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ABSTRACT 
In this paper, a fuzzy-neuro approach will be presented 
for the design of bang-bang control system. A descrip- 
tion of the architecture will be given. The multi-layered 
structure of the controller is essentially a neural network 
which resembles a fuzzy rule-based system. The robust- 
ness issue of an application to a heating system will also 
be described. 

1. ISTRODUCTIOK 
The fuzzy-neuro approach for control applications has re- 
ceived a lot of attention recently. It is because it tries 
to combine the advantages of both fuzzy and neural ap- 
proaches together. The fuzzy methodologies have been 
widely used as their representations are understandable 
and intuitive. However, the fine tuning of the perfor- 
mance of a fuzzy controller is difficult. On the other 
hand, the neural networks are more powerful in terms 
of their computational performance and learning capabil- 
ities, but weak from the viewpoint of intuitive representa- 
tion. Hence, efforts to integrate the two approaches have 
been attempted by many researchers [l]. Many of these 
techniques are based on the equivalence of specific classes 
of rule-based fuzzy systems and the type of neural network 
proposed [2]. The idea is to construct a neural network 
that is functionally equivalent to a fuzzy system. Then, 
the neural network is trained to learn with more data, and 
the parameters are adjusted accordingly. The adjusted pa- 
rameters can be shown as variations in the shape of inein- 
bership functions of the original fuzzy system. Jang (31, 
Berenji [4], Horikawa [5], and Ishibuchi et al. [6] provide 
generalised methodologies for to a wide range of fuzzy sys- 
tems. Yamakawa [7] has proposed an approach which is 
efficient but work for a more specific class of systems which 
contain only triangular complementary membership func- 
tions. All the above approaches have been successful in 

developing fuzzy-neuro controllers but share a lack of in- 
tuitiveness in the resulting neural network. 

In this paper, the focus is on the use of a fuzzy-neuro 
approach for the bang-bang control of a system. These 
systems which rely on a controller with just the “on? and 
“off? states can be commonly found in many industries. 
For example, attitude control usually requires an on/off 
thruster [8] and flow control valve operated in a bang-bang 
mode (91. Fuzzy control of a heating system has also been 
attempted with a bang-bang servo controller [lo]. A set of 
fuzzy rules was used for the adjustment of the parameters 
of the servo controller. 

2. FUZZY NEUR.AL NETWORK (FNN) 

A fuzzy-neuro network based on 1111 has been devel- 
oped [2, 121. The architecture of the FNN is consisted 
of three layers: fuzzification, rule reasoning, and defuzzi- 
fication layers. These three layers are shown in Figure 1. 
Each layer is constructed and trained independently and 
then the three layers are connected afterward. This neural 
network structure is designed to mimic the fuzzy rulebase 
of an original fuzzy controller. The membership functions 
(input and output) and rules of an adjusted fuzzy con- 
troller can be retrieved from the FNN after training. 

2.1. Fuzzification Layer. The first layer of the FNN 
performs the fuzzification. Let i be the number of inputs 
to the fuzzy controller. The fuzzification layer contains i 
sub-networks. Let xi be the i th input to the network. The 
ith sub-network will have k outputs where k is the num- 
ber of fuzzy membership sets corresponding to xi. Each of 
the i sub-networks is trained individually with the mem- 
bership functions corresponding to each xi. Each result- 
ing sub-network then produces a membership value pik at 
each of its outputs for any crisp zi. This array of sub- 
networks, which operate in parallel and are not connected 
to each other, perform the fuzzification of the controller 
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inputs. It should be noted that each sub-network itself 
is a complete ANN and can have input and output layers 
and as many hidden layers as desired. 

2.2. Rule Reasoning Layer. In this layer, the 
knowledge base which represents the fuzzy rules is repre- 
sented. The knowledge is contained in the training of the 
rule reasoning sub-networks and in the structure (that is 
interconnections) between the fuzzification and defuzzifi- 
cation layers. The number of rule reasoning sub-networks 
is the same as the number of fuzzy rules in the original sys- 
tem. The number of inputs to each network corresponds 
to the number of preconditions in the rule it represents. 
The number of outputs is the number of consequents in 
the rule it represents. Each sub-network is again a com- 
plete neural network which can be trained to implement 
different kinds of conjunction operators. 

2.3. Defuzzification network. The defuzzification 
layer is consisted of two sub-layers. The first one cal- 
culates fuzzy controls and the second sub-layer converts 
the fuzzy controls to a crisp value using the center of area 
method. The equations for the computations will be de- 
scribed later. 

Fuzzy Controls Sub-layer. The number of inputs 
is the same as the number of fuzzy rules in the (that is 
rule reasoning sub-networks) of knowledge base. Let T be 
the number of rules. The output membership functions 
of the fuzzy rules are represented by weights in this part 
of the defuzzification layer. This representation requires 
the universe of discourse for the output to be discretized. 
If n is the number of discrete values chosen then define 
U = (u1, u g ,  . . . ,U,} as the set of discrete output values. 
The initial weights of this sub-layer are calculated with [2] 

W” 23 - - PC,(U~) (1) 

where i = 1,. . . , n  and j = 1,. . . , r .  As well, Cj is the 
linguistic label of rule j and pc, (ui) is the degree of mem- 
bership of Cj at U = ui. The weights in this sub-layer are 
subject to change during learning. 

Center of Area Sub-layer. The main purpose of 
this second sub-layer is to perform a center of area calcu- 
lation and to produce a crisp output value. The weight of 
this layer, denoted by pi, are calculated as follows: 

Let ui be the discrete values as defined in the last sub- 
section. 

21% 

Y 
pa = - 

where 

The crisp value U which results from defuzzification can 
then be computed with 

n 

i=l 

The weights in this sub-layer are not affected by training. 
The reasons for this will become clear in the next section. 

2.4. Training the FNN. This section deals with the 
training of the entire FNN with real input/output data. 
Error calculation and weight updating is described for each 
of the layers. 

If ud is the desired output value for an input set and 
U is the actual output generated by the FNN from that, 
input set then the error function can be defined as- 

(5) 
1 
2 E = -(.d - U )  

The center of area calculation must remain intact so the p 
are always calculated from the pi. The training algorithm 
does not change the ,8 weights at all. The rule for updating 
the w;j in the fuzzy controls sub-layer of the defuzzification 
layer can be derived from the gradient descent algorithm 
to be 

n 

1=1 

where E is the learning rate and lies in [0,1] and aj is the 
degree of firing of rule j ,  that is the j t h  input of the de- 
fuzzification layer. The error terms which are propagated 
back to the rule reasoning layer can be shown to be 

n n 

ej = (ud - 
i=l 1=1 

The error at the input of the defuzzification layer is used 
to calculate the weight changes in the sub-networks of the 
rule reasoning layer. This can be done with the standard 
back propagation algorithm. 

3. A FURXACE HEATIKG SYSTEM 
A model of the thermal characteristics of a typical house 
is given in [12, 131. The plant model includes a furnace 
which has two states: “on” and “off”, along with a simple 
model of the temperature change when the furnace is at 
either of these two “steady-state” operating points. 

3.1. Nominal and Perturbed Plant Transfer 
Functions. The nominal plant is chosen to be as “av- 
erage” as possible, that is an average sized house with a 
mid-size furnace and fairly good insulation. The extremes 
are chosen as just that: the fastest and slowest heating 
houses from the calculated parameter ranges. The nomi- 
nal plant transfer function is chosen as: 

(8) 
66.15 

(41.4s + 1)(300s + 1) Pnorn = 
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and the extremes could be (in same order as above): IF (TempErr is small AND DeltaTemp is small) 
THEN Output is mid 

321.16 P -  7.90 
(198.72~ + l)(goos + 1) t-(5.51s + 1)(120s + 1) The operation of the fuzzy control system is as follows: 

1. execute rules with current temperature error and tem- 

Pb= 

(9) 
There is a very wide range of possible perturbations be- 
tween the nominal plant and those at the extremes. perature change from last time step 

3.2. On/Off Switching Control Law. The on/& 2. defuzzify Output linguistic 

switching control law is the most common method used 
for the control of a system. This is widely used for tem- 
perature regulation due to its low cost and simplicity. The 
control logic can be specified as follows: 

If (furnace off AND error > on threshold) 

Elseif (furnace on AND error < off threshold) 

End 

3. if output 2 0.5, then the furnace will be on for the 
next tirne step, otherwise it will be 

4. simulate system for next time step 

5. return to step 1 

A MEDAL m-file was written to perform the simulation. 
The results from the_ simulation are given in Figures 3 and 
4. The result for Pb shows that the furnace will be on 
for all time and yet the steady state temperature cannot 

It is found that the standard control method of on/off reach the setpoint. 
switching with simple provided acceptable results for the 

4.2. Results. With computer simulation, it has been nominal plant but the performance was not at all robust. 

overshoot in the output response. The “on” time i_s gen- law. 
erally quite low as it is with on/off switching. For Pi, the 
furnace “on” times are very small and quite a bit of oscil- 

A fuzzy controller for the heating system is described in lation is still present. This suggests that the house heats 

to be a realistic house. Nevertheless, the fuzzy controller tions was based mostly on intuition and rules of thumb, 
does a very good job even with this impractical case. Even along with “tweaking” once acceptable performance was 

achieved. The simulation of the fuzzy temperature control too quick to be a real house which suggests 
system was accomplished with MEDAL [141, a MATLAB the model parameters need adjustment. This could be ac- 

of this example, it is sufficient to work with the derived and expert system constructs. 
models to show the usefulness of fuzzy control techniques 

4.1. Membership Functions and fizzy ~ ~ l ~ ~ .  in producing a fuzzy controller which works well with all 
For the definition of the fuzzy rules, the temperature er- the plant 

Turn furnace on 

Turn furnace off 

It should be noted that the above is a nonlinear control shown that the has succeeded to reduce 

4. FUZZY CONTROLLER DESIGN 

this section. The choice of rules and membership func- UP quickly and that this is probably far too quick 

like software package which includes built-in fuzzy logic complished with data but for the purposes 

ror together with the rate of temperature change are used 
to relate to the controller output. Linguistic variables are 
used for the description. The temperature error linguis- 
tic variable is associated with fuzzy terms called small, 
medium, and large. The temperature change linguistic 
variable is associated with fuzzy terms called negative, 
small, medium, and large. As for the output linguistic vari- 
able, The fuzzy terms on, mid, and off are used. 

The mid membership function represents a case where it 
is not clear whether the furnace should be on or off. This 
was chosen to represent the decision a human operator 
would face when he or she is not sure of what to do. The 
defuzzified value will lie in [0,1] and is used to determine 
the value of m(t) at each time step. Figure 2 contains 
plots of the membership functions used. 

Below are examples of two fuzzy rules: 

IF (TempErr is small AND DeltaTemp is negative) 
THEN Output is off 

5. FUZZY-NEURO CONTR.OLLER. DESIGN 
A fuzzy-neuro controller is described in this section. A 
comparison with the fuzzy control approach with a dis- 
cussion on the robustness issue is also given. In this FNN, 
the fuzzification layer has two sub-networks which were 
trained with the membership functions for the input vari- 
ables. Each sub-network has a single neuron input layer, 
two hidden layers with seven neurons each, and an output 
layer with three (temperature error) or four (temperature 
change) neurons. The output neurons correspond to the 
fuzzy terms: small, medium, large, negative membership 
values. Two hidden layers are used as it allows a reason- 
ably complex mapping. 

The twelve rules in the original fuzzy controller are 
implemented with twelve rule reasoning sub-networks in 
FNN. Only one sub-network was initially trained with 
a product AND function and its weights and thresholds 
copied to the other 11 sub-networks. These sub-networks 
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are composed of two input layer neurons, two hidden lay- 
ers each with seven neurons, and one output layer neuron. 
The choice of hidden layers is again arbitrary and was used 
to allow relatively complex functions to be represented by 
the sub-network. The sub-networks are initially trained 
to return the product of the two inputs (which are in the 
range [0,1]). Hence, the output is also in the [0,1] interval. 

In the defuzzification layer, the [0,1] range of the uni- 
verse of discourse of the output variable is divided into 21 
discrete points. The weights are the membership values 
(pi) at each of the 21 discrete output values. It is inter- 
esting to note that with the 12 rules there are 12 sets of 21 
weights in the fuzzy controls sub-layer and each of these 
sets can change independently. When the initial weight 
entry is made, there is much redundant information in 
the weights but this will change when the entire FNN is 
trained. 

5.1. Comparison of the initial FNN and Fuzzy 
Controller. Ideally, the FNN should be equivalent to 
the pure fuzzy controller. There are several reasons why 
the results are not exactly the same. First, the input mem- 
bership functions are smooth continuous functions in the 
FNN which differ slightly from the triangular membership 
functions defined in MEDAL. Secondly, the AND product 
is also trained in the FNN and is not an exact product 
function although it is very close. Small inconsistencies in 
these sub-networks can have a more profound effect on the 
entire system since they control the degree of rules firing. 
Thirdly, the output membership functions have been dis- 
cretized and the center of area is thus an approximation 
based on these points as opposed to exact equations for 
trapezoids in MEDAL. Note that the network is not com- 
pletely interconnected, and it is a very specific composition 
of sub-networks, numerical errors can be significant at the 
output of the controller. Figure 5 shows a comparison of 
the P,,, response with the original fuzzy controller and 
with the FNN before training. 

5.2. Training of the Network. The objective of rep- 
resenting a fuzzy controller by an FNN was to tune the 
controller parameters with numerical data. The FNN, be- 
ing a neural network, can be trained with the derived gra- 
dient descent algorithm. This allows the internal repre- 
sentations of the input and output membership functions 
and the definition of AND operator to be updated to ac- 
commodate the desired numerical data. 

One main source of training data is from the actual case 
study simulations with the FNN. Any plant can be simu- 
lated and the data is saved to a file. The data can then 
be modified to control the heating system like a human 
operator. For example, the data can be changed so as to 
turn the furnace off a few time steps earlier to eliminate 
the overshoot. The structure of the neural net,work is such 
that very localised improvements can be made as long as 
“good” data is kept and included in the training set to en- 

sure the L1good” portions of performance are not changed. 
The formulation of fuzzy rules with appropriate member- 
ship functions has always been a problem in the design 
of fuzzy controllers. Even if an expert is available, it is 
difficult for him to put the necessary rules on paper. The 
advantage of training an FNN with case studies is that 
the controller can learn not to repeat undesirable controls 
much like a human operator. 

5.3. Results. Here, the main objective of training is 
to reduce the overshoot in P,,, and pt. Improvements 
have been made with the use of case studies data. As the 
fuzzy controller provided a very good response for P,,, 
and pt, the network was trained to try and diminish the 
slight overshoot and control the regulation of pt. The 
attempt involved taking case study data from the original 
FNN and updating the network to reflect a better control 
strategy. Figure 6 shows the results of simulation after 
this training has occurred . 

The membership functions are practically identical to 
the original definitions except for the medium temperature 
change which has again intruded on the large domain. This 
time, though, the large membership function has not been 
significantly modified. This is not too surprising since case 
study data allows “fine tuning” of the system. 

Now that a suitable FNN is available, some robustness 
testing is in order. The first test involves attempting the 
same simulations with different plants. TWO_ more plant 
models were formulated with one between Pb and P,,, 
and the other between P,,, and pt. The equations are 

150 P -  40 
(80s f 1)(400s + 1) 

Pbn = 
nt - (20s + 1)(18Os + 1) 

(10) 
and the resulting simulations are shown in figure 7. These 
simulations show good responses and could further be im- 
proved with new case study training steps. 

6. CONCLUSIONS 
This paper has focussed on using fuzzy and fuzzy-neuro 
control philosophies for the design of bang-bang con- 
trollers. The capabilities of fuzzy and fuzzy-neuro control 
has been illustrated using a heating system. The model 
for house heating is based on a two state furnace. The 
standard control method of on/off switching has provided 
acceptable results for the nominal plant but the perfor- 
mance was not robust. Next, a fuzzy controller was de- 
signed and excellent nominal performance was obtained. 
The fuzzy controller is quite robust as well. Fuzzy control 
has been shown very promising for this application. Fine 
tuning of the fuzzy controller is desired and so the fuzzy 
controller is represented as a fuzzy neural network. This 
also provides a good starting point for the improvement 
of the fuzzy controller. The use of simulation data has 
been shown to be a valuable method for improving the 
performance of the network. 
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Both the fuzzy controller and FNN have met the per- 
formance objectives. Good tracking and regulation, and 
robust performance were observed. Both control strate- 
gies have produced results on the same order of energy 
consumption. This paper has shown that both the fuzzy 
and FNN control are powerful and very practical design 
methodologies. 
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Figure 1: Structure of Fuzzy Neural Network (FNN) 



Figure2 : Membership Functions for  Fuzzy Controller 
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Figure 3 : Pn., Response with Fuzzy Controller 

Figure 5 : P,,, Response with Fuzzy controller a n d  FNN 
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Figure 6 : P,,,,,, and Pt response after second training s tep  
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