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Abstract - Experimental results have 
indicated that the Nakagami m-distribution 
with the fading parameter m in the range 
0.5 < rn < 1 can be used to model the fading 
characteristic of a HF channel when its 
fading is more severe than Rayleigh fading. 
In this paper, we propose a mathematical 
model for simulating a HF channel that is 
characterized by m-fading, m < 1. The 
procedure for implementation is given. 
Numerical results demonstrate that 
statistical properties of the samples 
generated from the proposed model are 
close to the required ones. 

Index Terms - Fading channels, HF 
channels, Simulation, Stochastic processes. 

I. INTRODUCTION 

Although Rayleigh distribution has been 
shown to  be appropriate for modeling the short- 
term fading statistics of a HF ionospheric 
channel [ I ] ,  it is possible that the channel fading 
becomes more severe than Rayleigh fading in 
some occasions due t o  high variability of the HF 
channel from time t o  time and from one 
geographical location t o  another. The 
phenomenon of fading more severe than Rayleigh 
fading was observed by Nakagami [2] in a series 
of channel measurements for some long-distance 
HF communication links. His measurement 
results have indicated that the m-distribution 
with the fading parameter m in the range 0.5 S m 
< 1 is useful for modeling the fading 
characteristic of a HF channel when the fading is 
more severe than Rayleigh fading. Note that the 

Rayleigh distribution is a special case of the 
m-distribution when rn = 1. 

In the design of a HF communication link, 
the system designer may want to ensure that the 
performance of the communication link is 
satisfactory not only in a Rayleigh fading 
environment but also in an environment 
characterized by fading more severe than 
Rayleigh fading. The need of a robust 
communication link arises when reliability is a 
concern such as in tactical command, control and 
communication systems. To perform computer or 
hardware simulation of a HF communication link 
operating over an m-fading channel for m < 1, 
one is required t o  generate a complex random 
process that fits a given Doppler power spectrum 
and that the amplitude follows an  m-distribution 
with m < 1. Although there are a number of 
known techniques and simulation systems that 
can be used t o  generate a complex Gaussian 
process for simulating a Rayleigh fading channel 
(e.g., [31-[7]), the technique for simulating an 
m-fading channel for rn < 1 has not appeared in 
the previous literature to the best of authors' 
knowledge, 

In Section 11, we propose a mathematical 
model that enables one to generate a complex 
random process for simulating an m-fading 
channel, m < 1. Emphasis is given to 
applications of the proposed model for HF 
communications. Since the original m-fading 
channel model [2] does not provide a phase 
characterization, we assume that the channel 
phase shift is uniformly distributed over [0,2rr). 
This assumption seems reasonable for an 
m-fading channel where the channel fading is 
more severe than Rayleigh fading. We should 
mention that a first-order hidden Markov model 

* This work was supported by the Hong Kong Research Grants Council and by the University 
Research Committee and the CRCG of The University of Hong Kong, Hong Kong. 

0-7803-4984-9/98/$10.00 0 1998 IEEE. 



917 

can be used to generate a Nakagami m-fading 
process as proposed in [SI. However, the 
generated fading process is real-valued. While 
this process simulates the behavior of the 
amplitude for an m-fading channel, the phase is 
not generated. Our proposed model is capable of 
generating both amplitude and phase. 

Antenna diversity is a well known technique 
in HF communications for combating adverse 
effects due to  fading. The technique described in 
this paper is useful for simulating a 
communication system with antenna diversity 
when the diversity branches are independently 
faded. The corresponding technique for 
simulating diversity channels of correlated 
fading is given in detail in a fuller version of this 
paper [9]. In [9], the simulation technique for a 
multipath, wideband HF channel characterized 
by m-fading, m < 1, is also given. 

The rest of the paper is organized as follows. 
In Section 111, details on the implementation of 
the proposed model to simulation are given. A 
numerical example illustrating the use of the 
proposed model follows in Section IV. Finally, 
conclusions are drawn in Section V. 

11. T H E  SIMULATION MODEL 

Let z ( t )  = r(t)e"(') be a wide-sense-stationary 
(WSS)  complex random process that is 
characterized by the autocorrelation function 

(1) Rz(At) = E{z ( t ) z '  ( t  + A t ) )  

and satisfies the following properties: 
(i) r ( t )  is Nakagami m-distributed with the 

second moment C2 = Rz(0) and the fading 
parameter m = C2'/E{(r(t)* -0)') limited 
in the range m E [0.5,1); 

(ii) e ( t )  is uniformly distributed over [0,2n); 
and 

(iii) r ( t )  and 8 ( t )  are mutually independent. 
The probability density function (PDF) of r ( t )  for 
an  arbitrary time t is given by [2] 

where r(.) is the gamma function and m is in the 
range 0.5 S m < 1. Our task is t o  develop a 
simulation model that can be used to  realize z ( t ) .  
In the development of this model, the following 
lemma is required. 

Lemma 1: Let rz be an m-distributed random 
variable with the second moment E[rzz)  = C2 and 
the fading parameter m E [0.5,1). Let rw be a 
Rayleigh distributed random variable with E{r: 1 
= Q/m. If rz and rw satisfy the functional 
relationship 

(3) 

where 5 is a non-negative random variable 
independent of r,, then 5 has a standard beta 
distribution with parameters m and 1 - m. The 
PDF of 5 is given by [lo] 

where B(a,b) = T(a)ryb)/T(a+b) is a beta 
function. 
The proof is given in Appendix 1. Let 9 be a 
random variable uniformly distributed over 
[0,2x) and independent of rz, rw and 5 . It follows 
that w = rWeJe is a zero-mean complex Gaussian 
random variable with uncorrelated real and 
imaginary parts. Multiplying both sides of (3) by 
ele gives z = 5'"w where z = rZefe.  The two 
expressions of z imply that z ( t )  can be 
represented by 

(5) 
z ( t )  = P(')W(t) 

where (i) $ ( I )  is a WSS non-negative random 
process and p 2 ( t )  follows a standard beta 
distribution with parameters m and 1 - m, and 
(ii) w ( t ) ,  being independent of p ( t ) ,  is a zero 
mean WSS complex Gaussian process with 
uncorrelated real and imaginary parts and with 
an autocorrelation function 

R,(At) = E{w(t )w*( t  +At)) (6) 

In addition, p ( t )  is satisfying R,(O) = Q/m. 
required t o  satisfy the condition 

where 

R + ( A t ) =  E(p(t)~(t+At)l. (8) 

This condition is obtained by substituting (5) into 
(1) followed by dividing the resultant expression 
by Rz(0). The representation of z ( t )  by (5) is the 
desired simulation model. One can generate z ( t )  
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by generating a complex Gaussian process w(t)  
and an appropriate square-root-beta random 
process p ( t )  followed by substituting w(t) and 
p(t) into (5). The complex Gaussian process w(t )  
can be generated by an ' established technique, 
e.g., [31-[51. The non-Gaussian process p ( t )  can 
be generated by a nonlinear transformation of a 
Gaussian process 1111. Appendix 2 lists the 
procedure for generating p(t). 

111. IMPLEMENTATION FOR SIMULATION 

It is desired to realize a complex random 
process z ( t )  in order to simulate an m-fading 
channel, m < 1, with a given Doppler power 
spectrum S,(f). The power spectrum S z ( f )  is 
related to  Rz(At) by 

Since Doppler power spectra of HF channels that 
are of practical interest are bandlimited, we 
consider only the case of generating a 
bandlimited process z ( t ) .  Let f,, be the 
frequency such that S, (f) is zero or negligible for 
I f /  > f-. To realize z ( t )  one can generate a 
sequence of equidistant discrete-time samples 
z ( n q ) ,  q = (af-) , followed by interpolation to 
obtain the value of z ( t )  for an arbitrary time t , 
where a 2 2 is the oversampling factor. A value 
of a 2 8 is usually sufficient to generate z ( t )  
without appreciable loss of accuracy 141. After 
the value of a is determined, the rest of the 
procedure except interpolation directly follows 
from an application of the proposed simulation 
model. The procedure is given as follows. 

Compute Rz(An.T,), An = - N ; " , N ,  by (9), 
where N is a sufficiently large integer. 
This sequence of Rz(AnnC) is used in 
generating z ( n q ) ' s  so that a greater value 
of N improves the accuracy of the 
autocorrelation property of the generated 
z(nT,)'s although more computation is 
required. 
Select appropriate values of R,(An.C) and 

R,(A?.T,), An = - N , . . . , N ,  that satisfy (7). 
It is recommended that these 
autocorrelation values may be selected 
such that p(nT,)'s and w(nT,)'s can be 
generated with minimal computation 
effort. Since generation of correlated 
p(nT,)'s usually involves a computationally 

-I 

1) 

2) 

expensive step of nonlinear transformation 
of a Gaussian process, it is desirable, 
whenever possible, to  select R, (An.?)  

values such that p ( n c ) ' s  are statistically 
independent. There are a number of fast 
algorithms that generate independent beta 
random variates [lo, ch. 25.21 so that 
independent p(nT,)'s can also be efficiently 
generated. In the special case of 
independent p(nT,)'s,  

where 

Since lRz(An.TJ/Rz(0)l 5 1 and similar 
inequalities hold for R,(.) and R,(.), (7) 

implies that the selected Rp(An.T,) and 
R,(An.T.) values must satisfy 

R,(An.T,) R,(An.T,) I Rz(0) 1'1 R,(O)' 1 '  
The special case of independent p ( n q ) ' s  
can be used in simulation only if the 
condition 

is satisfied. 
Based on the selected Rb(Ann.T,) values, 
generate p(nT,)'s by the method given in 
Appendix 2. If p(nT,)'s are independent, 
other efficient algorithms can be used in 
this special case. 

4) Generate complex-Gaussian distributed 
samples w(nl",) by a known technique. 

5) Compute z(nTs) by (5). 
Finally, z(t) for an arbitrary time t can be 
computed by interpolation. If a 2 8, it has been 
suggested in [4] that piecewise-constant 

3) 



Table 1. Autocorrelation values used in the numerical examole. IR (0) = 1. R (0) = 0.5. R. (0) = 21 

Rz(O) RF (0) Rw (0) 

0 1 .oooo 1 .oooo 1.0000 1 .o 
1 0.9459 0.9570 0.9884 0.8 
2 0.7915 0.9178 0.8624 0.6 
3 0.5595 0.8808 0.6352 0.4 
4 0.2831 0.8452 0.3349 0.2 
5 0.0000 0.8106 0.0000 0.0 
6 -0.2537 0.8106 -0.3129 0.0 
7 -0.4493 0.8106 -0.5543 0.0 

interpolation, i.e., z(f) = z(nT,) for nT, 9 t < 
(n  + l)T,, suffices without causing appreciable loss 
of accuracy. 

Iv. NUMERICAL EXAMPLE 

A realization of z ( f )  was generated based on 
the procedure given in Section 111. For 
illustration purpose, we assumed that m = 0.5 
and Q = 1. A double-Gaussian spectrum was 
used: 

2 
t) %(At) =cos(Zcf f,,xAt)xexp[-2(zf4At) ] 

where f, = (l-y)fm/3 and we arbitrarily 
selected y = 0.5. The double-Gaussian spectrum 
was selected because it is appropriate for 
modeling Doppler power spectra of HF channels 
111. Although a symmetric spectrum is used here 
for simplicity, realistic spectra for HF channels 
are usually asymmetric [l]. An oversampling 
ratio of CL = 10 was employed. 

We first computed Rz(An.Ts), An = - N ; . . , N ,  
where N was arbitrarily chosen as N = 1000. 
Note that we only needed to  compute R, (An.  q )  
with An a non-negative integer because the 
particular R,(At) chosen in this example is an 
even function. Values of R,,(An.T,) and 
R,(An. T )  satisfying (7) were then selected. 
Table 1 lists the values of Rz(An.Ts)/Rz(0), 
R,,(An.T,)/R,(O) and Rw(An.T,)/R,(0) for An = 

0;..,7, where Rz(0) = 1, Rp(0) = 0.5 and R,(O) = 

2. Note that (11) is not satisfied (Km = 0.8106) so 

that it was not possible to use the special case of 
independent p(nT,)'s in this example. Table 1 
also lists the values of p ( A n . T , )  where p(At) is 
the autocorrelation function of y(t) and y(t) is 
the Gaussian process used in the nonlinear 
transformation for generating ~ ( t )  (see Appendix 
2). The particular pattern of p(An.T,) was 
chosen so that y(t) could be conveniently 
generated by a moving average process. A total 
of IO4 discrete-time samples z(nT,) were 
generated by the following procedure. The time 
series p(nT,) was generated by the nonlinear 
transformation technique given in Appendix 2. 
The complex Gaussian time series w(nT,) was 
generated by taking Fourier transform on the 
sequence of R,(An.T,) values t o  obtain an 
approximation of the power spectrum followed by 
an  application of the harmonic decomposition 
technique [4]. The value of z(nT,) was computed 
from p(nT,) and w(nT,) by (5). After z (nT) 's  
were generated, z ( ( n + i ) T , ) ,  n = 1,...,104, were 
computed by piecewise constant interpolation. A 
total of 2 x lo4 samples, i.e, z(nq,,), n = 

Z,... ,(Zx104+l), where TI,,, = q / Z ,  were finally 
obtained 

Figs. la and Ib plot the cumulative 
distribution functions (CDFs) of the amplitude 
and phase, respectively, computed from the 2 x 
lo4 generated z(nTmm) samples. The CDF of the 
m-distribution with m = 0.5 and C2 = 1, and that 
of the uniform distribution for the range [O,Zr)  
are also plotted for comparison purpose. Fig. IC 
plots the autocorrelation function computed from 
the generated samples and the one for the 
double-Gaussian spectrum. From the three 
figures, it is apparent that the distributions and 
autocorrelation function of the generated 
samples fit closely to the desired ones. 



Fig. 1. Statistics computed from the generated 
samples of z ( t )  in the numerical example: (a) 
CDF of amplitude, (b) CDF of phase, (c) 
autocorrelation function. The desired CDFs and 
autocorrelation function are also plotted. 
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V. CONCLUSIONS 

We have proposed a simulation model for 
m-fading channels, rn < 1. The model reveals 
that an m-fading channel, m < 1, having a given 
Doppler power spectrum can be simulated by 
generating a complex Gaussian process and a 
square-root-beta random process. In the 
numerical example, it has been shown that 

Fig. IC 
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statistical properties of the samples generated 
from the use of the proposed model are close to 
the required ones. 

APPENDIX 1 PROOF OF LEMMA 1 

2 2 Let cz = rz and cw = r,. The proof can be 
accomplished by taking Mellin transform on both 
sides of cz = c c ,  and noting that the Mellin 
transform of E,c, is the product of the Mellin 
transform of 5 and that of cw. An alternative 
proof can also be obtained by using the fact that 
ci and c, are gamma random variables and that 
a beta random variable can be expressed as a 
ratio of two gamma random variables [lo, ch. 
25.21. 

APPENDIX 2 REALIZATION OF p ( t )  

The non-Gaussian process p ( t )  characterized 
by statistical properties given in Section I1 can be 
realized by a nonlinear transformation of a 
Gaussian random process I1 11. Let the functions 
F and @ be defined as 

F ( x ) =  I *(m,l-m), 0 5 x 5 1  

and 

@(x) = ( 2 a ) ~ ' ' 2 ~ e - L Z ' 2 d t ,  - 
- respectively, where I , (a ,b)  - 

(B(a,b))- '  ~ ~ t U ~ ' ( l - r ) h - ' d t  is the incomplete beta 
function and rn is the fading parameter. The 
function F-' is the inverse of F .  Let yet) be a 
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WSS zero-mean unit-variance Gaussian random 
process with an  autocorrelation function 

P(A.~) = EIy(f)y(f+Af)I 

It is known that p ( t )  can be generated by the 
nonlinear transformation [ 111 

where g ( x )  = F- ' (@(x) ) .  In addition, R,(At) and 

p(&) are related by [ l l]  

p(At) # +l. (144 

In special cases of p(At) = +1, it is easy to show 
that 

Since a knowledge of R,(At)  is known, the 
corresponding autocorrelation function p(&) can 
be obtained. A knowledge of p(At) is required in 
the generation of the Gaussian process y(t). This 
Gaussian process can be generated by a known 
technique. After y(t) is generated, one can 
realize p ( t )  by substituting the generated y ( t )  
into (1 3). 

In general, analytical evaluation of p(&) is 
seldom possible. To numerically invert (14a). it is 
required t o  compute the double integral (14a) 
many times. Numerical integration of (14a) is 
made easy by using the transformation y1 = x1 

and yz = p(&)xl + (1-p(&)2)1'2x2 followed by 
another transformation x1 = (2s)"' cos0 and x2 = 

(2~)"~sinO. It follows that (14a) can be simplified 
to 

.e-'dsdO, 

p(At) f f l  

The inner and outer integrals can be readily 
computed by the Gauss-Laguerre rule and the 
Simpson's rule, respectively. 
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