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Abstract - By using linear analysis the robustness of the
induction motor decoupling adaptation system is studied and
quantitative analytical results are given. The simulation results
of the system verify the analytical results.

1. INTRODUCTION

The high-performance slip-frequency control of an induction
motor, which is often called the vector control or decoupling
control of induction motor, is considered to be one of the best
ac variable speed drives [1,2]. Combining the model
decoupling adaptation system technique [3], an induction
motor decoupling adaptation system was proposed [4].
However, since the decoupling control of induction motor
reaches the decoupling only in steady state [5], the
robustness question arises in an induction motor decoupling
adaptation system in which an ideal induction motor
decoupling state is supposed. This paper analyzes the
robustness of the induction motor decoupling adaptation
system and gives quantitative analytical results. The example
in this paper shows that when the parameters of the
adaptation mechanism are located in the robustness region,
the induction motor decoupling adaptation system can work
very well. The simulation results of the system verify the
analytical results.

2. DESIGN OF INDUCTION MOTOR DECOUPLING
ADAPTATION SYSTEM [6]

A block diagram of an induction motor decoupling
adaptation system is given in Fig, 1. It is assumed that under
the decoupling control strategy in the a—p axis which is
synchronously rotating with the ac power source frequency
[1,2]:
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where T, is load torque. In the design procéss it is treated as
a disturbance. So the simplified induction motor model is
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Fig. 1 Induction Motor Decoupling Adaptation System

o, = ——nﬁMziff il'gf ')
m 2L, (JS+D)
or,
(‘Om kg
T e &)
i JS+D

908



where
n M’
k — __1.7__1‘_)‘_. 10
YA (10)
Choosing the reference model as
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then, according to the model matching condition (when
¢=0), the values of f'and g in Fig. 1 can be determined:
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when e= 0, the adaptation mechanism will generate an
adaptive signal iz,
Iip, = —Af0,, +Agr 14

By using Lyapunov stability theory, the adaptive laws of the
parameters can be determined
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where v;1>0, v1,>0, v2,>0, v2»>0, and the system of Fig. 1 is
global stability under the assuming (13). When J varies from
J?, there should be

Af =Aq an
so it is convenient to choose
J
Vi=Vp =Y, k =V (18)
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in (15) (16), so that the adaptive laws of the parameters are
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where v;>0, v,>0 and Ag(0)=Af{0)=e(0)=0.

3. ROBUSTNESS ANALYSIS OF AN INDUCTION
MOTOR DECOUPLING ADAPTATION SYSTEM

1t is noted that (6) is only held in steady state. So it should be
determined whether the design of the induction motor
decoupling adaptation system is valid when a simplified
system model is used in the designing stage. This is the
robustness issue of the induction motor decoupling
adaptation system. As the system of Fig. 1 is a nonlinear
system, in order to use linear analytical techniques which
can gives quantitative results, the system needs to be
linearized at one operating point.

Let r=constant and there exist
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where G;ff (S)is the induction motor transfer function with

the decoupling control strategy (1)-(4) at operating point [6].
Combining (26) and (27),
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Combining (20), (21), (29), (31) and omitting the square
term of A:
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From Fig. 1 and (14),
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Omitting the square term of A:
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From (27),
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Combining (38), (32), (33),
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Changing (39) into S operator form and using (31), noticing
Ae(0) =A0,(0)=0,
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the characteristic equation of Fig. 1 is
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From the root- locus of (42), the stability and the dynamics
characteristic of Fig. 1 can be determined. The robustious
parameters v, and v, can be found from the root- locus of
(42) if they exist.

4. EXAMPLE
1KW, 100V, 8.4A, 60 Hz, 4 poles, 1710rpm
Primary resistance s 0.49 Q
Secondary resistance r 0.45Q
Primary self-inductance L 38.8 mil
Secondary self-inductance L, 35.4 mH
Mutual inductance M 35.4mH
Total inertia J¥ | 0.024 Nmsec'/rad
Viscous-friction coefficient D 0.0011 Nmsec/rad
Rated o axis primary iref 6.83 A
current 1o
Rated f axis primary iref 11.54 A
current 1B
Table 1

Parameters of the test motor

The parameters of the test motor are listed in Table 1 and L,
L,, and A should multiply a factor (2/3) in o-f axis.
Choosing T=0.25 s in the reference model, the /¥ and ¢'¢
can be calculated from (12), (13):
/9=0130834, ¢¥=0.132350

(42) has 11 roots but only 10 roots need to be calculated
because one stable root is S=-D/J and the root- locus plot is
calculated by a computer program. If the desired working
speed of the motor is 2000 rpm, then

910



=0, =2000(27/60)=209 (rad/s)

Case one :

when vi=10" v,=10", J=J'7 r,=r,7, there are two unstable
roots in (42) and the root- locus is shown in Fig.2a, so the
system of Fig.1 will be unstable. The simulation results of
Fig. 2b, 2c and 2d also prove the instability of the system.
Note that this case is in a “decoupling state”, and according
to the design strategy, the system should be globally stable.
But as noted in [5,6], the decoupling control strategy (1)-(5)
only realized “static” decoupling or “nearly dynamics
decoupling” when Ls—>0. When L0, it is necessary to
choose the adaptation parameter vy, v, very carefully because
the global stability is not guaranteed. On the other hand, this
shows that the linear analysis presented in this paper works
very well,

Case two :

when vi=10> v,;=10", J=JY, r,=(1/2)r,¥, the root-locus of
(42) i Fig, 3a shows that the system still has good dynamics
characteristics and loaded ability when the load changing
and the decoupling condition is destroyed. This shows that
the system has a strong robust character in the region of
some adaptation parameters and the robustness analysis
works.

5. CONCLUSION

The results of this paper show that it is effective and
convenient to study a nonlinear adaptive control system by
linear analysis. The example shows that the induction motor
decoupling adaptation system has a strong robustness in the
region of some adaptation parameters and quantitative
analytical results were given. The simulation results of this
system verify the analytical results.

6. NOMENCLATURE

I Exciting current

Ip Torque current

A Secondary flux

Ly Primary inductance
Ly Secondary inductance
M Magnetizing inductance
r1 Primary resistance

s Secondary resistance
T, Electrical torque

T Loaded torque

W Supply frequency

o, Rotor mechanical angular speed

Odiip Slip frequency

€1a primary voltage in a~f3 axis

e secondary voltage in a-f axis

ref Reference value or the nominal value
A Small variation

S differential operator or Laplace  operator
ny number of poles

J Total inertia

D Viscosity resistance

r Motor speed command

R Reference model output

Gr(S) Reference model transfer function

7. REFERENCES

[1] KOUHEI OHNISHI, HIDEO SUZUKI, KUNIO
MIYACHI, and MASAYUKI TERASHIMA, Decoupling
control of secondary flux and secondary current in induction
motor drive with controlled voltage source and its
comparison with volts/hertz control, IEEE Trans. on Ind,
Appl. VOL. IA-21, NO. 1, JANUARY/FEBRUARY pp. 241-
247, 1985.

[2] FUMIO HARASHIMA, SEIJI KONDO, KOUHEI
OHNISHI, MASATOSHI KAJITA and MOTOHISA
SUSONO, Multimicroprocessor-based control system for
quick response induction motor drive, IEEE Trans. on Ind,
Appl.,, VOL. TA-21, NO. 4, MAY/JUNE pp. 602-609, 1985.

[31 B. COURTIOL and 1. D. LANDAU, High speed
adaptation system for controlled electrical drives,
Automatica, VOL. 11, pp. 119-127, 1975.

[4] AKAIRA KUMAMOTO, SATOSHI TADA and
YOSHIHISA HIRANE, Optimal speed regulator of a
transvector-controlled induction motor drive system using a
model reference adaptation control, IECON'85 pp. 195-200.

[5]1 IE WU and GUANGLIN ZHU, Decoupling theorems of
induction motor and effects of motor resistance variation,
Journal of South China University of Technology (Natural
sciences), VOL. 17, NO. 2 pp. 32-43, 1989. South China
University of Technology Guangzhou, China, June 1988.

[6] GUANGLIN ZHU, Analysis of induction motor
decoupling adaptation system, Master thesis, South China
University of Technology, Guangzhou, China, June 1988.

911



Fig. 2a Root-locus of equ.(41)
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Fig. 3¢ Transient response of
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Fig. 3e Transient response of
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