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Abstract - By using linear analysis the robustness of the 
induction motor decoupling adaptation system is studied and 
quantitative analytical results are given. The simulation results 
of the system verify the analytical results. 
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where L, = 4 - ~ 

the electric torque can be expressed by 

1. INTRODUCTION 

The high-performance slipfrequency control of an induction 
motor, which is often called the vector control or decoupling 
control of induction motor, is considered to be one of the best 
ac variable speed drives [1,2]. Combining the model 
decoupling adaptation system technique [ 3 ] ,  an induction 
motor decoupling adaptation system was proposed [4]. 
However, since the decoupling control of induction motor 
reaches the decoupling only in steady state [5], the 
robustness question arises in an induction motor decoupling 
adaptation system in which an ideal induction motor 
decoupling state is supposed. This paper analyzes the 
robustness of the induction motor decoupling adaptation 
system and gwes quantitative analytical results. The example 
in this paper shows that when the parameters of the 
adaptation mechanism are located in the robustness region, 
the induction motor decoupling adaptation system can work 
very well. The simulation results of the system venfy the 
analytical results. 

as the rotor mechanical angular equation is 

T,  - T m  
0, =- 

JS-D (7) 

where T, is load torque. In the design process it is treated as 
a disturbance. So the simplified induction motor model is 

e 
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2. DESIGN OF INDUCTION MOTOR DECOUPLING 
ADAPTATION SYSTEM [6] 

i 
A block diagram of an induction motor decoupling 
adaptation system is given in Fig. 1. It is assumed that under 
the decoupling control strategy in the a+ axis which is 
synchronously rotating with the ac power source frequency 
FA: 

4, pef = qx = constant (1) 

Fig. 1 Induction Motor Decoupling Adaptation System 
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where 

Choosing the reference model as 

1 
1+ TS 

GR(S) = - 

AJ = v,[eamciT + v2eam (21) 

where vl>O, v2>0 and Aq(O)=AflO)=e(O)=O. 

3. ROBUSTNESS ANALYSIS OF AN INDUCTION 
MOTOR DECOUPLING ADAPTATION SYSTEM 

then, according to the model matching condhon (when 
e=O), the values offandg in Fig. 1 can be determined: 

It is noted that (6) is only held in steady state. So it should be 
determined whether the design of the induction motor 
decoupling adaptation system is valid when a simplified 

Jmf system model is used in the designing stage. This is the 
(12) robustness issue of the induction motor decoupling 

% adaptation system. As the system of Fig. 1 is a nonlinear 
(13) system, in order to use linear analytical techniques which 

I"* can gwes quantitative results, the system needs to be 
linearized at one operating point. 
Let   con stunt and there exist 

q" =- 

f W - = q m J - y k s  J"J -112) 

when ,e# 0, the adaptation mechanism will generate an 
adaptive signal ilp2 

i,,, = -Ayam + Aqr 
f = f" 
q = q" 

By using Lyapunov stability theory, the adaptive laws of the 
parameters can be determined 

so that 
e=eref  = O  

d Jrd 

dt kg 
d Jref 

dt k,  

A q  =[-v,,er-v,,-(er)]- (15) 

Af = [vzlemm + vz2 -(emm)]- (16) 

under this condition 

Tl = = GFf (S)j;t - ___ = y 
JS+D where vl1>0, vl2>O, v2,>0, vzz>O, and the system of Fig. 1 is m m  

global stability under the assuming (13). When J varies from (27) 
Tf, there should be where GFf ( S )  is the induction motor transfer function with 

Af = Aq the decoupling control strategy (1)-(4) at operating point [6]. 
Combining (26) and (27), (17) 

m =[G;I( ,")qr4r  r -- Tm ]41+yref~-.p(s)] = r 
so it is convenient to choose 

J S + D  

=v ,  (18) when e# 0, there should be 
(28) 

J'"f 
v,, = v,, = v, - 

k g  
J ref 

v,, = v,, = Vb - - - v2 (19) 
k ,  

w, = a:' + Ao, 

then, 

in (15) (16), so that the adaptive laws of the parameters are 
e = a, -aR = aIf + Amm -OFf = Amm 

(30) 
Aq = -v, JlerdT - v,er (20) so 
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Combining (20), (Zl), (29), (31) and omitting the square 
term of A: 

Rated a axis primary 

A q  = -( v, tAed7  + v ,Ae)r  (32) 

ozf (33) 

i m f  la 6.83A 

From Fig. 1 and (14), 

.ref = (4" + Aq)r - (fief + AfXo:' + A o , )  
(34) 

Omitting the square term of A: 

From (27), 

GFf (S ) [  r A q  - ozfAf ]  - ATdJS + Dl 

1 + f refG,"f( S )  
Amm = 

Combining (38), (32), (33), 

-G;/(S)(v,[AedT+ v,Ae)[r2 +(w:')*] -ATgJS+ Dl 
Am,,, = 

1 +f"'G;'(S) 

(3 9) 

Changing (39) into S operator form and using (31), noticing 
Ae(Q) =Ao,(O)=Q, 

AT" r z  +(o~~)']A~(S)----- JS+D 

l+fr4GYf ( S )  
Ae(S) = 

or 

-AT" Ae(S) = 

(41) 
the characteristic equation of Fig. 1 is 

~ l + ~ ~ 4 ( S I / r ~ + ( ~ + v ~ ~ ~ z  

(42) 

From the root- locus of (42), the stability and the dynamics 
characteristic of Fig. 1 can be determined. The robustious 
parameters vl and v2 can be found from the root- locus of 
(42) if they exist. 

4. EXAMPLE 

Primaryresistance 
Sewndaryreistance 
pnmaly self-m&lbce 38.8 mH 
sewndarv SeK-mchIdaoce L, 35.4 mH 

I M u t u a l m d u ~ c e  I M I 7 5 4 m H  I 
Total inertia I Jd I 0.024"sec2/rad 
Viscous-G~on ccdEcieat I D I 0.0011 "sechad 

Table 1 
Parameters of the test motor 

The parameters of the test motor are listed in Table 1 and L1, 
L, and A4 should multiply a factor (2/3) in a-P axis. 
Choosing T=0.25 s in the reference model, the yf and gref 
can be calculated from (12), (13): 

yf= 0.130834, @= 0,132350 

(42) has 11 roots but only 10 roots need to be calculated 
because one stable root is S=-D/J and the root- locus plot is 
calculated by a computer program. If the desired working 
speed of the motor is 2000 rpm, then 
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r=~,,,~~~=2000(2n/60>209 (rads) 

Case one : 
when vl=104, v2=104, J=Se< r2=rZref, there are two unstable 
roots in (42) and the root- locus is shown in Fig.2a, so the 
system of Fig.1 will be unstable. The simulation results of 
Fig. 2b, 2c and 2d also prove the instability of the system. 
Note that this case is in a “decoupling state”, and accordmg 
to the design strategy, the system should be globally stable. 
But as noted in [5,6], the decoupling control strategy (1)-(5) 
only realized “static” decoupling or “nearly dynamics 
decoupling” when L,-+O. When L g O ,  it is necessary to 
choose the adaptation parameter vl, v2 very carefully because 
the global stability is not guaranteed. On the other hand, this 
shows that the linear analysis presented in this paper works 
very well. 

Case two : 
when V ~ = ~ O - ~ ,  ~ 2 = i O - ~ ,  J=Sef, r2=(l/2)rzref, the root-locus of 
(42) iH Fig. 3a shows that the system still has good dynamics 
characteristics and loaded ability when the load changmg 
and the decoupling condtion is destroyed. This shows that 
the system has a strong robust character in the region of 
some adaptation parameters and the robustness analysis 
works. 

5. CONCLUSION 

The results of this paper show that it is effective and 
convenient to study a nonlinear adaptive control system by 
linear analysis. The example shows that the induction motor 
decoupling adaptation system has a strong robustness in the 
region of some adaptation parameters and quantitative 
analytical results were given. The simulation results of this 
system verify the analytical results. 

6. NOMENCLATURE 

Exciting current 
Torque current 
Secondary flux 
Primary inductance 
Secondary inductance 
Magnetizing inductance 
Primary resistance 
Secondary resistance 
Electrical torque 
Loaded torque 
Supply frequency 

Rotor mechanical angular speed 
Slip frequency 
primary voltage in a-P axis 
secondary voltage in a-P axis 
Reference value or the nominal value 
Small variation 
differential operator or Laplace operator 
number of poles 
Total inertia 
Viscosity resistance 
Motor speed command 
Reference model output 
Reference model transfer function 
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Fig. 2a Root-locus of equ.(41) 

Fig. 2b Transient response of 
OR andw, 
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Fig. 3a Root-locus of equ.(4l) 
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Fig. 3b Main root-locus of equ.(41) 

Fig. 2c Transient response of T, 
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Fig. 3c Transient response of 
OR andw, 

Fig. 3d Transient response of T, 
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Fig. 3e Transient response of 
I,, and itfir'' . rcf 
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