
 

Abstract—We consider traffic scheduling in non-blocking 
electronic-buffered optical packet switches (OPS) with bounded 
packet delay. Due to the reconfiguration overhead of the switch 
fabric, the two commonly used optimization objectives, 
minimizing packet delay and minimizing switch speedup, conflict 
with each other. Intelligent scheduling algorithms have been 
designed to provide tradeoff between these two objectives. In this 
paper, we propose a more efficient approach to schedule OPS 
traffic, resulting in significantly reduced speedup and/or packet 
delay. However, our approach is based on a very interesting 
conjecture, which has not been strictly proved so far. We would 
like to put forward this conjecture as an open question, and call 
for a proof or disproof. 

Index Terms—Conjecture, optical packet switch (OPS), 
performance guaranteed switching, scheduling.  

I. INTRODUCTION

ECENT progress on optical switching technologies [1-4] 

has enabled the implementation of electronic-buffered 

optical packet switches (OPS) as shown in Fig. 1. The core of 

this architecture is the optical switch fabric, which can 

efficiently provide huge switching capacity as demanded by the 

backbone routers in the Internet. Since optical connections (i.e. 

optical fibers) are used to interconnect the input/output 

line-cards with the central switch fabric, the input/output 

line-cards can be distributed into several racks, which may 

locate at hundreds of meters away from each other. As a result, 

power consumption in each rack can be reduced, and the switch 

becomes more scalable. 

On the other hand, the optical switch fabric usually needs 

some guard time to change its inter-connection pattern from 

one to another, and to synchronize the signals arriving at the 

input ports [5]. This guard time is called reconfiguration 
overhead. During this period, no packet can be transmitted 

across the switch fabric. Accordingly, packet transmission rate 

in the switch fabric must be faster than the external line-rate 

(i.e. a speedup is required in the switch fabric) in order to 

achieve performance guaranteed switching (i.e. 100% 

throughput with bounded packet delay) [6-12]. It is shown in 

[6, 8] that minimizing speedup and minimizing delay are two 
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conflicting goals, where a higher speedup gives a shorter packet 

delay and vice versa. 

Based on switch architectures similar to Fig. 1, several 

algorithms have been recently proposed [6-12] to schedule OPS 

traffic with guaranteed switching performance. Among them, 

MIN [6], i-SCALE [9] and QLEF [10] aim primarily at 

minimizing the packet delay, whereas reducing speedup is a 

secondary objective. DOUBLE [6] is the first algorithm that 

allows the tradeoff between speedup and delay. Let N denote 

the switch size and NS be the (maximum) number of switch 

configurations required for scheduling. DOUBLE needs no 

more than NS=2N configurations to schedule any legitimate
traffic matrix, with a speedup of Sschedule=2 (detailed in Section 

II). However, this algorithm does not consider the amount of 

reconfiguration overhead  in its scheduling decision, and thus 

it is not optimized for switches with different . Besides, NS=2N
only represents a single point in the solution space [6, 8], and 

the characteristics for other NS values are not studied in [6]. To 

address those issues, ADAPTIVE [8] is proposed. It is shown 

[8] that DOUBLE can be regarded as a special case of 

ADAPTIVE at NS=2N.

In this paper, we explore the possibility of beating the 

performance of DOUBLE and ADAPTIVE. We show that this 

can be achieved based on a very interesting conjecture. We put 

forward this conjecture as an open question, and hope that a 

proof or disproof can be found soon. 

The rest of the paper is organized as follows. In Section II, 

we review the generic scheduling procedure [6-12] and the 

existing scheduling algorithms DOUBLE and ADAPTIVE. In 
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Section III, we propose an approach to improve the scheduling 

efficiency. Section IV gives some further discussion, and we 

conclude the paper in Section V. 

II. TRAFFIC SCHEDULING AND SPEEDUP-DELAY TRADEOFF

A. Scheduling Procedure 
The generic four-stage scheduling procedure as shown in 

Fig. 2 is followed. In Stage 1, incoming packets are periodically 

accumulated in the input buffers over T time slots to construct 

an N×N traffic matrix C(T)={cij}. Each entry cij denotes the 

number of packets received at input i and destined to output j.
C(T) is legitimate if each of its line sums (i.e. row sum or 

column sum) is no larger than T. Throughout the paper, we only 

consider legitimate C(T). The scheduling algorithm takes H
time slots in Stage 2 to generate NS configurations Pn={p(n)

ij}, 

n∈{1, …, NS}, each weighted by n, to cover C(T). “Cover” 

means that NS
 n=1 n p(n)

ij cij for any i, j∈{1, …, N}. Pn is an

N×N permutation matrix with at most a single “1” in each line 

(row or column). p(n)
ij=1 indicates that a packet can be sent from 

input i to output j in one slot; p(n)
ij = 0 otherwise. In Stage 3, the 

switch fabric is reconfigured according to the NS configurations 

obtained in Stage 2. An internal switch fabric speedup S is 

applied, resulting in compressed/shortened time slots, to ensure 

that this stage occupies only T (regular) slots. The fabric holds 

each configuration Pn for n compressed slots for packet 

transmission. Finally in Stage 4 packets are sent onto the output 

lines from output buffers (in T slots). 

From the tagged packet in Fig. 2, we can see that the bounded 

delay of any packet is 2T+H slots. Because NS slots are used to 

reconfigure the switch for NS times in Stage 3, only T NS slots 

are left for transmitting C(T). Since there are at most T packets 

waiting at each input port for transmission, a speedup factor 

Sreconfigure=T/(T NS) is necessary to compensate for the idle 

time caused by reconfigurations. At the same time, the 

scheduling algorithm may produce some empty slots (i.e. 

underutilize the bandwidth provided by the configurations 

[6-12]). As a result, more than T compressed slots are usually 

needed in Stage 3 to transmit C(T). Therefore another speedup 

factor 
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is required to compensate for the inefficient scheduling. In fact, 

Sschedule denotes the efficiency of the scheduling algorithm 

adopted. A smaller Sschedule indicates a more efficient scheduler 

(with less empty slots in the schedule). The overall internal 

speedup S is then given by 
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B. Speedup-Delay Tradeoff and Scheduling Algorithms 
For a given C(T), we divide it by T/(NS N) 1 to get a quotient 

matrix Q={qij}and a residue matrix R={rij}: 

RQTC +×
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Since each line of C(T) sums to at most T, the maximum line 

sum of Q is at most NS N. So we can apply edge-coloring [13] 

to the bipartite multigraph of Q, and get NS N configurations to 

cover Q [6-8]. On the other hand, all the entries in R are not 

larger than T/(NS N). So, R can be covered by any N
non-overlapping configurations (i.e. any two of them do not 

cover the same entry), with each weighted by T/(NS N). All in 

all, C(T) can be covered by (NS N)+N=NS configurations, each 

weighted by n=T/(NS N). From (1), Sschedule can be found. 
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The above formula (4) is referred to as speedup function in 

[8]. In essence, it depicts the tradeoff relationship between the 

speedup (Sschedule due to the inefficient scheduling) and the 

delay (in terms of NS). Recall that the bounded delay of any 

packet is 2T+H slots and T> NS. Therefore the minimum 

achievable delay is given by 2 NS+H.

DOUBLE [6] requires NS=2N configurations to cover C(T).
This is obtained by replacing NS in (3) by 2N to get 

C(T)=[T/N]×Q+R. N configurations are required to cover Q
and R respectively, and each configuration is equally weighted 

by n=T/N. From (4), DOUBLE achieves Sschedule=2. Fig. 3 

gives an example of DOUBLE execution. 

Unlike DOUBLE, ADAPTIVE [8] substitutes (4) into (2), 

and minimizes the overall speedup S by solving 

0=

∂

∂

SN
S

.                                        (5) 

Therefore the schedule generated by ADAPTIVE is optimized 

with respect to the value of .

III. IMPROVING SCHEDULING EFFICIENCY

In this section, we aim at achieving a better scheduling 

efficiency than DOUBLE and ADAPTIVE. Since DOUBLE is 

a special case of ADAPTIVE at NS=2N, for simplicity, we only 

focus on DOUBLE below. We further assume that the switch 

1 If T/(NS N) is not an integer, use )/( NNT S −  as the substitute [8]. 
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Fig. 2.  Optical packet switch scheduling stages. 
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size N is an even number. 

A. Observation and Motivation 
In DOUBLE, the traffic matrix C(T) is decomposed as 

C(T)=[T/N]×Q+R. For any rij R, if rij>T/(2N), we call it an 

LER (large entry in R). Otherwise it is an SER (small entry in 

R). We have the following Lemma 1 (proved in Appendix A). 

Lemma 1: In DOUBLE, if a particular line (row i or column 

j) of R contains k LERs, then in Q we have 

,rowfor i
2
kNq

N

1j
ij −≤

=

.columnfor j
2
kNqor

N

1i
ij −≤

=

For example, the second row of R in Fig. 3 contains k=3 

LERs (>T/(2N)=2). Then the entries in the second row of Q sum 

to at most 2kN− =2. 

Based on Lemma 1, we can move some packets from R to Q,

while keeping the maximum line sum of Q not more than N.

Note that each configuration in DOUBLE is equally weighted 

by n=T/N. Without loss of generality, if row i of R contains k
LERs, we can move at most 2k  of these LERs to Q by setting 

them to 0s in R, and at the same time increasing the 

corresponding entries in Q by one. Fig. 4 shows an example 

based on the Q and R in Fig. 3. We use Q´ and R´ to denote the 

modified Q and R. We can see that Q´ can still be covered by N
configurations with a weight n=T/N each. So we can pack 

more packets in the N configurations used to cover the quotient 

matrix (than DOUBLE). On the other hand, since some LERs 

are moved to Q, it may not be necessary to use another N

equally weighted configurations (with n=T/N) to cover R´.
The above observation motivates us to explore a more 

efficient scheduling algorithm than DOUBLE. In fact, there 

may be at most N LERs in each line of the original R. From 

Lemma 1, “half” of these LERs in each line of R can be moved 

to Q, while keeping the maximum line sum of Q´ not more than 

N. Therefore, it is reasonable to expect that each line of R´
contains at most N/2 LERs after packet moving. As a result, we 

may be able to find N/2 non-overlapping configurations, each 

weighted by n=T/N, to cover all the remaining LERs in R´. At 

the same time, we may find another set of N/2 non-overlapping 

configurations, each with a reduced weight of n=T/(2N), to 

cover the remaining SERs. If this can be done, then Sschedule of 

DOUBLE can be reduced to 
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B. Issues 
To achieve the goal mentioned above, we need to solve the 

following issues. 

• Determine the set of LERs to be moved to Q, such that 

each line sum of Q´ does not exceed N, and R´ contains at 

most N/2 LERs in each line. 

• Among the N non-overlapping configurations used to 

cover R´, N/2 of them should cover all the remaining 

LERs in R´, and the other N/2 configurations should cover 

all the SERs not yet covered by the first N/2 

configurations. 

Generally, it is not easy to determine the set of LERs that 

should be moved to Q. This can be seen from the example in 

Fig. 5. Assume all the non-zero entries (3s) in R are LERs. The 

number next to each line is the number of LERs that can be 

moved from this line to Q, which is obtained from 2k  based 

on Lemma 1. If the four circled entries are moved, then we 

cannot further move any other LERs without violating the 

quota of the corresponding line. At this point, the last row still 

contains more than N/2 LERs. For larger switch size N, it will 

be more difficult to figure out a proper set of LERs to move. 

C. Methodology 
We first define two important notions, PCs (Predefined 

Configurations) and DHH matrix. For an N×N matrix, we can 

use N predefined non-overlapping configurations (or PCs) to 

cover all of its entries. As an example, eight non-overlapping 

PCs (i.e. PC1 PC8), as defined in Fig. 6, can be used to cover 

all the entries of an 8×8 matrix. Note that the number at each 

entry of this matrix denotes the particular PC that covers this 
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Fig. 6.  A possible set of predefined 
configurations for an 8×8 matrix. 
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entry. For easy reading, the entries covered by PC3 are circled 

in Fig. 6. 

Given an arbitrary 0/1 matrix, we can use two lines to 

partition it into four (N/2)×(N/2) zones/sub-matrices A, B, C
and D as shown in Fig. 9 (and Fig. 10) in Appendix B. For each 

row/column, if the number of 1s in zone A or C is no less than 

that in zone B or D, or is less by at most one, then this 0/1 

matrix is called a DHH matrix. In other words, the two diagonal 

zones (A and C) of a DHH matrix contain at least “half” number 

of 1s for each row and column. (Please refer to Appendix B for 

a more rigorous definition.) 

Our approach in improving the scheduling efficiency (i.e. 

minimizing Sschedule) is based on the concepts of PC and DHH 

matrix. We first convert the residue matrix R={rij} into a 0/1 

indicator matrix ={ ij} such that ij=1 if rij is an LER and 

ij=0 otherwise. The DHH conjecture given in Appendix B 

says that we can always find two permutation matrices U and V,

such that ´=U V is a DHH matrix. For the 8×8 matrix, 

assume that a DHH matrix ´ is obtained by ´=U V. Then, 

PC5 PC8 defined in Fig. 6 (which span over the sub-matrices 

A and C as illustrated in Fig. 9) can cover “more than half” of 

the 1s for each row and column of ´. The remaining 1s
covered by PC1 PC4 “correspond” to LERs that should be 

moved to Q. Since ´ is obtained from  after some 

row/column permutations (i.e. ´=U V), the 1s in ´ do not 

directly match the original LER entries. Therefore, we need to 

invoke an inverse transform to get our desired configurations. 

Fig. 7 gives an example, where the execution steps are 

indexed by the numbers in the dashed circles. In Step 1, we 

construct the indicator matrix  from R. In Step 2, we find two 
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permutations U and V to permute  into a DHH matrix ´.
Then, Step 3 imposes U and V on the predefined configurations 

PC1 PC8 and uses n=U 1(PCn)V 1 (note U 1=U and V 1=V
in this particular example) to generate eight configurations 1

8. For 1 4, if they cover some LERs in the original R,

then these LERs (circled entries in Step 4) are to be moved to Q.

Based on Lemma 1, we can set these LERs to 0s in R, and 

increase the corresponding entries in Q by one. Q´ and R´ are 

thus obtained in Step 4. In Step 5, to cover Q´ we simply use the 

same edge-coloring algorithm [13] as in DOUBLE to 

determine configurations P1 P8, each weighted by T/N=4. On 

the other hand, R´ can be covered by 1 8, with a weight of 4 

for 5 8, and a reduced weight of T/(2N)=2 for 1 4. As a 

result, Sschedule can be reduced to 1.75, as shown in Step 6. In 

fact, this 12.5% reduction in Sschedule is independent of switch 

size N, as stipulated by (6). Note that there is a one-to-one 

mapping from entry to entry between  and ´, which is 

determined by the linear transform ´=U V. Therefore, the 

resulting 1 8 are non-overlapping, and they can cover every 

entry of R´.

IV. DISCUSSION

If we define LERs as rij>T/[2×(NS N)] (instead of rij>T/(2N)

for DOUBLE) and decompose C(T) as discussed in Part B of 

Section II, then the speedup function (4) used in ADAPTIVE 

[8] can also be reduced to 
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For NS<2N, we can achieve a greater gain (than 12.5%) over the 

original ADAPTIVE algorithm. Since speedup and packet 

delay can trade one for another, this also means that packet 

delay can be smaller than that given in [8] if the same speedup 

is applied to the OPS switch. 

From Fig. 11 in Appendix B, we know that U and V are used 

to record the row/column permutations involved, and they can 

be constructed from a square unit matrix E (i.e. an N×N matrix 

with N 1s at its diagonal entries and all other entries are 0s). 

Therefore, it is not necessary to get U 1 and V 1 by algebraic 

calculations. Instead, we can also start from a square unit 

matrix E, and permute its lines in a reverse order to generate 

U 1 and V 1.

Finally, it is important to note that our proposed approach is 

based on the DHH conjecture. We have tried to prove it for a 

very long time but without luck. We also cannot find a single 

counterexample by checking extensive samples using computer 

programs. Many mathematicians including the authors of [14] 

have reviewed our conjecture. As for now, the problem is still 

open. 

V. CONCLUSION

Due to the reconfiguration overhead, speedup and packet 

delay are two main issues for traffic scheduling in optical 

packet switches (OPS). In this paper, we proposed a new 

approach to improve the scheduling efficiency in OPS with 

guaranteed switching performance. Compared with the existing 

scheduling algorithms, our approach can significantly reduce 

speedup and/or packet delay. However, the proposed approach 

is based on the DHH conjecture given in this paper. We call for 

a proof or disproof for this conjecture. 

APPENDIX A    CORRECTNESS PROOF OF LEMMA 1

Lemma 1: In DOUBLE, if a particular line (row i or column 

j) of R contains k LERs, then in Q we have 
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Without loss of generality, we assume that row i of R contains k
LERs. Because 
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Since N
j=1qij is an integer, we then have 
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APPENDIX B    DHH CONJECTURE

In this appendix, we assume that the size N of the matrices/ 

vectors is an even number. 

Definition 1 (halve): Given an arbitrary 0/1 vector (row or 

column whose entries are either 0 or 1), use a line to separate it 

into two equal parts as shown in Fig. 8. Let x and y denote the 

number of 1s in each part. If |x y| 1, we say that the 1s in the 

vector are halved by the line. 

Fig. 8 gives some examples, where the 1s are halved in (a) 

and (c), but not in (b) and (d). 

Definition 2 (DHH matrix): Given an arbitrary N×N 0/1 

matrix, use two lines to partition it into four (N/2)×(N/2) zones/ 

sub-matrices A, B, C and D as in Fig. 9. For each row/column 

of the matrix, if the number of 1s in zone A or C is more than 

that in zone B or D, or the 1s in this row/column are halved by 

one of the two lines, then this matrix is called a DHH matrix (it 

means that the diagonal half-size sub-matrices A and C contain 

at least “half” number of 1s for each row and column). 

The matrix in Fig. 10a is a DHH matrix, whereas the matrix 

in Fig. 10b is not, because its second column has two more 1s in 

zone D than that in zone A.

DHH conjecture: Given an arbitrary N×N 0/1 matrix , we 
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can permute its rows or columns2 for a limited number of times, 

such that  can be turned into a DHH matrix. In other words, 

there exist two permutation matrices U and V, such that U V is 

a DHH matrix. 

For example, if we swap the first row and the last row in Fig. 

10b, then the resulting matrix is a DHH matrix. Fig. 11 gives a 

more complex example for  in Fig. 7. 
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Swap columns 3 & 7 Swap rows 0 & 7 
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Swap columns 0 & 4 

U and V are used to record the row/column 

permutations. They can be constructed as follows: 

Initialize U and V as square unit matrices E. If we 

permute two rows in , then we also permute the 

corresponding rows in U; if we permute two columns 

in , then we permute the corresponding columns in V
too. After  is turned into a DHH matrix, the 

corresponding U and V are also obtained. 

Fig. 11.  Permute a matrix  into a DHH matrix (the rows/columns are numbered from 0 to 7). 

Swap rows 1 & 4 

A “×” is used to indicate a row or a column that 
violates the requirement defined in the conjecture. 

The final result is a DHH matrix. 
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Fig. 10.  (a) is a DHH matrix, and (b) is not. 
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Fig. 8.  Illustration of definition “halve”. 
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Fig. 9.  Sub-matrices. 
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