

Abstract—We consider traffic scheduling in non-blocking
electronic-buffered optical packet switches (OPS) with bounded
packet delay. Due to the reconfiguration overhead of the switch
fabric, the two commonly used optimization objectives,
minimizing packet delay and minimizing switch speedup, conflict
with each other. Intelligent scheduling algorithms have been
designed to provide tradeoff between these two objectives. In this
paper, we propose a more efficient approach to schedule OPS
traffic, resulting in significantly reduced speedup and/or packet
delay. However, our approach is based on a very interesting
conjecture, which has not been strictly proved so far. We would
like to put forward this conjecture as an open question, and call
for a proof or disproof.

Index Terms—Conjecture, optical packet switch (OPS),
performance guaranteed switching, scheduling.

I. INTRODUCTION

ECENT progress on optical switching technologies [1-4]

has enabled the implementation of electronic-buffered

optical packet switches (OPS) as shown in Fig. 1. The core of

this architecture is the optical switch fabric, which can

efficiently provide huge switching capacity as demanded by the

backbone routers in the Internet. Since optical connections (i.e.

optical fibers) are used to interconnect the input/output

line-cards with the central switch fabric, the input/output

line-cards can be distributed into several racks, which may

locate at hundreds of meters away from each other. As a result,

power consumption in each rack can be reduced, and the switch

becomes more scalable.

On the other hand, the optical switch fabric usually needs

some guard time to change its inter-connection pattern from

one to another, and to synchronize the signals arriving at the

input ports [5]. This guard time is called reconfiguration
overhead. During this period, no packet can be transmitted

across the switch fabric. Accordingly, packet transmission rate

in the switch fabric must be faster than the external line-rate

(i.e. a speedup is required in the switch fabric) in order to

achieve performance guaranteed switching (i.e. 100%

throughput with bounded packet delay) [6-12]. It is shown in

[6, 8] that minimizing speedup and minimizing delay are two

This work is supported by Hong Kong Research Grant Council Earmarked

Grant HKU 7032/01E.

Bin Wu, Xin Wang and Kwan L. Yeung are with the Department of

Electrical and Electronic Engineering, The University of Hong Kong,

Pokfulam, Hong Kong (Tel: 852-2857-8493; Fax: 852-2559-8738; e-mail:

{binwu, xinwang, kyeung}@eee.hku.hk).

conflicting goals, where a higher speedup gives a shorter packet

delay and vice versa.

Based on switch architectures similar to Fig. 1, several

algorithms have been recently proposed [6-12] to schedule OPS

traffic with guaranteed switching performance. Among them,

MIN [6], i-SCALE [9] and QLEF [10] aim primarily at

minimizing the packet delay, whereas reducing speedup is a

secondary objective. DOUBLE [6] is the first algorithm that

allows the tradeoff between speedup and delay. Let N denote

the switch size and NS be the (maximum) number of switch

configurations required for scheduling. DOUBLE needs no

more than NS=2N configurations to schedule any legitimate
traffic matrix, with a speedup of Sschedule=2 (detailed in Section

II). However, this algorithm does not consider the amount of

reconfiguration overhead in its scheduling decision, and thus

it is not optimized for switches with different . Besides, NS=2N
only represents a single point in the solution space [6, 8], and

the characteristics for other NS values are not studied in [6]. To

address those issues, ADAPTIVE [8] is proposed. It is shown

[8] that DOUBLE can be regarded as a special case of

ADAPTIVE at NS=2N.

In this paper, we explore the possibility of beating the

performance of DOUBLE and ADAPTIVE. We show that this

can be achieved based on a very interesting conjecture. We put

forward this conjecture as an open question, and hope that a

proof or disproof can be found soon.

The rest of the paper is organized as follows. In Section II,

we review the generic scheduling procedure [6-12] and the

existing scheduling algorithms DOUBLE and ADAPTIVE. In

Can We Schedule Traffic More Efficiently in

Optical Packet Switches?

Bin Wu, Student Member, IEEE, Xin Wang, and Kwan L. Yeung, Senior Member, IEEE

R

Scheduler

optical switch

Internal speedup

Fig. 1. A scalable high speed optical packet switch.

1

N

1

N N N unicast

VOQs

VOQs

OQ1

OQN

N input line-cards N output line-cards

Optical connections

0-7803-9569-7/06/$20.00 c©2006 IEEE

181

Section III, we propose an approach to improve the scheduling

efficiency. Section IV gives some further discussion, and we

conclude the paper in Section V.

II. TRAFFIC SCHEDULING AND SPEEDUP-DELAY TRADEOFF

A. Scheduling Procedure
The generic four-stage scheduling procedure as shown in

Fig. 2 is followed. In Stage 1, incoming packets are periodically

accumulated in the input buffers over T time slots to construct

an N×N traffic matrix C(T)={cij}. Each entry cij denotes the

number of packets received at input i and destined to output j.
C(T) is legitimate if each of its line sums (i.e. row sum or

column sum) is no larger than T. Throughout the paper, we only

consider legitimate C(T). The scheduling algorithm takes H
time slots in Stage 2 to generate NS configurations Pn={p(n)

ij},

n∈{1, …, NS}, each weighted by n, to cover C(T). “Cover”

means that NS
 n=1 n p(n)

ij cij for any i, j∈{1, …, N}. Pn is an

N×N permutation matrix with at most a single “1” in each line

(row or column). p(n)
ij=1 indicates that a packet can be sent from

input i to output j in one slot; p(n)
ij = 0 otherwise. In Stage 3, the

switch fabric is reconfigured according to the NS configurations

obtained in Stage 2. An internal switch fabric speedup S is

applied, resulting in compressed/shortened time slots, to ensure

that this stage occupies only T (regular) slots. The fabric holds

each configuration Pn for n compressed slots for packet

transmission. Finally in Stage 4 packets are sent onto the output

lines from output buffers (in T slots).

From the tagged packet in Fig. 2, we can see that the bounded

delay of any packet is 2T+H slots. Because NS slots are used to

reconfigure the switch for NS times in Stage 3, only T NS slots

are left for transmitting C(T). Since there are at most T packets

waiting at each input port for transmission, a speedup factor

Sreconfigure=T/(T NS) is necessary to compensate for the idle

time caused by reconfigurations. At the same time, the

scheduling algorithm may produce some empty slots (i.e.

underutilize the bandwidth provided by the configurations

[6-12]). As a result, more than T compressed slots are usually

needed in Stage 3 to transmit C(T). Therefore another speedup

factor

=

=

SN

n
nT

S
1

schedule

1
φ (1)

is required to compensate for the inefficient scheduling. In fact,

Sschedule denotes the efficiency of the scheduling algorithm

adopted. A smaller Sschedule indicates a more efficient scheduler

(with less empty slots in the schedule). The overall internal

speedup S is then given by

=
−

=

−

=×=

SN

n
n

SS NT
S

NT
TSSS

1

schedulescheduleereconfigur

1
φ

δδ

. (2)

B. Speedup-Delay Tradeoff and Scheduling Algorithms
For a given C(T), we divide it by T/(NS N) 1 to get a quotient

matrix Q={qij}and a residue matrix R={rij}:

RQTC +×

−

=

NN
T

S

)(. (3)

Since each line of C(T) sums to at most T, the maximum line

sum of Q is at most NS N. So we can apply edge-coloring [13]

to the bipartite multigraph of Q, and get NS N configurations to

cover Q [6-8]. On the other hand, all the entries in R are not

larger than T/(NS N). So, R can be covered by any N
non-overlapping configurations (i.e. any two of them do not

cover the same entry), with each weighted by T/(NS N). All in

all, C(T) can be covered by (NS N)+N=NS configurations, each

weighted by n=T/(NS N). From (1), Sschedule can be found.

NN
NN

NN
T

TT
S

S
S

S

N

n
n

S

−

+=×

−

×==

=

1
11

1

schedule φ . (4)

The above formula (4) is referred to as speedup function in

[8]. In essence, it depicts the tradeoff relationship between the

speedup (Sschedule due to the inefficient scheduling) and the

delay (in terms of NS). Recall that the bounded delay of any

packet is 2T+H slots and T> NS. Therefore the minimum

achievable delay is given by 2 NS+H.

DOUBLE [6] requires NS=2N configurations to cover C(T).
This is obtained by replacing NS in (3) by 2N to get

C(T)=[T/N]×Q+R. N configurations are required to cover Q
and R respectively, and each configuration is equally weighted

by n=T/N. From (4), DOUBLE achieves Sschedule=2. Fig. 3

gives an example of DOUBLE execution.

Unlike DOUBLE, ADAPTIVE [8] substitutes (4) into (2),

and minimizes the overall speedup S by solving

0=

∂

∂

SN
S

. (5)

Therefore the schedule generated by ADAPTIVE is optimized

with respect to the value of .

III. IMPROVING SCHEDULING EFFICIENCY

In this section, we aim at achieving a better scheduling

efficiency than DOUBLE and ADAPTIVE. Since DOUBLE is

a special case of ADAPTIVE at NS=2N, for simplicity, we only

focus on DOUBLE below. We further assume that the switch

1 If T/(NS N) is not an integer, use)/(NNT S − as the substitute [8].

T T+H 2T+H 3T+H
Packet delay=2T+H

S
ta

g
e

Fig. 2. Optical packet switch scheduling stages.

Switch reconfiguration

Transmission phase

Time 1

2

3

4

182

size N is an even number.

A. Observation and Motivation
In DOUBLE, the traffic matrix C(T) is decomposed as

C(T)=[T/N]×Q+R. For any rij R, if rij>T/(2N), we call it an

LER (large entry in R). Otherwise it is an SER (small entry in

R). We have the following Lemma 1 (proved in Appendix A).

Lemma 1: In DOUBLE, if a particular line (row i or column

j) of R contains k LERs, then in Q we have

,rowfor i
2
kNq

N

1j
ij −≤

=

.columnfor j
2
kNqor

N

1i
ij −≤

=

For example, the second row of R in Fig. 3 contains k=3

LERs (>T/(2N)=2). Then the entries in the second row of Q sum

to at most 2kN− =2.

Based on Lemma 1, we can move some packets from R to Q,

while keeping the maximum line sum of Q not more than N.

Note that each configuration in DOUBLE is equally weighted

by n=T/N. Without loss of generality, if row i of R contains k
LERs, we can move at most 2k of these LERs to Q by setting

them to 0s in R, and at the same time increasing the

corresponding entries in Q by one. Fig. 4 shows an example

based on the Q and R in Fig. 3. We use Q´ and R´ to denote the

modified Q and R. We can see that Q´ can still be covered by N
configurations with a weight n=T/N each. So we can pack

more packets in the N configurations used to cover the quotient

matrix (than DOUBLE). On the other hand, since some LERs

are moved to Q, it may not be necessary to use another N

equally weighted configurations (with n=T/N) to cover R´.
The above observation motivates us to explore a more

efficient scheduling algorithm than DOUBLE. In fact, there

may be at most N LERs in each line of the original R. From

Lemma 1, “half” of these LERs in each line of R can be moved

to Q, while keeping the maximum line sum of Q´ not more than

N. Therefore, it is reasonable to expect that each line of R´
contains at most N/2 LERs after packet moving. As a result, we

may be able to find N/2 non-overlapping configurations, each

weighted by n=T/N, to cover all the remaining LERs in R´. At

the same time, we may find another set of N/2 non-overlapping

configurations, each with a reduced weight of n=T/(2N), to

cover the remaining SERs. If this can be done, then Sschedule of

DOUBLE can be reduced to

75.1
222

11 2

1

schedule =×+×+××==

=

N
N
TN

N
TN

N
T

TT
S

N

n
nφ (6)

B. Issues
To achieve the goal mentioned above, we need to solve the

following issues.

• Determine the set of LERs to be moved to Q, such that

each line sum of Q´ does not exceed N, and R´ contains at

most N/2 LERs in each line.

• Among the N non-overlapping configurations used to

cover R´, N/2 of them should cover all the remaining

LERs in R´, and the other N/2 configurations should cover

all the SERs not yet covered by the first N/2

configurations.

Generally, it is not easy to determine the set of LERs that

should be moved to Q. This can be seen from the example in

Fig. 5. Assume all the non-zero entries (3s) in R are LERs. The

number next to each line is the number of LERs that can be

moved from this line to Q, which is obtained from 2k based

on Lemma 1. If the four circled entries are moved, then we

cannot further move any other LERs without violating the

quota of the corresponding line. At this point, the last row still

contains more than N/2 LERs. For larger switch size N, it will

be more difficult to figure out a proper set of LERs to move.

C. Methodology
We first define two important notions, PCs (Predefined

Configurations) and DHH matrix. For an N×N matrix, we can

use N predefined non-overlapping configurations (or PCs) to

cover all of its entries. As an example, eight non-overlapping

PCs (i.e. PC1 PC8), as defined in Fig. 6, can be used to cover

all the entries of an 8×8 matrix. Note that the number at each

entry of this matrix denotes the particular PC that covers this

58762341

65873412

76584123

87651234

43215678

32148567

21437856

14326785

Fig. 6. A possible set of predefined
configurations for an 8×8 matrix.

0333

0300

3330

0003 1

2

1

2

1 1 12

R=

Fig. 5. A carefully designed

mechanism is necessary in order

to move LERs properly.

Fig. 3. An example of DOUBLE execution. The all-1 matrix used to

cover R equals to the sum of the N non-overlapping configurations (P5-P8).

=

4370

4750

7330

00016

(16)C

=

1010

1110

1000

0004

Q

=

1

1

1

1

1P =

1

1

1

2P =

1

1

3P =

1

4P

=

1

1

1

1

5P =

1

1

1

1

6P =

1

1

1

1

7P =

1

1

1

1

8P

41 =φ 42 =φ 43 =φ 44 =φ

45 =φ 46 =φ 47 =φ 48 =φ

Step 1: Calculate Q

Step 2: Color Q

Step 3: Schedule Q
Step 4: Schedule R

×+×≤=

1111

1111

1111

1111

4

1010

1110

1000

0004

4

4370

4750

7330

00016

(16)C =

0330

0310

3330

0000

R

T=16, N=4, 4=

N
T

, NS=8

+×=

0330

0310

3330

0000

1010

1110

1000

0004

4(16)C +×≤

0030

0010

0300

0000

1110

1210

2010

0004

4(16)C

Fig. 4. Move the circled LERs from R to Q.

183

entry. For easy reading, the entries covered by PC3 are circled

in Fig. 6.

Given an arbitrary 0/1 matrix, we can use two lines to

partition it into four (N/2)×(N/2) zones/sub-matrices A, B, C
and D as shown in Fig. 9 (and Fig. 10) in Appendix B. For each

row/column, if the number of 1s in zone A or C is no less than

that in zone B or D, or is less by at most one, then this 0/1

matrix is called a DHH matrix. In other words, the two diagonal

zones (A and C) of a DHH matrix contain at least “half” number

of 1s for each row and column. (Please refer to Appendix B for

a more rigorous definition.)

Our approach in improving the scheduling efficiency (i.e.

minimizing Sschedule) is based on the concepts of PC and DHH

matrix. We first convert the residue matrix R={rij} into a 0/1

indicator matrix ={ ij} such that ij=1 if rij is an LER and

ij=0 otherwise. The DHH conjecture given in Appendix B

says that we can always find two permutation matrices U and V,

such that ´=U V is a DHH matrix. For the 8×8 matrix,

assume that a DHH matrix ´ is obtained by ´=U V. Then,

PC5 PC8 defined in Fig. 6 (which span over the sub-matrices

A and C as illustrated in Fig. 9) can cover “more than half” of

the 1s for each row and column of ´. The remaining 1s
covered by PC1 PC4 “correspond” to LERs that should be

moved to Q. Since ´ is obtained from after some

row/column permutations (i.e. ´=U V), the 1s in ´ do not

directly match the original LER entries. Therefore, we need to

invoke an inverse transform to get our desired configurations.

Fig. 7 gives an example, where the execution steps are

indexed by the numbers in the dashed circles. In Step 1, we

construct the indicator matrix from R. In Step 2, we find two

+×=+==

33331101

33331011

33330000

33330200

33001001

11011333

12001333

01011333

00300000

10002010

03100010

20020000

00121002

00001201

00000211

00001121

44

331531101

73339051

315730040

1133110200

33485009

110151137

120011177

010157117

RQC(32) =

11110000

11110000

11110000

11110000

11000000

00000111

00000111

00000111

T=32, N=8,
N
T

=4, NS=16

1

==′ VU

=

00010000

01000000

00100000

00000010

10000000

00000100

00000001

00001000

5 =

10000000

00001000

01000000

00010000

00000100

00000010

00100000

00000001

6 =

00000100

00000001

00001000

10000000

00000010

00010000

01000000

00100000

7 =

00000010

00100000

00000001

00000100

00010000

10000000

00001000

01000000

8

=

1

1

1

1

1

1

1

1

1P =

1

1

1

1

1

1

1

1

2P =

1

1

1

1

1

1

1

1

3P
=

1

1

1

1

1

1

1

1

4P =

1

1

1

1

1

1

5P =

1

1

1

1

1

6P =

1

1

1

1

7P =

1

1

8P

Fig. 7. An illustrative example of our proposed approach.

×+×+×≤′+′×≤

===

8

5

4

1

8

1

4244
nnn

nnnPRQC (32) () 75.1444284
32

1
schedule =×+×+××=S

6

5

n=U 1(PCn)V 1

=

00001000

00000010

00000100

01000000

00000001

00100000

10000000

00010000

1 =

00000001

00010000

00000010

00001000

00100000

01000000

00000100

10000000

2 =

00100000

10000000

00010000

00000001

01000000

00001000

00000010

00000100

3 =

01000000

00000100

10000000

00100000

00001000

00000001

00010000

00000010

4 =

00300000

10002010

03100010

20020000

00121002

00001201

00000211

00001121

Q =

33331101

33331011

33330000

33330200

33001001

11011333

12001333

01011333

R

=′

01400000

20012010

13110010

21120000

01121002

00001202

00000321

00001231

Q =′

30031101

03301011

03300000

30030200

30001001

11011330

12001003

01011003

R

4

3

2

00001000

01000000

00100000

00000001

10000000

00000100

00000010

00010000

11110000

11110000

11110000

11110000

11000000

00000111

00000111

00000111

00000001

01000000

00100000

00000010

00001000

00000100

00010000

10000000

=

00010110

01101001

01101001

00010110

01001000

00010110

01101001

01101001

184

permutations U and V to permute into a DHH matrix ´.
Then, Step 3 imposes U and V on the predefined configurations

PC1 PC8 and uses n=U 1(PCn)V 1 (note U 1=U and V 1=V
in this particular example) to generate eight configurations 1

8. For 1 4, if they cover some LERs in the original R,

then these LERs (circled entries in Step 4) are to be moved to Q.

Based on Lemma 1, we can set these LERs to 0s in R, and

increase the corresponding entries in Q by one. Q´ and R´ are

thus obtained in Step 4. In Step 5, to cover Q´ we simply use the

same edge-coloring algorithm [13] as in DOUBLE to

determine configurations P1 P8, each weighted by T/N=4. On

the other hand, R´ can be covered by 1 8, with a weight of 4

for 5 8, and a reduced weight of T/(2N)=2 for 1 4. As a

result, Sschedule can be reduced to 1.75, as shown in Step 6. In

fact, this 12.5% reduction in Sschedule is independent of switch

size N, as stipulated by (6). Note that there is a one-to-one

mapping from entry to entry between and ´, which is

determined by the linear transform ´=U V. Therefore, the

resulting 1 8 are non-overlapping, and they can cover every

entry of R´.

IV. DISCUSSION

If we define LERs as rij>T/[2×(NS N)] (instead of rij>T/(2N)

for DOUBLE) and decompose C(T) as discussed in Part B of

Section II, then the speedup function (4) used in ADAPTIVE

[8] can also be reduced to

NN
N

T
S

S

N

n
n

S

−

×+==

=
4

3
1

1

1

schedule φ . (7)

For NS<2N, we can achieve a greater gain (than 12.5%) over the

original ADAPTIVE algorithm. Since speedup and packet

delay can trade one for another, this also means that packet

delay can be smaller than that given in [8] if the same speedup

is applied to the OPS switch.

From Fig. 11 in Appendix B, we know that U and V are used

to record the row/column permutations involved, and they can

be constructed from a square unit matrix E (i.e. an N×N matrix

with N 1s at its diagonal entries and all other entries are 0s).

Therefore, it is not necessary to get U 1 and V 1 by algebraic

calculations. Instead, we can also start from a square unit

matrix E, and permute its lines in a reverse order to generate

U 1 and V 1.

Finally, it is important to note that our proposed approach is

based on the DHH conjecture. We have tried to prove it for a

very long time but without luck. We also cannot find a single

counterexample by checking extensive samples using computer

programs. Many mathematicians including the authors of [14]

have reviewed our conjecture. As for now, the problem is still

open.

V. CONCLUSION

Due to the reconfiguration overhead, speedup and packet

delay are two main issues for traffic scheduling in optical

packet switches (OPS). In this paper, we proposed a new

approach to improve the scheduling efficiency in OPS with

guaranteed switching performance. Compared with the existing

scheduling algorithms, our approach can significantly reduce

speedup and/or packet delay. However, the proposed approach

is based on the DHH conjecture given in this paper. We call for

a proof or disproof for this conjecture.

APPENDIX A CORRECTNESS PROOF OF LEMMA 1

Lemma 1: In DOUBLE, if a particular line (row i or column

j) of R contains k LERs, then in Q we have

,rowfor i
2
kNq

N

1j
ij −≤

=

.columnfor j
2
kNqor

N

1i
ij −≤

=

Proof: After C(T) is divided by T/N, we have

RQTC +=

N
T)(ijijij rq

N
Tcor += , (8)

Without loss of generality, we assume that row i of R contains k
LERs. Because

Trq
N
Tc

N

j
ij

N

j
ij

N

j
ij ≤+=

=== 111

, (9)

we have

2

21

1

kN

N
T

k
N

TT

N
T

rT
q

N

j
ijN

j
ij −=

×−

<

−

≤
=

=

. (10)

Since N
j=1qij is an integer, we then have

−≤

=
21

kNq
N

j
ij . (11)

APPENDIX B DHH CONJECTURE

In this appendix, we assume that the size N of the matrices/

vectors is an even number.

Definition 1 (halve): Given an arbitrary 0/1 vector (row or

column whose entries are either 0 or 1), use a line to separate it

into two equal parts as shown in Fig. 8. Let x and y denote the

number of 1s in each part. If |x y| 1, we say that the 1s in the

vector are halved by the line.

Fig. 8 gives some examples, where the 1s are halved in (a)

and (c), but not in (b) and (d).

Definition 2 (DHH matrix): Given an arbitrary N×N 0/1

matrix, use two lines to partition it into four (N/2)×(N/2) zones/

sub-matrices A, B, C and D as in Fig. 9. For each row/column

of the matrix, if the number of 1s in zone A or C is more than

that in zone B or D, or the 1s in this row/column are halved by

one of the two lines, then this matrix is called a DHH matrix (it

means that the diagonal half-size sub-matrices A and C contain

at least “half” number of 1s for each row and column).

The matrix in Fig. 10a is a DHH matrix, whereas the matrix

in Fig. 10b is not, because its second column has two more 1s in

zone D than that in zone A.

DHH conjecture: Given an arbitrary N×N 0/1 matrix , we

185

can permute its rows or columns2 for a limited number of times,

such that can be turned into a DHH matrix. In other words,

there exist two permutation matrices U and V, such that U V is

a DHH matrix.

For example, if we swap the first row and the last row in Fig.

10b, then the resulting matrix is a DHH matrix. Fig. 11 gives a

more complex example for in Fig. 7.

REFERENCES

[1] J.E Fouquet et. al, “A compact, scalable cross-connect switch using total

internal reflection due to thermally-generated bubbles”, IEEE LEOS
Annual Meeting, pp. 169-170, Dec. 1998.

[2] L. Y. Lin, “Micromachined free-space matrix switches with submilli-

second switching time for large-scale optical crossconnect”, OFC’98
Tech. Digest, pp. 147-148, Feb. 1998.

[3] O. B. Spahn, C. Sullivan, J. Burkhart, C. Tigges, and E. Garcia,

“GaAs-based microelectromechanical waveguide switch”, Proc. 2000
IEEE/LEOS Intl. Conf. on Optical MEMS, pp. 41-42, Aug. 2000.

[4] A. J. Agranat, “Electroholographic wavelength selective crossconnect”,

1999 Digest of the LEOS Summer Topical Meetings, pp. 61-62, Jul. 1999.

[5] K. Kar, D. Stiliadis, T. V. Lakshman, and L. Tassiulas, “Scheduling

algorithms for optical packet fabrics”, IEEE Journal on Selected Areas in
Communications, vol. 21, issue 7, pp. 1143-1155, Sept. 2003.

2 i.e., swap its rows or columns. Note that a row can only be swapped with

another row, and a column can only be swapped with another column.

[6] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with

configuration overhead”, IEEE/ACM Trans. Networking, vol. 11, no. 5,

pp. 835-847, Oct. 2003.

[7] Xin Li and Hamdi, M., “On scheduling optical packet switches with

reconfiguration delay”, IEEE Journal on Selected Areas in
Communications, vol. 21, issue 7, pp. 1156-1164, Sept. 2003.

[8] Bin Wu and Kwan L. Yeung, “Minimizing internal speedup for

performance guaranteed optical packet switches”, IEEE GLOBECOM
'04, vol. 3, pp. 1742-1746, Dec. 2004.

[9] Bin Wu and Kwan L. Yeung, “Scheduling optical packet switches with

minimum number of configurations”, IEEE ICC '05, vol. 3, pp.

1830-1835, May 2005.

[10] Bin Wu and Kwan L. Yeung, “Traffic scheduling in non-blocking optical

packet switches with minimum delay”, IEEE GLOBECOM '05, vol. 4, pp.

2041-2045, Dec. 2005.

[11] Bin Wu, Kwan L. Yeung and V. O. K. Li, “Two-layer parallel switching:

A practical and survivable design for performance guaranteed optical

packet switches”, IEEE GLOBECOM '05, vol. 4, pp. 1905-1909, Dec.

2005.

[12] Bin Wu and Kwan L. Yeung, “On optimization of optical packet switches

with reconfiguration overhead”, IEEE HPSR '05, pp. 217-221, May 2005.

[13] R. Cole and J. Hopcroft, “On edge coloring bipartite graphs”, SIAM
Journal on Computing, vol. 11, pp. 540-546, Aug. 1982.

[14] R. A. Brualdi and H. J. Ryser, “Combinatorial matrix theory”, Cambridge

University Press, 1991.

Swap columns 3 & 7 Swap rows 0 & 7

11110000

11110000

11110000

11110000

11000000

00000111

00000111

00000111

×

01111000

01111000

01111000

01111000

01001000

00000111

00000111

00000111

×
00000111

01111000

01111000

01111000

01001000

00000111

00000111

01111000 ×

×

Swap columns 0 & 4

U and V are used to record the row/column

permutations. They can be constructed as follows:

Initialize U and V as square unit matrices E. If we

permute two rows in , then we also permute the

corresponding rows in U; if we permute two columns

in , then we permute the corresponding columns in V
too. After is turned into a DHH matrix, the

corresponding U and V are also obtained.

Fig. 11. Permute a matrix into a DHH matrix (the rows/columns are numbered from 0 to 7).

Swap rows 1 & 4

A “×” is used to indicate a row or a column that
violates the requirement defined in the conjecture.

The final result is a DHH matrix.

00010110

01101001

01101001

01101001

01001000

00010110

00010110

01101001

×
00010110

01101001

01101001

00010110

01001000

00010110

01101001

01101001

=

11110000

11110000

11110000

11110000

11000000

00000111

00000111

00000111

00000001

01000000

00100000

00000010

00001000

00000100

00010000

10000000

VU =

00010110

01101001

01101001

00010110

01001000

00010110

01101001

01101001

00001000

01000000

00100000

00000001

10000000

00000100

00000010

00010000

0010

1010

1111

0001

0010

1010

1101

0001

(a) (b)

Fig. 10. (a) is a DHH matrix, and (b) is not.

[]

1
1
0
0
1
0
1
1

(c)

[]

1
1
0
0
1
1
1
1

(d)

[1 0 1 0 0 1 1 0] [0 0 0 0 0 1 1 0]

(b) (a)

Fig. 8. Illustration of definition “halve”.

CD
BA

Fig. 9. Sub-matrices.

186

