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Abstract with the Motion Picture Experts Group (MPEG) format.
Since MPEG video traffic is very bursty and exhibits large

Video prefetching has been proposestently for the  variability in the output bit-rate, researchers have tried to
transmission of variable-bit-rate (VBR) video over a packet- find effective methods to reduce this burstiness. Most of the
switched network. The objective of these protocols is toresearch reported in the literature focuses on the use of a
prefetch future frames to be stored at the customer’s set-buffer in the customer’s set-top box (STB) to smooth the
top box (STB) in periods of low link utilization. Experi- video traffic and allow for constant-bit-rate (CBR) trans-
mental results have shown that video prefetching is very ef-mission [3, 7, 8]. In [7] an optima smoothing agorithm
fective and it achieves much higher network utilization (i.e. is given which can reduce the peak rate by 75-87%, using a
larger number of simultaneous connections) than the tradi- IMByte buffer at the STB. The optimality refers to the re-
tional video smoothing schemes. Video prefetching, how-duction of the rate variability of the transmission schedule.
ever, can only be efficiently implemented when there is oneThe basic idea is to run the smoothing algorithm on every
centralized server that serves the different customers over astored video, and get an optimal transmission schedule (i.e.
common link. In a distributed environment there is a large different CBR transmission rates at different times) which
degradation in its performance. In this paper we introduce isthen used for the transmission of the video. This scheme
a new scheme that utilizes smoothing along with prefetch- can provide deterministic Quality of Service (QoS) guaran-
ing, to overcome the problem of distributed prefetching. We tees (in terms of |oss probability) if the bandwidth is alo-
will show that our scheme performs almost as well as the cated to satisfy the largest rate of the transmission sched-
centralized prefetching protocol even though it is imple- ule. In [8] the optima smoothing agorithm is considered

mented in a distributed environment.

1. Introduction

The development of high-speed networks and the
tremendous progress made on compressi on techniques have
made applications like Video-on-Demand (VoD) a redlity.
A VoD system aims to provide video rental services to the
customer, with the advantage that the customer does not
have to leave home. In a true VoD system, the user will
be able to select any movie from avideo server and view it
at any time. In addition, it will allow the user to perform
any VCR-like function such as pause, fast forward, jump
forward [2].

For a VoD system to be cost effective, many issues have
to be considered. One of the most important issues when
designing a VoD network is the alocation of bandwidth to
the various video sequences. Video istypically compressed

together with statistical multiplexing. The authors use the
same algorithm, and they investigate its performance when
some small lossis alowed. This scheme will provide only
statistical QoS guarantees, but it increases dramatically the
system utilization.

Recently, some work has aso been done based on the
idea of prefetching [4, 5]. These protocols use variable-
bit-rate (VBR) transmission and can only provide statistical
QoS guarantees. In [4] a protocol caled Join-the-Shortest-
Queue (JSQ) prefetching is presented which has many ad-
vantages compared to the other transmission schemes in the
literature. It achieves very high network utilization, facil-
itates user interactions, and has minimal start-up latency.
Their experimental results showed that JSQ prefetching had
aloss probability severa orders of magnitude smaller than
optimal smoothing [8] for the same buffer size and network
utilization. The main idea is to put a buffer in the cus-
tomer's STB which can be used to prefetch future frames
when thetransmission link isunder utilized. The frames are



prefetched in a way that al the ongoing connections have
similar number of prefetched frames so as to minimize the
loss probability. This large performance gap between opti-
mal smoothing and JSQ prefetching is due to the different
usage of the STB buffer [4]. In a smoothing scheme the
buffer isused to reduce the peak rate and therate variability
of the video sequence, and in some time periods it will be
almost empty. The idea of video prefetching, though, is to
keep the STB buffers as full as possible at al times, so that
in periods where the aggregate bit-rate exceeds the link ca-
pacity the user will not experience playback starvation, as
therewill be some frames buffered at the STB.

JSQ prefetching, however, has amajor drawback: it can
only be implemented when there is one centralized server
which serves different users over a common link, since the
prefetching agorithm has to know the exact frame sizes
from all ongoing connectionsin advance. In areal system,
though, the different movies may be distributed over severa
servers and, in addtion, there may be more than one VoD
service provider who operate in the same area. In [5] ade-
centralized version is introduced which alows prefetching
when there are many distributed serversin the system. Each
server keeps a send window which is the number of frames
that it is alowed to send in one frame period. The vaue of
the send window is increased when the sent frames are ac-
knowledged by the user, and it is set to onewhen frames are
dropped. When a frame is dropped, it will be retransmitted
from the server if the corresponding client has one or more
frames buffered a the STB. This scheme works well com-
pared to other VBR schemes, but itsloss probability ismore
than two orders of magnitude bigger than JSQ prefetching
for the same buffer size and link utilization, since prefetch-
ing is performed for each connection independently of the
others. In addition, since there is no coordination between
the different servers, thisprotocol will result in unnecessary
retransmission of frames which will increase the traffic load
of the backbone network.

In this paper, we introduce a VBR transmission scheme
that utilizes smoothing along with prefetching to reduce the
bandwidth requirements of MPEG traffic. The ideais to
first smooth the MPEG traces over afew group of pictures
(GOPs) and then use a centra controller to coordinate the
transmission of frames from al the servers. This coordi-
nation is possible since the traffic from each connection
(video) is constant for a period of time equal to the number
of smoothed GOPs (one GOP isnormally 12 or 15 frames).
It should be noted that smoothing is not performed in or-
der to reduce the peak rate of the video sequence, as in
the typica video smoothing schemes. In our protocol we
smooth each video sequence so as to keep the bit-rate of
each connection constant for a small period of time. In or-
der to evaluate the effectiveness of our scheme, we used 10
real MPEG-1 traces [6] with different contents (e.g. music,
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Figure 1. The VoD network architecture.

movie, news) for our simulations. We compared our pro-
posed scheme with JSQ prefetching and the resultsindicate
that our scheme performsamost aswell as JSQ prefetching
even though it is implemented in a system with distributed
servers.

Therest of the paper isorganized asfollows. In Section 2
we describe the VoD network architecture that is considered
throughout this paper, while in Section 3 we introduce our
proposed scheme. Section 4 presents our numerical results,
and Section 5 concludes our work.

2. The VoD network architecture

Let us consider the VoD network architecture of Fig.
1. It consists of the video servers, the backbone network,
the access nodes, the access networks, and the users' STBs
with the prefetch buffers. All the users are connected to
the backbone network through the access network which
may, for example, be the existing cable TV network, the
telephone network or a wireless network. Multiple access
networks will be connected to the backbone network. In
order to maximize the number of users in the system, we
should find a way to maximize the number of users served
simultaneously in each access network (assuming of course
that the video servers and the backbone network can sup-
port all of them). Therefore, in this paper we will focus
on one such access network. We assume that the backbone
network isan ATM network, and that the maximum capac-
ity that can be accommodated by the access network is C'
cells/sec. Our scheme, however, is applicable to any type
of packet-switched network. We can, therefore, consider
that there is one common transmission link with capacity
C', connecting al usersto the access node.

When a user initiates a request for a particular movie,
the access node will decide whether to accept the request
or not. We are currently working on the development of a
call admission control algorithm for video prefetching, but
in this paper we will not perform admission control. The
simulation experiments will be planned to achieve a 90%
utilization on the common transmission link. If the request
is accepted, the access node will forward the request to the
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Figure 2. Smoothing of one GOP at the video
server.

server, and if the server can accommodate the request the
connection will be established. At this paint, the server will
start retrieving the MPEG frames from the disks. These
frames will be sent to the access node through the ATM
network, and then the access node will forward them to the
user’s STB for display. We assume that the access nodeis
bufferless, that is, al cells that exceed the link capacity C'
are dropped.

Before going any further, we should describe briefly the
structure and the types of frames of an MPEG sequence.
There are three types of frames generated by an MPEG
encoder: intraframes (/), predictive frames (P), and bi-
directional frames (B) [1]. The I-frames are coded inde-
pendently of other frames, and for that reason they are used
for random access. The P-frames are coded with respect to
aprevious I/ P-frame, so in general they are smaller than
I-frames. Findly, the B-frames are coded with respect to
aprevious and a future I/ P-frame. B-frames are usualy
much smaller than 7 or P-frames. A number of frames,
typicaly 12 or 15, are grouped together to form a group
of pictures (GOP). The structure of the GOP has a regular
pattern, for example, IBBPBBPBBPBB. The GOP is
defined by two parameters: the number of frames, ¢, and the
number of B-frames between two consecutive 7/ P-frames,
[ — 1. Intheabove example, ¢ = 12 and [ = 3.

In our scheme we smooth thetraffic from & GOPs before
sending it tothe ATM network. Soin every k - ¢ consecutive
frame periods, the same amount of data, which is equa to
the average of the k£ - ¢ frames, is sent from the server to
the ATM network. Thisisillustrated in Fig. 2, for the case
wherek = 1, ¢ = 12 and [ = 3. From this point on when
we say frame we will refer to a smoothed frame and not
to awhole frame of the MPEG sequence. Since we smooth
k - ¢ MPEG frames a each time, we should aways have
some frames buffered at the STB in order to avoid playback
starvation. The I-frame of each GOP, for example, will be
sent in parts during a few frame periods, and at the point
of its display a few frames will be removed from the STB
buffer. For this reason, we aso need to preload the buffer
with a few frames prior to the beginning of the playback
(start-up latency). In order to guarantee no playback starva
tion, we should always keep k - ¢ framesin the STB huffer.

However, the structure of the GOP alows us to keep less
frames buffered at the STB. Thisis possible since every I
or P-frame isfollowed by | — 1 B-frames which are very
small and may beincluded in less than one frame. So when
the B-frames are displayed, the level of the buffer is in-
creased rather than decreased, sincevideo dataisarriving at
the buffer faster than it isbeing retrieved (the reverse occurs
when an I-frame is displayed).

3. The proposed scheme

We will now present in detail our proposed prefetching
protocol. It isbased on the idea of a centra controller that
coordinates the transmission of frames from the different
servers. The access node (Fig. 1) will be thelocation of the
central controller, since al the video servers are connected
to it through the backbone network. This coordination is
possi bl e because of the smoothing that resultsin a constant
level of traffic from each connection for a few frame peri-
ods. We will now introduce the following variabl es associ-
ated with each video connection.

e k: number of GOPs to be smoothed.
o /i framerate (eg. 24 frames/sec).
eq. GOPsize

e m;. minimum number of frames that should be buffered
at the STB at dl times, in order to avoid playback
starvation for customer 7 (as explained in the previ-
ous Section).

e p;.  index showing which frame of the smoothed GOPis
currently being transmitted to customer :. It takes
thevalues1,2,.. .,k q.

e b;: current buffer leve for customer .

e B;: maximum buffer size for customer 7. For ssimplicity
we assume that all customers have the same buffer
size.

e 5;. number of frames buffered for customer .

e a;: number of prefetched frames for customer i. It is
equal to max{s; — m;,0}.

e r;:  maximum number of frames that can be sent in the
following frame period to customer .

e l;:  number of frames to be sent in the following frame
period to customer .

o t;: sizeof theframetransmitted to customer ¢ in the cur-
rent frame period.
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Figure 3. Time slot synchronization between
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Let us cal atime slotthe time period corresponding to
one frame which isequal to 1/ f seconds. During thistime
dot, the central controller will transmit the frames from the
different servers to the clients, until the link capacity C' is
reached. If some frames can not be transmitted in the cur-
rent time dot, they will be discarded. A discarded frame
will be retransmitted from the server if the corresponding
connection has a; > 1, which means that this connection
has some frames buffered at the STB.

Since the frames will be transmitted from the controller
tothe clients according to the controller’ sown discretetime
dots, there must be some kind of synchronization between
all servers and the controller. We will assume that the round
trip propagation and processing delay between any server
and the access node is less than atime slot (i.e. 1/f sec-
onds). The controller will coordinate the transmission of
frames from all the video servers by sending control mes-
sages to them. The control messages will indicate which
frames should be sent for each connection. All the control
messages will be sent in the beginning of the current time
dot, say n (Fig. 3) and, therefore, the frames from all con-
nectionswill arrive prior to the beginning of timedot n+ 1.
They will, then, be transmitted to the clients within the du-
ration of time dot n + 1. Thiswill dlow the controller to
know the exact frame sizes to be transmitted in dot n + 2
(because of the GOP smoothing), and based on this infor-
mation it will send the appropriate control messages at the
beginning of slot n+1. Note, however, that thisdelay bound
does not have to be tight. Even if some frames arrive after
the beginning of timedot »n + 1, and the controller will not
have the exact frame sizes of the frames to be transmitted in
dotn+1, the prefetching a gorithm can use the correspond-
ing information from the previous transmission (slot n) as
an estimate. Due to the high correlation between the frame
sizes of consecutive GOPs, theimpact of thisapproximation
on the performance of our scheme will be insignificant.

Time slof: _n n+1n+2 n+3 n+4

Video1| 112|3|4[5|6|7[8]9]10[11112
Video2| 7| 8| 9Q|10[11{12{ 12| 3|4 6
Video 3| 10| 11|12/ 12| 3[4|5|6|7|8|9
Video 4|12/ 1|12|3|4(5|6|7]8]9]1011
Video5| 4| 5| 6|78 9|10[11]12/ 123

Figure 4. Transmission schedule without
prefetching.

3.1. The prefetching algorithm

Let us consider the transmission schedule of five videos
shown in Fig. 4 where we assume that we smooth one GOP
(k = 1) with ¢ = 12, prior to the transmission. This cor-
responds to the frames that would be transmitted from the
access node to the customers if no coordination took place.
The numbers in each box are the p;’s for the different con-
nections. Therefore, in time slot n, the first frame of the
smoothed GOP would be transmitted to customer 1, the sev-
enth frame to customer 2, and so on. By the beginning of
dot n the controller will aready know the frame sizes for
all five connections, and it will use thisinformation to coor-
dinate the transmission of frames from the video servers for
thefollowing time slot.

Sincewe want al connectionsto have similar number of
prefetched frames, the controller will try to prefetch frames
from all connectionsin order of ascending values of a; (as
inthe JSQ prefetching protocol). Let usassume for simplic-
ity that al connectionsin Fig. 4 have a; = 0. The controller
will first try to prefetch one frame from connection 1. Since
thetransmission will takeplacein timeslot n + 1, the max-
imum number of frames that can be sent for connection 1is
11. Inthegenera case, the maximum number of framesthat
can be sent for one connection is»; = max{k - ¢ — p;, 1},
since these are the only frames for which we know their ex-
act size. Note that in the case where p; = k - ¢ the server
will only be alowed to send one frame, since the size of
the next k - ¢ cellsis not known until the first one of them
arrives at the controller. Let us cal W the estimate of the
amount of traffic that will be sent to the access nodein time
dot n + 1 (initially W = 0). The number of frames to be
sent for each connection is set initidly to I; = 0. There
are two factors that can limit the number of frames to be
sent: the maximum buffer size B; and the link capacity C
(in cells/frame period). The controller will check whether
the following two conditionshold:

bi+ (Li4+1)-t; < B; 1

Wt <C )



Equation (1) tries to avoid buffer overflow while equa
tion (2) checks whether the additional frame will keep the
vaue of the estimate of the total traffic in time slot n + 1
below the link capacity. In equation (1), we do not consider
the MPEG frame that will be removed from the buffer dur-
ingtimeslot n + 1, since itis not possiblefor the controller
to have this information at the time when the prefetching
algorithm is executed. We assume, however, that the con-
troller knows the buffer level b; for each connection (this
can be done with control messages from the STBs). If both
conditions hold for connection 1, the controller will update
the values of 11, a1, 1, and W, and it will continue with
connection 2. The algorithmwill stop when thereisno con-
nection with r; > 0 that satisfies both (1) and (2). When
the algorithm terminates, the controller will check whether
thereisany connection with a; = 0 for which the algorithm
returned the value [; = 0. If such a connection is found,
{; will be set to one, since the next frame has to be trans-
mitted in order to meet its deadline. When the vaues of
all /;’s have been updated, the controller will send the con-
trol messages to the corresponding servers at the beginning
of time slot n. The control messages will be sent only for
those connections with /; > 0. The complete prefetching
algorithmis presented in Fig. 5.

3.2. Transmission of frames

The frames are transmitted from the access node to the
clients based on a non-preemptive priority scheme. Con-
nections with smaller values of a; have priority over those
with bigger values of a;. The non-preemptive scheme will
alow al the frames from one connection to be transmitted,
once it has started the transmission. The value of «; will be
updated by the controller as soon as it receives the frames
from al connections, through the following equation

a; = max{a; + fi — 1,0} )

where f; is the number of frames that were successfully
transmitted to customer ;. Since al the frames will arrive
by the beginning of the time slot, the controller can easily
calculate, based on the prioritiesand the frame sizes, which
frames will be transmitted in the current time dlot.

As we mentioned earlier, the value of W used in the
prefetching algorithm is an estimate of the total traffic at
the time slot where prefetching will occur. However, many
connectionswill probably have frames from different GOPs
being transmitted (i.e. the first frame of the next GOP), so
the actual amount of traffic in thistime ot might be higher
or lower than 1¥/. If it is higher, then some frames will have
to be dropped since W will probably be very close to the
link capacity. The transmission order of our protocol will
try to drop frames from those connectionsthat have a; > 1.
If a frame from such connection is dropped, the controller

procedure prefetch()
begin

W .= 0;

for all connections ¢ do

begin
ri:=max{k q—p;,1}:
li = 0;
al = ag;
¢, :—lalse;
end;

while exists ¢ with ¢;=false do
begin
find connection i with minimum af;
if {(1)=true and (2)=true and r; > 0} do
begin
L=1L+1;
ab=al+1;
ri=r; —1;
W:=W+t;
end;
else
e; =true;
end;
end.

Figure 5. The prefetching algorithm.

will indicate to the corresponding server, through the next
control message, to retransmit the frame.

To conclude the presentation of our protocol, we should
describe briefly the operation of the server. Each server
remains idle until it receives a control message. When it
receives the control message, it will transmit the indicated
frame(s). In order to avoid buffer overflow, the server will
check the following condition before sending thefirst frame
of asmoothed GOP (i.e. the frame with p; = 1).

This is necessary, since the value of ¢; that was used in
equation (1) was from the previous smoothed GOP, and its
current value could be much higher. If condition (4) holds
it will send the frame, otherwise it will remain idle. The
buffer level for each connection can be included in the con-
trol message, aswe have assumed that the controller hasthis
information.

4. Numerical results

In order to evaluate the effectiveness of our scheme, we
used 10 real MPEG-1 traces that were downl oaded from[6].
They covered awide variety of contents, including movies,
news, talk shows, sports, music, and cartoons. All thetraces
were captured at f = 24 fps and the GOP parameters were
g = 12 and ! = 3. The total number of frames for each



m; (frames)

Sequence Mean (bits) | Pesk/Mean | k=1 | k =3
Asterix 22,348 6.6 8 15
ATP Tennis 21,890 8.7 9 18
Mr Bean 17,647 13 8 13
James Bond: Goldfinger 24,308 101 6 11
Jurassic Park 13,078 9.1 9 14
Mtv 19,780 12.7 9 15
News 15,358 124 10 18
Race 30,749 6.6 6 13
Soccer 25,110 7.6 7 16
Talk show 14,537 7.3 7 12

Table 1. Characteristics of the MPEG-1 compressed video sequences.

trace was 40,000 which is approximately 30 minutesin du-
ration. We assumed that the common link of Fig. 1isa
typica ATM link with capacity 45 Mbps. However, in all
of the calculations we used ATM cdlls instead of bits, so
the total available bandwidth was assumed to be C' = 4422
cells/frame period. Finaly, we assumed that al 48 bytes
of the ATM payload are used for the transmission of the
MPEG data. In Table 1 we have summarized some char-
acteristics of the different MPEG traces. The vaue of m;
(which isthe start-up latency) for each video was easily ob-
tained by simulation.

In each experiment we used a mixture of traces that re-
sulted in a 90% network utilization, that is, the summation
of the individua average bit-rates was approximately 90%
of the link capacity (45Mbps). This mixture consisted of 7
Asterixtraces, 8 Tennistraces, 10 Mr Beantraces, 7 James
Bondtraces, 13 Jurassic Parkraces, 8 Mtv traces, 11 News
traces, 5 Racetraces, 7 Soccertraces, and 12 Talk Show
traces, for atotal of 88 connections. The experiments were
performed as follows. For each connection we chose aran-
dom starting point in the movie (the beginning of a GOP),
and we started by transmitting one frame from each con-
nection, with al connections having b; = 0. From the next
time dlot the prefetching agorithm was used to coordinate
the transmissions until the end of the experiment. When a
connection displayed the last MPEG frame of the movie,
the same movie started again from a new random starting
point (with ; = 0). But from this point on, we used ap-
propriate wrap around such that each connection displayed
exactly 40,000 frames. We simulated 1 x 10® frame periods
for several buffer sizes, ranging from 256 to 896 KBytesin
increments of 128 KBytes. Before running the experiments
we stored the random starting points for al connections,
for the whole duration of the experiment, in afile so as to
ensure afair comparison between the different schemes. Fi-
nally, we counted thetime sl otsthat experienced | osses after

aninitial period of 10,000 frames (to allow the bufferstofill
up).

In Fig. 6 we have plotted the loss probability as a func-
tion of the buffer size, for the JSQ prefetching protocol and
our proposed scheme. We simulated two versions of our
protocol for thecasesof k¥ = 1 and k¥ = 3. Itisclear that
the performance of our protocol isvery similar to the perfor-
mance of the JSQ prefetching protocol. For k = 1, the loss
probability of our scheme is only one order of magnitude
bigger than the loss probability of the JSQ prefetching pro-
tocol. In fact, our protocol has the same loss probability as
the JSQ prefetching protocol, with a buffer size increment
of only 128 KBytes. JSQ prefetching had zero loss for a
buffer size of 796 KBytes while, for & = 1, our scheme
had zero loss for a buffer size of 896 KBytes (in Fig. 6,
however, we used thevalue of 1 x 10~ '° to represent zero).
The decentralized prefetching protocol described in [5] had
a loss probability of more than two orders of magnitude
bigger than the JSQ prefetching protocol and, in addition,
its loss probability decreased very sowly with increasing
buffer size. The performance of our scheme for k = 3, is
dlightly worse than the one for £ = 1. One would expect
that smoothing three GOPs would result in a better perfor-
mance, since the prefetching agorithm would be more ef-
ficient as the traffic is constant for longer periods of time.
However, the disadvantage of using & = 3 isthat we need
a larger buffer size to hold the m; frames (Table 1) at al
times, so the performance does not improve compared to
the case where k = 1. It should be noted that in our exper-
iments we simulated a system which does not support user
interactions (e.g. jump forward, fast forward). These inter-
actions will degrade the performance of the system, since
all the prefetched frames of the user issuing an interaction
request will have to be discarded. We are currently devel-
oping an anaytical model to investigate the performance of
distributed video prefetching in the environment of an inter-
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Figure 6. Loss probability for different buffer
sizes.

active VoD system.

In Fig. 7 the buffer level for one Jurassic Parkconnec-
tionisdepicted for thecase of £ = 1, and for abuffer size of
768 KBytes. It showsthebuffer level for thisconnection for
aperiod of 40,000 time dots, starting from the beginning of
the experiment. Each downward spikeinthisfigureisanin-
dication of heavy traffic which resultsin the decrease of the
buffer level, since no frames are sent to the particular con-
nection for a few time dots. Since we start the experiment
withall thebuffers being empty, it takes many timeslotsun-
til the buffer level reaches itsmaximum size. When the last
MPEG frame for that connection is displayed (around time
slot 17,000) the buffer level dropsto zero, and the connec-
tion starts all over again. In this case, however, the buffer
level reaches its maximum size amost instantaneously as
this connection has a; = 0 (while the other connections
have a; >> 0) and is given priority by the prefetching ago-
rithm. As aresult, even though our scheme requires a start-
up latency of around 10 frames, the actual latency will only
beacoupleof frames. We can, therefore, claim that our pro-
posed protocol hasall the advantages of the JSQ prefetching
protocol: it achieves very high network utilization (90%), it
facilitates user interactions(e.g. tempora jumps), and it has
minimal start-up latency.

Finally, in Fig. 8 we have plotted the number of connec-
tions that will retransmit some frames as a result of excess
traffic a the access node. These retransmissions are caused
by the incorrect estimation of 1V in equation (2). It isobvi-
ousthat these retransmissions are very rare, and only afew
connections (out of the total 88) have their frames dropped
at any instant. The decentralized protocol proposed in [5]
offers no coordination between the different servers, and
it will lead to a lot more retransmissions, thus increasing
the traffic load of the backbone network. In addition, the
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transmission of frames (k = 1).

send window used in[5] has aminimum value of onewhich
means that al servers send at least one frame at each frame
period. But at such high network utilization (90%) thiswill
certainly cause many retransmissions. In our scheme, how-
ever, no frames will be transmitted for those connections
that the prefetching a gorithm returned the value l; = 0.

5. Conclusions

We have presented a new scheme for the effective trans-
mission of MPEG-compressed video traffic over ATM net-
works, for a VoD system with distributed video servers. It
is based on the idea of prefetching that was originally pro-
posed in [4,5], and was shown to have a great performance
improvement in terms of network utilization compared to



traditional video smoothing schemes. Our motivation was
the fact that these protocols are efficient only when there
is one centralized server in the system that serves al the
clients over a common transmission link. In a distributed
environment, thereisalarge degradation in the performance
of the prefetching protocols. In our scheme, we used a
central controller to coordinate the transmission of future
frames from distributed video servers. To make this pos-
sible, the MPEG traffic is first smoothed over a number of
GOPs before entering the network. Therefore, the central
controller is able to coordinate future transmissions, as the
traffic will be constant over a number of frame periods.

We compared our scheme with the centraized JSQ
prefetching protocol, and the experimenta results showed
that our scheme had very similar performance. The loss
probability of our protocol was one order of magnitudebig-
ger than JSQ prefetching for the same buffer size and net-
work utilization. In addition, with only a small buffer size
increment, we could get the same loss probability as the
JSQ prefetching protocol. We have shown that our proto-
col offers the same advantages as JSQ prefetching: high
network utilization, minimal start-up latency, and immedi-
ate response to user interactions. However, our scheme has
the advantage that it is implemented in a system with dis-
tributed video servers. This will alow the distribution of
different movies to severa servers, and also alow multiple
VoD service providersto share the same network.
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