allocation 
with the measurement-based congestion prediction. Simula- 
tion results show that the proposed scheme reduces bandwidth 
required by about 20%. 

Section I1 explains 
the system model ofthe measurement-based congestion alarm 
and discusses the fGn predictor. In Section 111, the congestion 
alarm is modified to work with dynamic bandwidth allocation. 
Simulation results are presented in Section IV. Section V con- 
cludes this paper. 

This paper is organized as follows. 

I t .  SYSTEM MODEL 

To capture the characteristics of self-similar traffic, we pro- 
pose to model the aggregate traffic as seen at an output port 
of a network router or switch by a fractional Gaussian noise 
(fGn) process. Although a single source may not be modeled 
accurately by the fGn process, the aggregation of a large num- 
ber of sources can be. The fGn model is a parsimonious self- 
similar model that can be defined by three parameters, namely 
the mean, the peak, and the Hunt parameter. Figure 1 shows 
the system architecture of the proposed measurement-based 
congestion alarm. Basically, we model the aggregate traffic 
by an fGn process. Traffic measurements are performed in 
short time intervals periodically. These traffic measurements 
will then be used to predict the traffic intensity in the near 
future using the fGn predictor. If it is found that the system 
capacity is insufficient to handle the expected amount of traf- 
fic, the congestion alarm will be set off. When this happens, 
appropriate network control functions are carried out so as to 
alleviate the possible congestion. 

One of the possible network management function that can 
be used is Call Admission Control (CAC). In case of possi- 
ble congestion, the CAC function can start to drop new calls 
that arrive to the system. In this study, however, we consider 
the use of dynamic bandwidth allocation whereby the system 
bandwidth is renegotiable. Therefore, in case of possible con- 
gestion, the system can request larger bandwidth. When the 
amount of traffic is predicted to be smaller, excess bandwidth 
can be relinquished accordingly. In the following, we will dis- 
cuss the predictor for fGn. The best predictor is actually the 
conditional mean given the past history. Moreover, the ran- 
dom variable under prediction is actually Gaussian distributed 
given the past history. As a result, we could construct the con- 
gestion alarm based on statistical guarantee that the probabil- 
ity of the network load being more than the system capacity 
is less than a predefined threshold. In the following, we first 
describe the optimal predictor for fGn, and then explain the 
congestion alarm that is constructed based on this predictor. 
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Fig 1 System model for the teedbach mechanism with the Lungestion alarm 

A. Predictor for Fractional Gaussian Noise 
Consider a discrete time fractional Gaussian noise (fGn) 

process whose sample path in the past is known. Based on 
this known history, we want to predict a sample in the fu- 
ture. In [9] ,  the authors derived the best estimator of the fu- 
ture value of a discrete time fGn proccss, which is actually the 
conditional mean of the future value conditioned on the past 
history. Let { Zo,Z1, . . . , & - I ,  Zi}, n 2 m be a stationary 
discrete time Gaussian process with mean p, variance o2 and 
autocorrelation function given by R ( k )  (R(0) = u2). Denote 
{ZO,&,. . . , Zm-l} by Z,. The vector Z, represents the 
past history of the process. Zi with i 2 m is the future value 
that we want to predict. It can be shown that the besl esti- 
mator is given by the conditional mean, E[ZiJZ,]. In fact, 
it is a well-known result that conditioned on Z,, Zi is still 
Gaussian. In particular, the conditional mean and variance are 
given by: 

and 

respectively, where 

... R(m- 1) 

... R ( m - 2 )  l 7  . .  . .  
R(m - 1) k (m - 2) R(0) 

Ri = [R(i)R(i - 1) . . . R(i - m + 1)IT 

and 1 is an i by one vector whose elements are all equal to 
one. 

The predictive power is small for small Hurst paramctcr, 
however, it increases rapidly. For H = 0.95, the predictor 
is able to resolve half of the variance of 2;. To illustrate the 
utility of the predictor, Figure 2 shows an example with a sim- 
ulated fGn trace whose Hurst parameter is equal to 0.9. The 
top figure shows the trace and the predicted values together 
with the 95% confidence intervals based on the first 64 sam- 
ple points of the trace. It can be seen that as we predict further 
ahead, the variance (and hence the confidence interval) gets 
larger. The middle figure shows the case when we predict 
only ten samples based on a moving window of 64 samples. 

I I 
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Fig. 2. An example of short term prediction for fGn. ( H  = 0.9) 

This tracks the trajectory of the trace better. The bottom figure 
shows the extreme case whereby only one sample is predicted 
based on a history of 64 samples. It can be seen that the pre- 
diction is able to track the trace closely. However, the final 
scenario is of less practical interest. If we predict one sam- 
ple ahead only, even if congestion is highly probable in the 
coming time slot, we may not have time to respond to such 
congestion. So in practice, we want to predict a short period 
of the future whose length should be determined by the time 
scale on which the appropriate traffic management is capa- 
ble of responding. The time scale may range from hundreds 
of millisecond to seconds, depending on the particular traffic 
management function and the supporting network. 

B. Congestion Alarm 

Based on the short term prediction of the fGn process de- 
scribed in the previous section, we design a congestion alarm 
as follows. The aggregate traffic at an output port of the switch 
or router under consideration is modeled by a discrete-time 
fGn process. Every time slot, the traffic intensity is measured. 
A moving window of m samples of historical values is used to 
predict all of the coming n samples in the future. We want to 
make sure that the probability of the aggregate traffic exceed- 
ing the capacity, also called the outage probability, is less than 
a preset threshold 0, that is, 
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P[Z,  > ClZ,] < B i = 1,2, ... n ( 3 )  

This is illustrated in Figure 3. Since the conditional value 
of 2, is Gaussian with mean and variance given by ( I )  and 
(2 ) ,  respectively, the above probability can be easily calcu- 
lated. The congestion alarm is set off when one or more of the 
predicted values fail to satisfy the above inequality. When this 
happens, appropriate network management procedures should 
be taken to alleviate the situation. In the following section, 
we will discuss dynamic bandwidth allocation in which the 
system bandwidth can be renegotiated based on the varying 
traffic requirement. 
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Fig. 3 .  The congestion alarm. 

111. DYNAMIC BANDWIDTH ALLOCATION 

Saito [15] studied dynamic virtual path (VP) bandwidth al- 
location in ATM [ 131 networks. This corresponds to the first 
target of the proposed "self-sizing network" concept [SI. Dy- 
namic allocation implies that network engineers do not need 
to worry about detailed resource allocation at any moment. 
Instead, the network continuously adjusts its own resource al- 
location to adapt to thc current traffic load. They implemented 
a dynamic VP bandwidth control system on the telecommu- 
nications management network (TMN) platform [IS]. Field 
studies showed that dynamic bandwidth allocation is effec- 
tive. In this paper, we also consider a similar dynamic band- 
width allocation scheme whereby the system bandwidth can 
be renegotiated from time to time. Next, we extend the con- 
gestion alarm discussed above to determine the amount of ex- 
Ira bandwidth to request or excessive bandwidth to relinquish 
in case of renegotiation. 

Let Zi, i = 1,2, ... n, be the random variable of Zi given the 
m historical samples {zqm-l ) ,  q m - 2 ) ,  ..., q,}. Then, the 
mean and variance of &, denoted by mii and C T ~ ~ ,  are given 
by ( 1 )  and (2 ) ,  respectively. The congcstion alarm ensures that 

(4) 
Let Cj be the minimum capacity satisfying the above in- 

P[Zi > C] < 0 

equality. Since & is Gaussian, we have: 

where Q(.) is the complementary cdf of a standard Gaussian 
random variable. Therefore, maxl5isla Ci will be the mini- 
mum capacity that will satisfy the quality of service require- 
ment for all the n steps ahead. Suppose the current capacity 
is C, and let AC be defined as follows: 

(6) AC = max Ci - C 
l<i<n 

If AC is greater than zero, it means that the current sys- 
tem capacity is probably insufficient to handle the amount of 
traffic expected to arrive in the following n time slots. In this 
case, AC represents the amount of extra bandwidth to request. 
On the other hand, if AC is less than zero, it means that the 
current system capacity is more than enough for the expected 
traffic. In  this case, it represents the amount of bandwidth that 
can be relinquished. 
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Before investigating the performance of the proposed 
scheme, the source model used in our simulation, namely, the 
Pareto ON/OFF model will be discussed. 

IV. SIMULATION RESULTS 
According to [ 161, we use the Pareto ON/OFF process as 

the source model in our simulation. The Pareto distribution is 
a heavy-tailed distribution which can be defined by the shape 
parameter and location parameter. The Pareto ON/OFF pro- 
cess consists of strictly alternating ON and OFF periods. Dur- 
ing the ON period, packets are generated at a peak rate of 
p packets per second. The number of packets during each 
ON period is independent and identically distributed accord- 
ing to a Pareto distribution with a mean of A4 packets and 
shape parameter p. After each ON period, a source will tran- 
sit to an OFF state during which no packets will be generated. 
The lengths of the OFF state are independent and identically 
distributed according to a Pareto distribution with a mean of 
I seconds and shape parameter y. A single Pareto ON/OFF 
source does not generate long-range dependent traffic; the ag- 
gregation of them does. Willinger et al. [ 171 have shown that 
the superposition of a large number of ON/OFF sources with 
strictly alternating ON and OFF periods and whose ON and/or 
OFF periods exhibit high variability or infinite variance pro- 
duce aggregate traffic that exhibits self-similarity. Moreover, 
they have derived a simple relationship between the param- 
eters describing the high variability and self-similarity. For 
aggregation of Pareto ON/OFF sources, the Hurst parameter 
is related to the shape parameters of the ON and OFF periods 
by H s-min(P,r) 

To justify the use of fGn to model the aggregate traffic, we 
performed experiments on aggregating 20,50, and 100 Pareto 
ON/OFF sources. The generated traces, each of length one 
million samples, are assessed by using the method of quantile- 
to-quantile plot to see how well each can be modeled by a 
Gaussian random variable. Figures 4 to 6 show the quantile- 
to-quantile plots for aggregation of 20, 50, and 100 Parcto 
ON/OFF sources, respectively. For the trace to be accurately 
modeled by the Gaussian distribution, the points should be as 
close to a 45 degree line as possible. From the figures, we can 
see that aggregation of 20 sources is not quite Gaussian, 50 
sources are better, and for 100 sources, the aggregation can be 
accurately approximated by a Gaussian distribution. There- 
fore, we will use 100 sources in the following simulations. 

We perform simulations to study the congestion alarm with 
dynamic bandwidth allocation. The system under consider- 
ation is a single link with capacity C Mbps (which is rene- 
gotiable) and buffer of size B packets. N Pareto ON/OFF 
sources with the same parameters ( M  = 10, /3 = 1.2, 
I = 360 msec, y = 1.1, p = 256 packets/sec)I are loaded 
into the system. Packets are assumed to be 10 Kbits long and 
traffic measurement is performed every SO msec. The perfor- 
mance threshold B is set to 

Three scenarios are compared. Scenario 1 corresponds to 
the case with fixed bandwidth assignment. The capacity re- 
quired is determined by the Gaussian assumption with mean 
and variance measured from the whole trace of the simula- 
tion. If the trace mean and variance are given by m and 0' 
respectively, the fixed capacity required to satisfy the given 
threshold 0 is therefore: 

2 .  

'chosen according to the observations in [16] 
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Fig. 4. Quantile-to-quantile plot for aggregation of 20 Pareto ON/OFF 
sources. 
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Fig. 5 .  Quantile-to-quantile plot for aggregation of 50 Pareto ON/OFF 
sources. 

(7) 

In scenario 2, the sample mean and variance of a moving 
window of W samples are used to dimension the bandwidth 
based on the Gaussian assumption. In this case, the predictive 
power utilizing the Hurst parameter is not exploited. This will 
be called “prediction off” in the following discussion. Finally 
in scenario 3, the proposed congestion alarm is used. The 
predictive power for self-similar traffic based on the Hurst pa- 
rameter is utilized. We call this “prediction on.” The avcrage 
capacity required in all three scenarios are compared. 

In experiment one, we study the effect of the length of the 
predictive window in performing parameter estimation, that 
is, the number of measured samples used in estimating the 
mean and variance of the traffic trace. 100 sources are loaded 
into the system, and a buffer size of 100 packets is assumed. 
The simulation time is 15000 seconds. with statistics mea- 
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Fig. 6. Quantile-to-quantile plot for aggregation of 100 Pareto ON/OFF 
sources. 

sured from the latest I0000 seconds. The firs1 5000 seconds 
is a long enough warmup period for the long range dependent 
effect to be seen. Figure 7 plots the percentage savings in ca- 
pacity for when prediction is turned on and off, compared to 
the fixed bandwidth assignment. The mean and standard de- 
viation of the aggregate traffic are found to be 32.6885 Mbps 
and 6.86683 Mbps, respectively. Based on the Gaussian as- 
sumption, a fixed capacity of 61.97 Mbps is required to satisfy 
the preset thrcshold of 0 = lop5. 

From the figure, a S% to 8% savings is observed with pre- 
diction on compared to prediction of:  The percentage savings 
with both prcdiction on and off get smaller when the window 
gets larger. This is bccausc with a larger window, more vari- 
ation is expected which results in a larger estimated variance. 
In the extreme case, when the whole trace is used for perfor- 
mance estimation, the estimated variance approaches the vari- 
ance of the trace and no savings will be observed. However, 
with a small window, the inaccuracy of the predicted parame- 
ters will induce a larger packet loss rate. This can be seen in 
Figure 8. We can see that for too small an estimation window, 
the packet loss rate will be unacceptably high. A window of 
length 40 to 60 samples is therefore appropriate. 

The next set of experiments investigates the effect of the 
length of the history in performing prediction. In these ex- 
periments, we use 100 samples for parameter estimation and 
perform prediction for 20 steps ahead based on a sample his- 
tory of length from 10 to 100. Figure 9 shows the result. We 
see that the savings will increase with the number of samples 
in the history. However, the savings will level off very quickly. 
This is in line with the rule of thumb, i.e., to predict a second, 
one needs no more than one second of history. Therefore, in 
our case, a history of 20 samples is enough. The packet loss 
rates for all cases are in the order of lo-‘. 

Next, the effect of the number of prediction steps is studied. 
With a history of 20 samples, the number of prediction steps 
is varied from 20 to 100. The resulting percentage savings is 
plotted in Figure IO. We see that the percentage savings drops 
rapidly when the number of prediction steps is larger than 20. 
The packet loss rate in all cases are in the lo-* range. The 
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Fig. X. Effect of window length of parameter estimation on packet loss rate. 

larger packet loss rate experienced here is mostly due to the 
larger "jump window" (of 100 samples) to be discussed next. 

To save computation load, after each prediction (or parame- 
ter estimation in case of prediction off), the congestion alarm 
will be idle for a jump window of J samples. This jump- 
ing reduces the amount of bandwidth renegotiation. However, 
a large jump window means slower response to traffic load- 
ing variation. In the last set of experiments, we study how 
the jump window affects the performance. With a parameter 
estimation window of 20 samples, 20 samples are predicted 
from 20 samples of the history. The jump window size is 
varied from 20 to 100. The resulting percentage savings is 
around 24% for prediction on, and 19% for prediction off re- 
gardless of the jump window size. However, from Figure 11, 
which plots the associated packet loss rate, we see that the 
packet loss rate increases with the jump window size. This 
is a trade off between the computational complexity and the 
performance. In practice, it is recommended that the jump 
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window size should not be larger than the number 01 samples 
predicted. 

In the above experiment, we focus on the capacity savings 
and packet loss probability without considering the actual out- 
age probability, which is the probability that the aggregated 
traffic rate is greater than the capacity. The target outage 
probability is in fact equal to 0. An experiment is performed 
whereby 200 Pareto On/Off sources are loaded into the sys- 
tem and the outage probability is actually measured. With a 
target outage probability of the simulated outage prob- 
ability is found to be 0.0059, where there is a two-order of 
magnitude difference. To see the reason for this discrepancy, 
another experiment is performed in which a single trace with 
the same statistics (mean, variance, and Hurst parameter) is 
generated using an fGn generator. This trace is loaded into 
the same system and the outage probability is again measured 
and is found to be 0.0049, which is of the same order as in the 
previous case. Hence it is clear that the discrepancy is not due 
to the Gaussian assumption, but probably due to errors intro- 
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parameter estimations. This kind of difference between target 
and actual performance is not uncommon with algorithms as- 
sociated with traffic measurement. For instance, the authors in 
[8] established a relationship between target and actual perfor- 
mance in their measurement-based admission control frame- 
work. We are currently working on quantifying this difference 
in our congestion alarm. 

To sum up, sevcral experiments are performed to study 
the effects of the various system parameters of the conges- 
tion alarm. With prediction on, where the mean, the variance, 
and the Hurst parameter are used to predict future traffic in- 
tensity, the savings is about 20% when compared with fixed 
bandwidth allocation, and 5% to 8% better than with predic- 
tion off, in which case only the mean and variance are used 
to characterize the traffic loading. In fact, with more strin- 
gent outage probability requirement, the savings will be even 
larger. This is due to the fact that the conditional variance 
associated with fGn prediction is always smaller than the un- 
conditional variance. The required capacities in both cases are 
equal to the mean plus the corresponding standard deviation 
times Q-’(B). 
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V. CONCLUSIONS 

In this paper, we studied a measurement-based congestion 
alarm based on short term prediction for the fractional Gaus- 
sian noise model. The utility of the congestion alarm com- 
bined with dynamic bandwidth allocation has been investi- 
gated through simulations. For a target outage probability re- 
quirement of 10V5, there is about 20% savings in capacity 
over the fixed bandwidth assignment based on the Gaussian 
assumption of network traffic. Compared to dynamic band- 
width allocation without using prediction based on the Hurst 
parameter, our approach requires about 5% to 8% less band- 
width on the average. The savings is expected to be even 
larger for more stringent outagc probability requirement. In 
our simulations, we also verified the rule of thumb which 
says that to predict one second of the future, we need to use 
only one second of the recent history. We also find that dy- 
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namic bandwidth allocation need not be performed frequently 
to obtain satisfactory results. With the low renegotiation 
frequency, administrative cost is acceptable. Therefore, the 
proposed measurement-based congestion alarm with dynamic 
bandwidth allocation is a promising approach to achieve high 
system utilization when traffic is self-similar. 

The proposed congestion alarm can work with other traffic 
management functions. Dynamic bandwidth allocation is just 
one of them. Admission control, for instance, is also a possi- 
ble candidate. Rather than making an admission control de- 
cision on a call-by-call basis, it is possible to perform the de- 
cision based on the anticipated congestion level. The system 
starts out admitting any calls that arrive, and very soon, the 
system utilization will become high and congestion is likely 
to occur. When the congestion alarm is set off, the admis- 
sion control can start to drop some of the new calls. This 
feedback control mechanism will maintain high system uti- 
lization. This approach, as compared to other measurement- 
based admission control schemes, is simpler since admission 
control decision is not done on a call-by-call basis, but rather 
on the anticipated congestion level. The utility of this scheme 
is worth further investigation. 
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