
Smoothing and Prefetching Video from Distributed Servers

Spiridon Bakiras and Victor O.K. Li
The University of Hong Kong

Department of Electrical & Electronic Engineering
Pokfulam Road

Hong Kong
email: fsbakiras,vlig@eee.hku.hk

Abstract

Video prefetching has been proposed recently for the
transmission of variable-bit-rate (VBR) video over a packet-
switched network. The objective of these protocols is to
prefetch future frames to be stored at the customer’s set-
top box (STB) in periods of low link utilization. Experi-
mental results have shown that video prefetching is very ef-
fective and it achieves much higher network utilization (i.e.
larger number of simultaneous connections) than the tradi-
tional video smoothing schemes. Video prefetching, how-
ever, can only be efficiently implemented when there is one
centralized server that serves the different customers over a
common link. In a distributed environment there is a large
degradation in its performance. In this paper we introduce
a new scheme that utilizes smoothing along with prefetch-
ing, to overcome the problem of distributed prefetching. We
will show that our scheme performs almost as well as the
centralized prefetching protocol even though it is imple-
mented in a distributed environment.

1. Introduction

The development of high-speed networks and the
tremendous progress made on compression techniques have
made applications like Video-on-Demand (VoD) a reality.
A VoD system aims to provide video rental services to the
customer, with the advantage that the customer does not
have to leave home. In a true VoD system, the user will
be able to select any movie from a video server and view it
at any time. In addition, it will allow the user to perform
any VCR-like function such as pause, fast forward, jump
forward [2].

For a VoD system to be cost effective, many issues have
to be considered. One of the most important issues when
designing a VoD network is the allocation of bandwidth to
the various video sequences. Video is typically compressed

with the Motion Picture Experts Group (MPEG) format.
Since MPEG video traffic is very bursty and exhibits large
variability in the output bit-rate, researchers have tried to
find effective methods to reduce this burstiness. Most of the
research reported in the literature focuses on the use of a
buffer in the customer’s set-top box (STB) to smooth the
video traffic and allow for constant-bit-rate (CBR) trans-
mission [3, 7, 8]. In [7] an optimal smoothing algorithm
is given which can reduce the peak rate by 75-87%, using a
1MByte buffer at the STB. The optimality refers to the re-
duction of the rate variability of the transmission schedule.
The basic idea is to run the smoothing algorithm on every
stored video, and get an optimal transmission schedule (i.e.
different CBR transmission rates at different times) which
is then used for the transmission of the video. This scheme
can provide deterministic Quality of Service (QoS) guaran-
tees (in terms of loss probability) if the bandwidth is allo-
cated to satisfy the largest rate of the transmission sched-
ule. In [8] the optimal smoothing algorithm is considered
together with statistical multiplexing. The authors use the
same algorithm, and they investigate its performance when
some small loss is allowed. This scheme will provide only
statistical QoS guarantees, but it increases dramatically the
system utilization.

Recently, some work has also been done based on the
idea of prefetching [4, 5]. These protocols use variable-
bit-rate (VBR) transmission and can only provide statistical
QoS guarantees. In [4] a protocol called Join-the-Shortest-
Queue (JSQ) prefetching is presented which has many ad-
vantages compared to the other transmission schemes in the
literature. It achieves very high network utilization, facil-
itates user interactions, and has minimal start-up latency.
Their experimental results showed that JSQ prefetching had
a loss probability several orders of magnitude smaller than
optimal smoothing [8] for the same buffer size and network
utilization. The main idea is to put a buffer in the cus-
tomer’s STB which can be used to prefetch future frames
when the transmission link is under utilized. The frames are

prefetched in a way that all the ongoing connections have
similar number of prefetched frames so as to minimize the
loss probability. This large performance gap between opti-
mal smoothing and JSQ prefetching is due to the different
usage of the STB buffer [4]. In a smoothing scheme the
buffer is used to reduce the peak rate and the rate variability
of the video sequence, and in some time periods it will be
almost empty. The idea of video prefetching, though, is to
keep the STB buffers as full as possible at all times, so that
in periods where the aggregate bit-rate exceeds the link ca-
pacity the user will not experience playback starvation, as
there will be some frames buffered at the STB.

JSQ prefetching, however, has a major drawback: it can
only be implemented when there is one centralized server
which serves different users over a common link, since the
prefetching algorithm has to know the exact frame sizes
from all ongoing connections in advance. In a real system,
though, the different movies may be distributed over several
servers and, in addtion, there may be more than one VoD
service provider who operate in the same area. In [5] a de-
centralized version is introduced which allows prefetching
when there are many distributed servers in the system. Each
server keeps a send window which is the number of frames
that it is allowed to send in one frame period. The value of
the send window is increased when the sent frames are ac-
knowledged by the user, and it is set to one when frames are
dropped. When a frame is dropped, it will be retransmitted
from the server if the corresponding client has one or more
frames buffered at the STB. This scheme works well com-
pared to other VBR schemes, but its loss probability is more
than two orders of magnitude bigger than JSQ prefetching
for the same buffer size and link utilization, since prefetch-
ing is performed for each connection independently of the
others. In addition, since there is no coordination between
the different servers, this protocol will result in unnecessary
retransmission of frames which will increase the traffic load
of the backbone network.

In this paper, we introduce a VBR transmission scheme
that utilizes smoothing along with prefetching to reduce the
bandwidth requirements of MPEG traffic. The idea is to
first smooth the MPEG traces over a few group of pictures
(GOPs) and then use a central controller to coordinate the
transmission of frames from all the servers. This coordi-
nation is possible since the traffic from each connection
(video) is constant for a period of time equal to the number
of smoothed GOPs (one GOP is normally 12 or 15 frames).
It should be noted that smoothing is not performed in or-
der to reduce the peak rate of the video sequence, as in
the typical video smoothing schemes. In our protocol we
smooth each video sequence so as to keep the bit-rate of
each connection constant for a small period of time. In or-
der to evaluate the effectiveness of our scheme, we used 10
real MPEG-1 traces [6] with different contents (e.g. music,

Figure 1. The VoD network architecture.

movie, news) for our simulations. We compared our pro-
posed scheme with JSQ prefetching and the results indicate
that our scheme performs almost as well as JSQ prefetching
even though it is implemented in a system with distributed
servers.

The rest of the paper is organized as follows. In Section 2
we describe the VoD network architecture that is considered
throughout this paper, while in Section 3 we introduce our
proposed scheme. Section 4 presents our numerical results,
and Section 5 concludes our work.

2. The VoD network architecture

Let us consider the VoD network architecture of Fig.
1. It consists of the video servers, the backbone network,
the access nodes, the access networks, and the users’ STBs
with the prefetch buffers. All the users are connected to
the backbone network through the access network which
may, for example, be the existing cable TV network, the
telephone network or a wireless network. Multiple access
networks will be connected to the backbone network. In
order to maximize the number of users in the system, we
should find a way to maximize the number of users served
simultaneously in each access network (assuming of course
that the video servers and the backbone network can sup-
port all of them). Therefore, in this paper we will focus
on one such access network. We assume that the backbone
network is an ATM network, and that the maximum capac-
ity that can be accommodated by the access network is C
cells/sec. Our scheme, however, is applicable to any type
of packet-switched network. We can, therefore, consider
that there is one common transmission link with capacity
C, connecting all users to the access node.

When a user initiates a request for a particular movie,
the access node will decide whether to accept the request
or not. We are currently working on the development of a
call admission control algorithm for video prefetching, but
in this paper we will not perform admission control. The
simulation experiments will be planned to achieve a 90%
utilization on the common transmission link. If the request
is accepted, the access node will forward the request to the

Figure 2. Smoothing of one GOP at the video
server.

server, and if the server can accommodate the request the
connection will be established. At this point, the server will
start retrieving the MPEG frames from the disks. These
frames will be sent to the access node through the ATM
network, and then the access node will forward them to the
user’s STB for display. We assume that the access node is
bufferless, that is, all cells that exceed the link capacity C

are dropped.

Before going any further, we should describe briefly the
structure and the types of frames of an MPEG sequence.
There are three types of frames generated by an MPEG
encoder: intraframes (I), predictive frames (P), and bi-
directional frames (B) [1]. The I-frames are coded inde-
pendently of other frames, and for that reason they are used
for random access. The P -frames are coded with respect to
a previous I=P -frame, so in general they are smaller than
I-frames. Finally, the B-frames are coded with respect to
a previous and a future I=P -frame. B-frames are usually
much smaller than I or P -frames. A number of frames,
typically 12 or 15, are grouped together to form a group
of pictures (GOP). The structure of the GOP has a regular
pattern, for example, IBBPBBPBBPBB. The GOP is
defined by two parameters: the number of frames, q, and the
number of B-frames between two consecutive I=P -frames,
l � 1. In the above example, q = 12 and l = 3.

In our scheme we smooth the traffic from k GOPs before
sending it to the ATM network. So in every k �q consecutive
frame periods, the same amount of data, which is equal to
the average of the k � q frames, is sent from the server to
the ATM network. This is illustrated in Fig. 2, for the case
where k = 1, q = 12 and l = 3. From this point on when
we say frame, we will refer to a smoothed frame and not
to a whole frame of the MPEG sequence. Since we smooth
k � q MPEG frames at each time, we should always have
some frames buffered at the STB in order to avoid playback
starvation. The I-frame of each GOP, for example, will be
sent in parts during a few frame periods, and at the point
of its display a few frames will be removed from the STB
buffer. For this reason, we also need to preload the buffer
with a few frames prior to the beginning of the playback
(start-up latency). In order to guarantee no playback starva-
tion, we should always keep k � q frames in the STB buffer.

However, the structure of the GOP allows us to keep less
frames buffered at the STB. This is possible since every I

or P -frame is followed by l � 1 B-frames which are very
small and may be included in less than one frame. So when
the B-frames are displayed, the level of the buffer is in-
creased rather than decreased, since video data is arriving at
the buffer faster than it is being retrieved (the reverse occurs
when an I-frame is displayed).

3. The proposed scheme

We will now present in detail our proposed prefetching
protocol. It is based on the idea of a central controller that
coordinates the transmission of frames from the different
servers. The access node (Fig. 1) will be the location of the
central controller, since all the video servers are connected
to it through the backbone network. This coordination is
possible because of the smoothing that results in a constant
level of traffic from each connection for a few frame peri-
ods. We will now introduce the following variables associ-
ated with each video connection.

� k: number of GOPs to be smoothed.

� f : frame rate (e.g. 24 frames/sec).

� q: GOP size.

�mi: minimum number of frames that should be buffered
at the STB at all times, in order to avoid playback
starvation for customer i (as explained in the previ-
ous Section).

� pi: index showing which frame of the smoothed GOP is
currently being transmitted to customer i. It takes
the values 1, 2 ,: : :, k � q.

� bi: current buffer level for customer i.

� Bi: maximum buffer size for customer i. For simplicity
we assume that all customers have the same buffer
size.

� si: number of frames buffered for customer i.

� ai: number of prefetched frames for customer i. It is
equal to maxfsi �mi; 0g.

� ri: maximum number of frames that can be sent in the
following frame period to customer i.

� li: number of frames to be sent in the following frame
period to customer i.

� ti: size of the frame transmitted to customer i in the cur-
rent frame period.

Access Node Server

Time

Control message

Frame(s)

Ti
m

e
sl

o
ts

n

n+1

Figure 3. Time slot synchronization between
a server and the central controller.

Let us call a time slotthe time period corresponding to
one frame which is equal to 1=f seconds. During this time
slot, the central controller will transmit the frames from the
different servers to the clients, until the link capacity C is
reached. If some frames can not be transmitted in the cur-
rent time slot, they will be discarded. A discarded frame
will be retransmitted from the server if the corresponding
connection has ai � 1, which means that this connection
has some frames buffered at the STB.

Since the frames will be transmitted from the controller
to the clients according to the controller’s own discrete time
slots, there must be some kind of synchronization between
all servers and the controller. We will assume that the round
trip propagation and processing delay between any server
and the access node is less than a time slot (i.e. 1=f sec-
onds). The controller will coordinate the transmission of
frames from all the video servers by sending control mes-
sages to them. The control messages will indicate which
frames should be sent for each connection. All the control
messages will be sent in the beginning of the current time
slot, say n (Fig. 3) and, therefore, the frames from all con-
nections will arrive prior to the beginning of time slot n+1.
They will, then, be transmitted to the clients within the du-
ration of time slot n + 1. This will allow the controller to
know the exact frame sizes to be transmitted in slot n + 2

(because of the GOP smoothing), and based on this infor-
mation it will send the appropriate control messages at the
beginning of slotn+1. Note, however, that this delay bound
does not have to be tight. Even if some frames arrive after
the beginning of time slot n+ 1, and the controller will not
have the exact frame sizes of the frames to be transmitted in
slotn+1, the prefetching algorithm can use the correspond-
ing information from the previous transmission (slot n) as
an estimate. Due to the high correlation between the frame
sizes of consecutive GOPs, the impact of this approximation
on the performance of our scheme will be insignificant.

Figure 4. Transmission schedule without
prefetching.

3.1. The prefetching algorithm

Let us consider the transmission schedule of five videos
shown in Fig. 4 where we assume that we smooth one GOP
(k = 1) with q = 12, prior to the transmission. This cor-
responds to the frames that would be transmitted from the
access node to the customers if no coordination took place.
The numbers in each box are the pi’s for the different con-
nections. Therefore, in time slot n, the first frame of the
smoothed GOP would be transmitted to customer 1, the sev-
enth frame to customer 2, and so on. By the beginning of
slot n the controller will already know the frame sizes for
all five connections, and it will use this information to coor-
dinate the transmission of frames from the video servers for
the following time slot.

Since we want all connections to have similar number of
prefetched frames, the controller will try to prefetch frames
from all connections in order of ascending values of ai (as
in the JSQ prefetching protocol). Let us assume for simplic-
ity that all connections in Fig. 4 have ai = 0. The controller
will first try to prefetch one frame from connection 1. Since
the transmission will take place in time slot n+1, the max-
imum number of frames that can be sent for connection 1 is
11. In the general case, the maximum number of frames that
can be sent for one connection is ri = maxfk � q � pi; 1g,
since these are the only frames for which we know their ex-
act size. Note that in the case where pi = k � q the server
will only be allowed to send one frame, since the size of
the next k � q cells is not known until the first one of them
arrives at the controller. Let us call W the estimate of the
amount of traffic that will be sent to the access node in time
slot n + 1 (initially W = 0). The number of frames to be
sent for each connection is set initially to li = 0. There
are two factors that can limit the number of frames to be
sent: the maximum buffer size Bi and the link capacity C

(in cells/frame period). The controller will check whether
the following two conditions hold:

bi + (li + 1) � ti � Bi (1)

W + ti � C (2)

Equation (1) tries to avoid buffer overflow while equa-
tion (2) checks whether the additional frame will keep the
value of the estimate of the total traffic in time slot n + 1

below the link capacity. In equation (1), we do not consider
the MPEG frame that will be removed from the buffer dur-
ing time slot n+1, since it is not possible for the controller
to have this information at the time when the prefetching
algorithm is executed. We assume, however, that the con-
troller knows the buffer level bi for each connection (this
can be done with control messages from the STBs). If both
conditions hold for connection 1, the controller will update
the values of l1, a1, r1, and W , and it will continue with
connection 2. The algorithm will stop when there is no con-
nection with ri > 0 that satisfies both (1) and (2). When
the algorithm terminates, the controller will check whether
there is any connection with ai = 0 for which the algorithm
returned the value li = 0. If such a connection is found,
li will be set to one, since the next frame has to be trans-
mitted in order to meet its deadline. When the values of
all li’s have been updated, the controller will send the con-
trol messages to the corresponding servers at the beginning
of time slot n. The control messages will be sent only for
those connections with li > 0. The complete prefetching
algorithm is presented in Fig. 5.

3.2. Transmission of frames

The frames are transmitted from the access node to the
clients based on a non-preemptive priority scheme. Con-
nections with smaller values of ai have priority over those
with bigger values of ai. The non-preemptive scheme will
allow all the frames from one connection to be transmitted,
once it has started the transmission. The value of ai will be
updated by the controller as soon as it receives the frames
from all connections, through the following equation

ai = maxfai + fi � 1; 0g (3)

where fi is the number of frames that were successfully
transmitted to customer i. Since all the frames will arrive
by the beginning of the time slot, the controller can easily
calculate, based on the priorities and the frame sizes, which
frames will be transmitted in the current time slot.

As we mentioned earlier, the value of W used in the
prefetching algorithm is an estimate of the total traffic at
the time slot where prefetching will occur. However, many
connections will probably have frames from different GOPs
being transmitted (i.e. the first frame of the next GOP), so
the actual amount of traffic in this time slot might be higher
or lower than W . If it is higher, then some frames will have
to be dropped since W will probably be very close to the
link capacity. The transmission order of our protocol will
try to drop frames from those connections that have ai � 1.
If a frame from such connection is dropped, the controller

procedure prefetch()

begin

W := 0;

for all connections i do

begin

ri := maxfk � q � pi; 1g;

li := 0;

a0

i
:= ai;

ei :=false;

end;

while exists i with ei=false do

begin

�nd connection i with minimum a0

i
;

if f(1)=true and (2)=true and ri > 0g do

begin

li := li + 1;

a0

i
:= a0

i
+ 1;

ri := ri � 1;

W := W + ti;

end;

else

ei :=true;

end;

end.

Figure 5. The prefetching algorithm.

will indicate to the corresponding server, through the next
control message, to retransmit the frame.

To conclude the presentation of our protocol, we should
describe briefly the operation of the server. Each server
remains idle until it receives a control message. When it
receives the control message, it will transmit the indicated
frame(s). In order to avoid buffer overflow, the server will
check the following condition before sending the first frame
of a smoothed GOP (i.e. the frame with pi = 1).

bi + ti � Bi (4)

This is necessary, since the value of ti that was used in
equation (1) was from the previous smoothed GOP, and its
current value could be much higher. If condition (4) holds
it will send the frame, otherwise it will remain idle. The
buffer level for each connection can be included in the con-
trol message, as we have assumed that the controller has this
information.

4. Numerical results

In order to evaluate the effectiveness of our scheme, we
used 10 real MPEG-1 traces that were downloaded from [6].
They covered a wide variety of contents, including movies,
news, talk shows, sports, music, and cartoons. All the traces
were captured at f = 24 fps and the GOP parameters were
q = 12 and l = 3. The total number of frames for each

mi (frames)
Sequence Mean (bits) Peak/Mean k = 1 k = 3

Asterix 22,348 6.6 8 15
ATP Tennis 21,890 8.7 9 18

Mr Bean 17,647 13 8 13
James Bond: Goldfinger 24,308 10.1 6 11

Jurassic Park 13,078 9.1 9 14
Mtv 19,780 12.7 9 15

News 15,358 12.4 10 18
Race 30,749 6.6 6 13

Soccer 25,110 7.6 7 16
Talk show 14,537 7.3 7 12

Table 1. Characteristics of the MPEG-1 compressed video sequences.

trace was 40,000 which is approximately 30 minutes in du-
ration. We assumed that the common link of Fig. 1 is a
typical ATM link with capacity 45 Mbps. However, in all
of the calculations we used ATM cells instead of bits, so
the total available bandwidth was assumed to be C = 4422

cells/frame period. Finally, we assumed that all 48 bytes
of the ATM payload are used for the transmission of the
MPEG data. In Table 1 we have summarized some char-
acteristics of the different MPEG traces. The value of mi

(which is the start-up latency) for each video was easily ob-
tained by simulation.

In each experiment we used a mixture of traces that re-
sulted in a 90% network utilization, that is, the summation
of the individual average bit-rates was approximately 90%
of the link capacity (45Mbps). This mixture consisted of 7
Asterixtraces, 8 Tennistraces, 10 Mr Beantraces, 7 James
Bondtraces, 13 Jurassic Parktraces, 8 Mtv traces, 11 News
traces, 5 Racetraces, 7 Soccertraces, and 12 Talk Show
traces, for a total of 88 connections. The experiments were
performed as follows. For each connection we chose a ran-
dom starting point in the movie (the beginning of a GOP),
and we started by transmitting one frame from each con-
nection, with all connections having bi = 0. From the next
time slot the prefetching algorithm was used to coordinate
the transmissions until the end of the experiment. When a
connection displayed the last MPEG frame of the movie,
the same movie started again from a new random starting
point (with bi = 0). But from this point on, we used ap-
propriate wrap around such that each connection displayed
exactly 40,000 frames. We simulated 1�108 frame periods
for several buffer sizes, ranging from 256 to 896 KBytes in
increments of 128 KBytes. Before running the experiments
we stored the random starting points for all connections,
for the whole duration of the experiment, in a file so as to
ensure a fair comparison between the different schemes. Fi-
nally, we counted the time slots that experienced losses after

an initial period of 10,000 frames (to allow the buffers to fill
up).

In Fig. 6 we have plotted the loss probability as a func-
tion of the buffer size, for the JSQ prefetching protocol and
our proposed scheme. We simulated two versions of our
protocol for the cases of k = 1 and k = 3. It is clear that
the performance of our protocol is very similar to the perfor-
mance of the JSQ prefetching protocol. For k = 1, the loss
probability of our scheme is only one order of magnitude
bigger than the loss probability of the JSQ prefetching pro-
tocol. In fact, our protocol has the same loss probability as
the JSQ prefetching protocol, with a buffer size increment
of only 128 KBytes. JSQ prefetching had zero loss for a
buffer size of 796 KBytes while, for k = 1, our scheme
had zero loss for a buffer size of 896 KBytes (in Fig. 6,
however, we used the value of 1� 10�10 to represent zero).
The decentralized prefetching protocol described in [5] had
a loss probability of more than two orders of magnitude
bigger than the JSQ prefetching protocol and, in addition,
its loss probability decreased very slowly with increasing
buffer size. The performance of our scheme for k = 3, is
slightly worse than the one for k = 1. One would expect
that smoothing three GOPs would result in a better perfor-
mance, since the prefetching algorithm would be more ef-
ficient as the traffic is constant for longer periods of time.
However, the disadvantage of using k = 3 is that we need
a larger buffer size to hold the mi frames (Table 1) at all
times, so the performance does not improve compared to
the case where k = 1. It should be noted that in our exper-
iments we simulated a system which does not support user
interactions (e.g. jump forward, fast forward). These inter-
actions will degrade the performance of the system, since
all the prefetched frames of the user issuing an interaction
request will have to be discarded. We are currently devel-
oping an analytical model to investigate the performance of
distributed video prefetching in the environment of an inter-

200 300 400 500 600 700 800 900 1000
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Buffer size (KBytes)

Lo
ss

 p
ro

ba
bi

lit
y

JSQ prefetching
proposed scheme, k=1
proposed scheme, k=3

Figure 6. Loss probability for different buffer
sizes.

active VoD system.

In Fig. 7 the buffer level for one Jurassic Parkconnec-
tion is depicted for the case of k = 1, and for a buffer size of
768 KBytes. It shows the buffer level for this connection for
a period of 40,000 time slots, starting from the beginning of
the experiment. Each downward spike in this figure is an in-
dication of heavy traffic which results in the decrease of the
buffer level, since no frames are sent to the particular con-
nection for a few time slots. Since we start the experiment
with all the buffers being empty, it takes many time slots un-
til the buffer level reaches its maximum size. When the last
MPEG frame for that connection is displayed (around time
slot 17,000) the buffer level drops to zero, and the connec-
tion starts all over again. In this case, however, the buffer
level reaches its maximum size almost instantaneously as
this connection has ai = 0 (while the other connections
have ai � 0) and is given priority by the prefetching algo-
rithm. As a result, even though our scheme requires a start-
up latency of around 10 frames, the actual latency will only
be a couple of frames. We can, therefore, claim that our pro-
posed protocol has all the advantages of the JSQ prefetching
protocol: it achieves very high network utilization (90%), it
facilitates user interactions (e.g. temporal jumps), and it has
minimal start-up latency.

Finally, in Fig. 8 we have plotted the number of connec-
tions that will retransmit some frames as a result of excess
traffic at the access node. These retransmissions are caused
by the incorrect estimation of W in equation (2). It is obvi-
ous that these retransmissions are very rare, and only a few
connections (out of the total 88) have their frames dropped
at any instant. The decentralized protocol proposed in [5]
offers no coordination between the different servers, and
it will lead to a lot more retransmissions, thus increasing
the traffic load of the backbone network. In addition, the

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

100

200

300

400

500

600

700

800

B
uf

fe
r

le
ve

l (
K

B
yt

es
)

Time slot

Figure 7. Buffer level for one Jurassic Parkcon-
nection with Bi = 768 KBytes (k = 1).

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Time slot

N
um

be
r

of
 c

on
ne

ct
io

ns
 r

eq
ui

rin
g

re
tr

an
sm

is
si

on

Figure 8. Number of connections requiring re-
transmission of frames (k = 1).

send window used in [5] has a minimum value of one which
means that all servers send at least one frame at each frame
period. But at such high network utilization (90%) this will
certainly cause many retransmissions. In our scheme, how-
ever, no frames will be transmitted for those connections
that the prefetching algorithm returned the value li = 0.

5. Conclusions

We have presented a new scheme for the effective trans-
mission of MPEG-compressed video traffic over ATM net-
works, for a VoD system with distributed video servers. It
is based on the idea of prefetching that was originally pro-
posed in [4,5], and was shown to have a great performance
improvement in terms of network utilization compared to

traditional video smoothing schemes. Our motivation was
the fact that these protocols are efficient only when there
is one centralized server in the system that serves all the
clients over a common transmission link. In a distributed
environment, there is a large degradation in the performance
of the prefetching protocols. In our scheme, we used a
central controller to coordinate the transmission of future
frames from distributed video servers. To make this pos-
sible, the MPEG traffic is first smoothed over a number of
GOPs before entering the network. Therefore, the central
controller is able to coordinate future transmissions, as the
traffic will be constant over a number of frame periods.

We compared our scheme with the centralized JSQ
prefetching protocol, and the experimental results showed
that our scheme had very similar performance. The loss
probability of our protocol was one order of magnitude big-
ger than JSQ prefetching for the same buffer size and net-
work utilization. In addition, with only a small buffer size
increment, we could get the same loss probability as the
JSQ prefetching protocol. We have shown that our proto-
col offers the same advantages as JSQ prefetching: high
network utilization, minimal start-up latency, and immedi-
ate response to user interactions. However, our scheme has
the advantage that it is implemented in a system with dis-
tributed video servers. This will allow the distribution of
different movies to several servers, and also allow multiple
VoD service providers to share the same network.

Acknowledgements

This research is supported in part by the University of
Hong Kong Area of Fundamentals in Information Technol-
ogy, and by the State Scholarships Foundation of Greece.

References

[1] B. G. Haskell, A. Puri, and A. N. Netravali. Digital video: an
introduction to MPEG-2. Chapman & Hall, 1997.

[2] V. O. K. Li and W. J. Liao. Distributed multimedia systems.
Proc. of the IEEE, 85(7):1063–1108, July 1997.

[3] J. M. McManus and K. W. Ross. Video-on-demand over
ATM: constant-rate transmission and transport. IEEE J. Se-
lect. Areas Commun., 14(6):1087–1098, August 1996.

[4] M. Reisslein and K. W. Ross. Join-the-shortest-queue
prefetching protocol for VBR video on demand. In
Proc. IEEE International Conference on Network Protocols
(ICNP), pages 63–72, Atlanta, GA, October 1997.

[5] M. Reisslein, K. W. Ross, and V. Verillotte. A decentralized
prefetching protocol for VBR video on demand. In Proc. 3rd
European Conference on Multimedia Applications, Services
and Techniques (ECMAST), pages 388–401,Berlin, Germany,
May 1997.

[6] O. Rose. Statistical properties of MPEG video traffic and their
impact on traffic modeling in ATM systems. In Proc. 20th An-
nual Conference on Local Computer Networks, pages 397–

406, 1995. The MPEG traces were downloaded via anony-
mous ftp from ftp-info3.informatik.uni-wuerzburg.de in the
/pub/MPEG directory.

[7] J. D. Salehi, Z. L. Zhang, J. F. Kurose, and D. Towsley. Sup-
porting stored video: Reducing rate variability and end-to-end
resource requirements through optimal smoothing. In Proc.
ACM SIGMETRICS, pages 222–231, Philadelphia, PA, May
1996.

[8] Z. L. Zhang, J. F. Kurose, J. D. Salehi, and D. Towsley.
Smoothing, statistical multiplexing and call admission control
for stored video. IEEE J. Select. Areas Commun., 15(6):1148–
1066, August 1997.

