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Abstract 

Peer-to-Peer file sharing applications on the Internet, 
such as BitTorrent, Gnutella, etc., have been immensely 
popular. Prior research mainly focuses on peer and 
content discovery, overlay topology formation, fairness 
and incentive issues, etc, but seldom investigates the data 
distribution problem which is also a core component of 
any file sharing application. In this paper, we present the 
first effort in addressing this collaborative file distribution 
problem and formally define the scheduling problem in a 
simplified context. We suggest several types of algorithms, 
including a novel Bipartite Matching algorithm, for
solving the problem. Simulation results show that our 
weighted bipartite algorithm finds an optimal solution for 
all cases tested. Therefore, we believe our algorithm is a 
promising solution to be employed as the core scheduling 
module in P2P file sharing applications, shortening the 
total download time experienced by users. 

1. Introduction 

Peer-to-Peer (P2P) applications have become 
immensely popular in the Internet. Among P2P 
applications, collaborative sharing of large video/audio 
files and software is perhaps the most popular one.
Compared with traditional client/server file sharing 
approaches (e.g. FTP, WWW), P2P collaborative file 
sharing has one major advantage, namely, scalability. The 
performance of client/server approach deteriorates rapidly 
as the number of simultaneous clients increases, since the 
outgoing bandwidth of the server is shared among all 
simultaneous clients. Interestingly, in a well-designed P2P 
file sharing network, more peers participating in the file 
sharing session generally means better performance, as 
each peer could download simultaneously from multiple 
peers without any obvious bottleneck links. 

Experiments, such as those in [1], have shown that 
using parallel downloading scheme in P2P file sharing 
systems, in which an end user opens multiple connections 
with multiple file sources to download different portions 
of the file from different sources and then reassembles the 

file locally, could result in higher aggregate download rate 
and thus shorter download time. Due to the significant 
performance improvements with collaborative file sharing, 
there has been widespread use of P2P file sharing 
applications like BitTorrent [2], Gnutella [3], Kazaa [4], 
Napster [5], etc., just to name a few. 

P2P file sharing systems have been attracting much 
research attention for the past few years since its recent 
inception. Although there are many papers related to P2P 
systems investigating issues of diversified interest, most 
of them focus on topics like overlay topology formation, 
peer discovery, content search, sharing fairness and 
incentive mechanisms, etc. Few of them really look into 
the data distribution scheduling problem, which is the 
core of any file sharing systems since without actual data 
transmission and distribution, no file sharing is possible. 
A schedule tells each peer which piece should be sent and 
to whom. A poor data distribution schedule could result in 
considerably longer download time, while a good 
schedule could shorten the completion time and 
efficiently utilize all resources like network bandwidth. 
This article presents the first effort in addressing the “data 
distribution scheduling problem” in P2P collaborative file 
sharing systems and proposes a novel bipartite graph 
model for efficiently solving the scheduling problem. 

The major contributions of this paper are summarized 
as follows: 

� We propose the push-based decision model instead of
the commonly used pull-based model, in order to 
eliminate the transmission of file piece request 
messages. 

� We formally define the data distribution scheduling
problem and derive a lower bound of transmission 
time for a simplified scenario. 

� We propose several algorithms (including a novel 
bipartite graph model) for determining the file piece 
distribution schedule, and evaluate their performance 
by simulations. 

� Simulation results show that the bipartite graph 
model finds the optimal schedules for all the cases we 
tested. 

The rest of this paper is organized as follows. Section 2 
briefly describes some related work. The communication 
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model, notations and analysis are given in Section 3. 
Section 4 presents various algorithms for approaching the 
scheduling problem defined in Section 3, followed by an 
evaluation of simulation results in Section 5. Some of our 
future directions are presented in Section 6 and we 
conclude the paper in Section 7. 

2. Related Work 

Due to the dramatic increase of broadband user 
population, there has been large-scale deployment of P2P 
file sharing systems in the Internet. BitTorrent [2, 6] is 
one of the most popular P2P file sharing applications with 
thousands of simultaneous users. A shared file is chopped 
into multiple small pieces (each about 256Kbytes or 
512Kbytes). Some tracker servers are used to periodically 
announce the list of connected peers who participate in 
the same sharing session. Each peer then uses this peer 
list to contact other peers and reports to them which 
pieces he currently possesses, and requests those missing 
pieces he does not have from those peers who have them. 
A peer can maximize its downloading speed by requesting 
different pieces from different peers at the same time. A 
poor scheduling algorithm may lead to every peer getting 
nearly the same set of pieces and consequently decreases 
the number of file piece sources which a peer can 
simultaneously download from. BitTorrent employs the 
Rarest Element First algorithm, in which those pieces that 
most peers do not have are downloaded first. This 
algorithm is good at increasing the availability of different 
file pieces in the network and can distribute all pieces 
from the original source to different peers across the 
network as quickly as possible. However, our simulation 
results show that Rarest Element First is not an optimal 
scheduling algorithm. 

From the algorithmic point of view, a series of papers 
[7, 8, 9, 10] has investigated the problem of broadcasting 
or multicasting a single message in heterogeneous 
networks. [7] studies the performance on completion time 
of various algorithms in a network where nodes have
different processing times and the transmission times 
between different node pairs are also different. It shows 
that the well-known Fastest Node First may result in 
solutions which are worse than the optimal by an 
unbounded factor and subsequently proposes the Fastest 
Edge First and Earliest Completing Edge First algorithms 
to better solve the problem. If all transmission times are 
the same but nodes have different processing times, [8] 
proves that the problem of minimizing the maximum 
completion time of broadcasting a single message in
networks is NP-hard. It also shows the Fastest Node First
heuristic in computing broadcast schedules can produce 
an 1.5 approximation schedule for the same problem.
However, it should be stressed that the above papers [7, 8, 
9, 10] only analyze the case when there is only one single 

message for transmission. Our aim in this paper is to 
analyze the case when the “message” is chopped into 
multiple pieces situated at different nodes waiting for 
complete distribution. It is obvious that our problem is 
much more complex than previous work and we present 
the first effort in addressing this problem based on some 
simplifications. 

3. Problem Definition 

Due to the initial complexity we face when first 
studying this problem, we develop our model based on 
several simplifications and assumptions. 

3.1.  Communication Model 

3.1.1.  Homogeneous Network. We assume a 
homogeneous network model to begin our first attack to 
the problem. In a homogeneous network, all peers have 
the same uploading and downloading bandwidth.  The 
transmission time for sending a message from any node to 
any other node is the same.  An example is shown in 
Figure 1, where all peers are situated at the edge of the 
network, with logical links connecting every pair of peers 
(i.e. fully-connected graph).

Figure 1. Homogeneous network 

3.1.2.  Notations and Definitions. Let the number of 
participating peers be N and the number of file pieces be 
M. The shared file F is chopped into M small pieces F = 
{F1, F2, …, FM} and each peer possesses a subset of F. 
We represent the file piece possession information as an 
N×M matrix P, called the possession matrix. Pij = 1 if and 
only if node i possesses file piece Fj (1≤i≤N, 1≤j≤M); 
otherwise Pij = 0. We use Pt to denote the possession 
matrix at time t. Refer to Figure 1 where F = {F1, F2, …, 
F8} and {…} next to a node indicates the pieces that the 
node possesses, the possession matrix at the beginning 
(t=0) is:
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Due to the homogeneous network assumption in 
Section 3.1.1, the data distribution can be made in discrete 
cycles synchronously. In each cycle, each peer can only 
send and receive at most one file piece. Given an initial 
possession matrix P0, after one cycle of file piece 
distribution, a new possession matrix P1 will be formed. 
That is, Pk denotes the possession matrix after k cycles. 

We also refer to a possession matrix as a problem 
instance since it provides all the information we need to 
solve the problem. A problem instance P is feasible if for 
each file piece in {F1, F2, …, FM}, at least one peer 

possesses it. That is, ]M,1[j,1P
N

1i
ij ∈∀≥∑

=

. A problem 

instance is infeasible if it is not feasible, meaning that 
there is no way for every peer to get all file pieces since 
there is at least one file piece not available in the system. 

A schedule specifies how file pieces are distributed 
among peers. At each cycle, for each peer, a schedule 
determines which file piece the peer has to send out and to 
whom. A possible schedule for P0 above is: 

Node 1: send piece 3 to node 2 
Node 2: send piece 4 to node 1 
Node 3: send piece 5 to node 5 
Node 4: send piece 6 to node 3 
Node 5: send piece 2 to node 4 

Formally, we use two matrices to represent the 
schedule in one cycle. We use an N×M matrix T to 
represent the piece transmission schedule, which specifies 
which piece a peer receives. Tij = 1 if and only if node i
receives file piece j, otherwise Tij = 0. We use another 
N××××N matrix S to indicate the senders of the file pieces. Sij

= 1 if and only if node i receives file piece from node j; 
otherwise Sij = 0. Similar to P, we use superscript to refer 
to different cycles. That is, Tk and Sk together form the 
schedule to be performed at cycle k. For the above 
example schedule, we have: 
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Node 1 receives piece 4 sent from Node 2 and 
therefore, 1S0

12 =  and 1T 0
14 = . 

There are several properties that a valid schedule (a 
schedule that does not violate any assumptions) should 
observe and they are listed as follows. (Superscripts in 
matrices are dropped to enhance readability when the 
context is clear.) 

• There must be at least one file piece distributed 
among the peers in each cycle (at least one entry in S

and T is 1) 
• A node cannot send a piece that it does not possess (if 

Sij = 1 and Tik = 1, then Pjk = 1) 
• A node cannot send more than one file piece in a 

cycle (sum of every column in S is at most 1) 
• A node cannot receive more than 1 file piece in a 

cycle (sum of every row in S is at most 1) 
It is not difficult to see that a valid schedule may not be 

a good one. For example, we should not arrange Node 2 
to send file piece 1 to Node 1 since Node 1 already 
possesses that piece. Formally, in a good schedule, 

0T k
ij ====  if 1P k

ij ====  for the same i, j at any cycle k.  

Given the possession matrix Pk-1 and a valid and good 
schedule Sk-1 and Tk-1 at cycle k-1, the possession matrix 
at cycle k (k > 0) can be obtained by adding Pk-1 and Tk-1. 
Mathematically, Pk = Pk-1 + Tk-1. Refer to the above 
example, 
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Intuitively, if we keep on applying a valid and good 
schedule in each cycle to a feasible problem instance, all 
peers will get all the file pieces eventually and the file 
distribution can terminate. In other words, given an initial 
feasible P0 and a valid and good schedule, after certain, 
say k0, cycles, j,i,1P 0k

ij ∀= . k0 is the time needed for 

complete distribution of the whole file to all peers. An 
optimal schedule is a schedule that requires the minimum 
number of cycles to complete among all possible 
schedules. Our goal is to develop algorithms that aim at 
finding optimal schedules. 

3.1.3.  Pull-based vs. Push-based. Here we distinguish 
two models for determining the transmission schedule: 
pull-based and push-based. In both models, peers have to 
exchange their file piece possession information 
periodically. They differ in how to make the decisions of 
which piece to send and to whom.

The pull-based model is commonly used in existing 
applications, such as BitTorrent, in which the receiver 
determines which file pieces he needs from others and 
subsequently sends request messages to the nodes he 
chooses. The file source who receives these request 
messages could choose to accept or reject the requests 
based on some policies, such as his available bandwidth 
and the requestors’ contributions. One disadvantage of 
this model is that there will be many short-length but 
frequent request messages flowing through the network, 
taking up network bandwidth and processing time. In 
addition, for the distributed pull-based model, it may 
happen that all peers decide to request the same file piece 
from the same source, thus wasting queuing time at the 



source node (or even getting rejected by the source node). 
For example, in the following problem instance, all nodes 
may send requests to node 1 for piece 1 since piece 1 is 
the rarest piece (most needed piece, since only one node 
in the network has it). We refer to this problem as request 
collision.
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In view of the above problem, we propose the 
push-based model, in which the sender decides which file 
piece and to whom he would like to send. In a 
homogeneous network, in the beginning of a cycle, every 
node can construct the possession matrix P based on the 
possession information from its peers and this matrix is 
the same for every node. Based on P, each peer 
determines the file piece to send and the recipient directly, 
without the need of request messages used in the 
pull-based approach. To avoid the request collision 
problem, an algorithm that generates valid schedules (as 
defined in Section 3.1.2) is employed. The scheduling 
algorithm determines what each peer should do based on 
the possession matrix. As long as each peer executes the 
same valid scheduling algorithm using the same matrix, 
peers should send file pieces without any conflict.

In Section 4, we describe several scheduling 
algorithms that are suitable for the push-based model and 
evaluate their performance by simulations in Section 5. 

3.2.  Analysis 

In this section, we analyze the lower bound of k0, 
which is the number of cycles needed for complete 
distribution of the whole file to all peers. We consider the 
case that each peer can both send one file piece and 
receive one file piece for each synchronous cycle and the 
problem instance is feasible (definition in Section 3.1.2).

Let ri be the total number of 0s across row i, that 

is ( )∑
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Lemma 1: The lower bound of k0 is given by 
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Proof: The first term 
max0 rk ≥ is simple, because the 

node with rmax missing pieces must need at least rmax

cycles to receive the whole file since he can only get one 
file piece from others for each cycle. For the second term 

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

min
20 c

N
logk , we focus on the distribution of one 

particular file piece. For every cycle, we try to best 
distribute this particular file piece. At cycle 0, there are 
cmin 1s along the column. At cycle 1, there will be 2×cmin

1s along this column. At cycle 2, 22×cmin 1s, and so on. At 
cycle k0, there will be

min
k c2 0 × 1s along this column, 

which should be greater than or equal to N. That is, 
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As an example, in the following problem instance, at 
least three cycles (not two) will be needed for complete 
distribution. 
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This is because file piece 1 will need 3
1
5
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cycles, rather than 2rk max0 =≥  cycles. 

As mentioned before, our goal is to develop scheduling 
algorithms that minimize k0. We shall use this lower 
bound to evaluate our algorithms through simulation 
results presented in later sections. Although this bound 
may not be tight for all problem instances, our simulation 
results indicate that it is tight for most of the cases. 

4. Scheduling Algorithms 

We now present three sets of transmission scheduling 
algorithms. They are Rarest Piece First (RPF), Most 
Demanding Node First (MDNF), and Bipartite Matching 
(BPM). All of them run in polynomial time. 

4.1.  Rarest Piece First (RPF) 

The Rarest Piece First algorithm is borrowed from the 
Rarest Element First algorithm employed in BitTorrent. In 
RPF, those file pieces that most peers do not have (rarest) 
are distributed first. 

Definition 1: The rarity cj of piece j is the number of 



peers who have piece j. That is, ∑
=

=
N

1i
ijj Pc . 

RPF aims at increasing the availability of different file 
pieces in the network, such that peers may still have some 
pieces that other peers want. In case the file is published 
by a single source who may just seed (remain available to 
contribute) the file for a short period of time, RPF also 
tries to distribute all pieces from the original source to 
different peers across the network as quickly as possible, 
so that the distribution can continue even if the original 
source leaves. 

We classified two variations of the RPF algorithm 
based on the different orders for nodes to make decisions. 

4.1.1.  RPF – Node-Oriented. In the node-oriented 
variation, each peer chooses the rarest piece (with 
smallest cj) to send out among those pieces it currently 
has. There is no preference on the choice of recipient; he 
only sends this piece to the one with the lowest row index 
who does not have this piece and has not been assigned to 
receive any piece yet. This process is done node by node 
(i.e. row by row in the possession matrix). The 
complexity of this algorithm is O(NM(N+logM)), where 
N is the number of peers and M is the number of file 
pieces. For example,
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The schedule determined for P0 is (arrows are put for 
easier understanding): 

Node 1: send piece 3 to node 2 
Node 2: send piece 4 to node 1 
Node 3: send piece 5 to node 4 
Node 4: send piece 6 to node 3 

At P0, node 1 is the first to make decision and it 
chooses piece 3 because among pieces 1 and 3 he 
currently has, piece 3 is the rarest (only two peers have it, 
while three peers have piece 1). Then he will send to node 
2, since node 2 does not have piece 3 and has not been 
assigned to receive any piece yet. Node 2 is the next to 
select his choice. Similarly, node 2 chooses its rarest piece, 
piece 4, to send to node 1. This process continues node by 
node until no more transmissions can be scheduled. The 
resulting problem matrix at the next cycle, P1, is also 
shown with those just transmitted pieces underlined. Note 
that in this case, only four transmissions can be scheduled 
(maximum is five), and this is the reason for its relatively 
poor performance when compared with other types of 
algorithms like MDNF, BPM that we will present later.

4.1.2.  RPF – Piece-Oriented. Unlike the node-oriented 
variation, piece-oriented variation performs scheduling 

piece by piece (i.e. column by column) starting from the 
globally rarest piece first, then the second globally rarest 
piece, etc. For each piece (column), starts from the lowest 
row index node, if that node has this piece and has not yet 
been assigned to send any piece to others, assign him to 
send out this piece. There is again no preference on the 
choice of recipient; the peer just sends to the one with the 
lowest row index who does not have this piece and has 
not been assigned to receive any piece yet. This process 
continues until no more transmissions can be scheduled 
for this column; then we go to the next column until all 
columns are scheduled. Its complexity is O(M(N+logM)). 
For example, in the same problem instance,
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The schedule is determined in the following sequence: 
Node 2: send piece 4 to node 1 
Node 3: send piece 5 to node 2 
Node 4: send piece 6 to node 3 
Node 5: send piece 2 to node 4 
Node 1: send piece 3 to node 5 

At P0, column 4 is selected for scheduling first since it 
is the globally rarest piece (only one peer has it, and its 
column number is the smallest). After node 2 sends this 
piece 4 to node 1, no more transmission can be made in 
piece 4, so we go to the next globally rarest piece, column 
5. After column 5, then we schedule column 6. After 
column 6 is done, all rarest columns having only one 
possessing peer are done; then we go back to column 2 to 
schedule node 5 sending piece 2 to node 4. Node 3 cannot 
send again, as he has been assigned already. The process 
completes by scheduling the last column, column 3. 

The performance of these two variations is quite 
similar as shown by simulation, with each outperforming 
the other in some cases. But in general, the RPF 
algorithms, which are derived from the Rarest Element 
First algorithm of BitTorrent, perform much worse than 
the following algorithms.

4.2.  Most Demanding Node First (MDNF) 

As indicated in Section 3.2, the number of cycles 
needed depends on two factors: how many pieces a peer 
needs and how rare a file piece is. To reduce the time for 
distribution, both factors have to be considered. RPF only 
considers the second factor but ignores the first one. The 
Most Demanding Node First algorithm takes care of the 
first factor by adding one additional criterion for choosing 
recipients and the performance improvement over RPF is 
significant with this simple enhancement. 

Definition 2: The demand di of node i is the number of 



un-received pieces for node i. That is, (((( ))))∑∑∑∑
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We attach a demand di to every node and we prefer to 
send to the node with largest di. In case several nodes 
have the same demand, we just send to the node with the 
lowest row index. 

Since MDNF is also based on RPF, we again have the 
same two types of variations. 

4.2.1.  MDNF – Node-Oriented. Similar to the RPF – 
Node-Oriented approach, we schedule the transmissions 
node by node; while choosing recipients we send to the 
one with the highest demand di that does not have the 
piece and has not been assigned to receive any piece yet. 
Its complexity is the same as RPF – Node-Oriented, i.e. 
O(NM(N+logM)). For example,
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The schedule is determined in this sequence: 
Node 1: send piece 3 to node 2 
Node 2: send piece 4 to node 1 
Node 3: send piece 5 to node 5 
Node 4: send piece 6 to node 3 
Node 5: send piece 2 to node 4 

The demands for each node are written at the right of 
P0. At P0, node 1 chooses its rarest piece, piece 3, to send 
out and chooses the most demanding node, node 2, to 
receive this piece. Similarly, node 2 sends piece 4 to node 
1. Node 3 now sends piece 5 to node 5 (instead of node 4) 
because node 5 is more demanding than node 4, and so on 
for other nodes.

4.2.2.  MDNF – Piece-Oriented. This is similar to the 
RPF – Piece-Oriented approach. Its complexity is 
O(M(logM+NlogN)), and we present an example as 
follows.
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The schedule is determined in this sequence: 
Node 2: send piece 4 to node 1 
Node 3: send piece 5 to node 2 
Node 4: send piece 6 to node 5 
Node 5: send piece 2 to node 4 
Node 1: send piece 3 to node 3 

At P0, the globally rarest piece, column 4, is selected 
first, so node 2 sends piece 4 to the most demanding node, 
node 1. Similarly, node 3 sends piece 5 to node 2. Then, 
node 4 sends piece 6 to node 5 because both node 1 and 

node 2 have been assigned and node 3 is less demanding 
than node 5. And it is similar for other nodes.

MDNF performs better than RPF in most cases but is 
still not optimal. A common characteristic that is shared 
between RPF and MDNF is that the maximum number of 
transmissions for each cycle cannot be achieved as in the 
example in Section 4.1.1. To fix the problem, we try to 
match as many sender and receiver pairs as possible in 
each cycle and the algorithm is described in the next 
section. 

4.3.  Bipartite Matching (BPM) 

In this section, we present a novel bipartite matching 
graph model for finding transmission schedules which 
outperforms the above two sets of algorithms. We 
transform the problem instance to the well-known 
maximum bipartite matching problem so as to find as 
many sender and receiver pairs as possible in each cycle. 
Weights are added to the nodes to achieve better matching. 
We first describe how to transform the problem and then 
explain the algorithm in detail. 

4.3.1.  Problem Transformation. A bipartite graph is a 
graph G = (V, E) such that there is a partition V = L ∪∪∪∪ R, 
L ∩∩∩∩ R = φφφφ, so that every edge connects a node from L
with a node from R. A matching is a subset of the edges in 
E such that each vertex in V is incident to at most one 
edge in the matching. The maximum bipartite matching 
problem is to find a maximum matching, matching that 
consists the maximum number of edges, in a bipartite 
graph. The maximum bipartite matching problem can be 
reduced to the well-known max-flow problem, which can 
be solved by the Edmonds-Karp algorithm. To apply the 
algorithm, a flow network is constructed according to the 
bipartite graph. The flow network adds a supersource and 
a supersink to the bipartite graph. The supersource has an 
edge to each node in L and each node in R has an edge 
going to the supersink. Due to space limitation, we cannot 
describe the problem and the algorithm in detail. We refer 
interested readers to [11] for more formal discussion.

We now describe how to construct the flow network 
graph from a problem instance P.

Definition 3: The flow network graph from P is a 
directed graph G = (V, E). }t,s{RLV ∪∪= . L and R are 

the left and right batches of nodes having cardinality the 
same as the number of peers N, i.e., NRL == . s, t are 

the supersource and supersink respectively. The edges 
consist of three sets, C}Rv|)t,v{(}Lu|)u,s{(E ∪∈∪∈= , 

where }Lu|)u,s{( ∈ , }Rv|)t,v{( ∈  are the sets of edges 

from the supersource to left batch nodes and right batch 
nodes to the supersink respectively. 



)}0P1P(jand,Rv,Lu|)v,u{(C vjuj =∧=∃∈∈=  are the edges 

from left to right batch nodes and depends on the 
possession matrix Pij. There is an edge from u to v if u
can be a sender to v, which means peer u has at least one 
file piece that peer v does not have. All edge capacities are 
one. 

The following example illustrates the transformation 
process. For the following possession matrix Pij, the flow 
network is as shown. 
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Figure 2. Possession matrix and its BPM graph 

There are links from L1 to R2, R3 and R5, but not R4 
because peer 1 can send piece 3 to peer 2, 3, and 5. 
However, peer 1 has nothing to send to peer 4 as peer 4 
already has pieces 1 and 3 that peer 1 has. The arguments 
for other links are similar. There are O(N2) edges and the 
complexity for constructing the BPM graph is O(N2M). 

To find the maximum matching CS⊆ , we adopt the 
well-established Edmonds-Karp algorithm, which is a 
particular implementation of the general Ford-Fulkerson 
method [11]. It finds augmenting paths by using 
breath-first search from the supersource s to the supersink 
t. Nodes with smaller indices have higher preference in 
expanding states in breath-first search. Its complexity is 
O(VE)=O(N3). For the above example problem instance 
in Figure 2, we will have the following maximum 
matching S, with matched pairs highlighted. 
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Figure 3. Maximally-matched BPM graph and the 
scheduled transmissions 

After matching the pairs of sending and receiving 
nodes, we choose the rarest piece among these two 
matched nodes for transmission and this requires O(M)
time. The transmission schedule is thus, 

Node 1: send piece 3 to node 2 
Node 2: send piece 4 to node 5 
Node 3: send piece 5 to node 4 
Node 4: send piece 6 to node 3 
Node 5: send piece 2 to node 1 

However, although BPM always returns a schedule 
with the maximum number of transmissions for each 
cycle, the performance is not satisfactory, as it does not 
consider whether we can match more in subsequent cycles. 
For instance in the following counter example, 
Using BPM, total 6 cycles are needed. 
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Using MDNF – Node-Oriented, only 5 cycles are needed. 
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The key point is that at P0, the maximally-matched 
schedule (4 transmissions) by BPM blocks peer 5 from 
contributing anything at P1, as all other peers have piece 1 
already. The better one is MDNF – Node-Oriented; which 
lets peer 5 to also contribute something at P1, thus 
shortening the whole distribution time by one cycle. 

4.3.2.  BPM – Simple-weighted. The problem of BPM is 
that it does not take care of the rarity of file pieces and the 
demands of nodes as in RPF and MDNF in matching. To 
find a better matching, we put weights in the nodes so as 
to give priorities to some nodes during the matching 
process. For example, if we give a higher weight to peer 5 
in the above example, peer 5 will be matched and will not 
be idle.

We put weights on nodes on both sides and these 
weights reflect the demands of the peers and the rarity of 
the file pieces they possess. Definition 2 defines the 
demand di of a peer in Section 4.2. We now define how to 
measure the rarity of the file pieces a peer possesses. 

Definition 4: The rarity possession index γi of peer i is 
the sum of number of 0s in other peers for those pieces 

that peer i has. That is, ( )∑∑
= =

=
N

1a

M

1b
abi )i(Bγγγγ where Bab is an 

N×M matrix and 
⎩
⎨
⎧ =∧=∧≠

=
otherwiseif0

)0P()1P()ia(if1
)i(B abib

ab
. 

For example, for P in Figure 2, γ1 = 2 + 3 (number of 
zeros in column 1 plus number of zeros in column 3). 

Our BPM – Simple-weighted algorithm works as 
follows: 
1. Construct the flow network graph according to 

Definition 3. 
2. Find the rarity possession indices of all peers and 



assign the values as weights on the nodes in L
accordingly. 

3. Find the demands of all peers and assign the values as 
weights on the nodes in R accordingly. 

4. Employ the Edmonds-Karp algorithm to find the 
weighted maximal matching. 

5. For each matching, identify the rarest piece to be sent. 

Consider an example, 
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Figure 4. BPM – Simple-weighted graph and the 
scheduled transmissions 

The numbers besides the right-side nodes R are the 
demands di, and the numbers besides the left-side nodes L
are the rarity possession indices γi. For example, L1 has γ1 

= 5 because for pieces 3, 4, 5 that peer 1 has, there are a 
total of five 0s along columns 3, 4, and 5. By preferring 
paths with largest γi first, we ensure those peers who have 
rare pieces can send first. On the other hand, the 
algorithm tends to select a node with higher demand to be 
a receiver, thus making sure the most demanding nodes 
can get file pieces. 

Simulation results show that BPM – Simple-weighted
performs better than MDNF and RPF. However, there are 
still a few cases that it cannot achieve the optimal as 
shown below. 
Using BPM – Simple-weighted, total 5 cycles are needed. 
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An optimal schedule requires only 4 cycles. 
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The reason is that P0 is very special in that all demands 
di=4 are the same, and so the weights on R become 

useless. In addition, the rarity possession indices γi only 
ensure those peers with larger γi can be matched with 
someone else, but do not imply those rarest pieces can 
actually be sent to those in need. In the above example at 
P1, BPM – Simple-weighted matches peer 1 with 2, peer 2 
with 3, and peer 3 with 1, which by no ways the rarest 
piece 7 can be sent out to others. 

4.3.3.  BPM – Enhanced-weighted. Due to the above 
problem, we further enhance BPM – Simple-weighted by 
adding the rarity demand index δi (defined below) to the 
demand di to make up the total weight for the right-side 
nodes R. That is, right-side weights = di + δi.

Definition 5: The rarity demand index δi of peer i is 
the reciprocal of the sum of number of 1s in other peers 
for those pieces that peer i does not have. That is, 

( )∑∑
= =

=
N

1a

M

1b
ab

i

)i(D

1
δδδδ

where Dab is an N×M matrix and 

⎩
⎨
⎧ =∧=∧≠

=
otherwiseif0

)1P()0P()ia(if1)i(D abib
ab

. 

A final example to illustrate the solution of the 
previous problem, 
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Figure 5. BPM – Enhanced-weighted graph and the 
scheduled transmissions 

The right-side weights are in the form di + δi. For 
example, R1 has δ1 = 1/15 because for pieces 2, 5, 7, 8 
that peer 1 does not have, there are a total of fifteen 1s
along columns 2, 5, 7 and 8. By adding the rarity demand 
indices δi to the right-side weights, those peers having the 
rarest pieces will be matched with those who really need 
these rarest pieces first. Note that δi = 1/di is not 
necessarily true in general. The example above is just a 
special case only. 

BPM – Enhanced-weighted finds optimal schedules for 
all cases we tested in simulations. Therefore, we 
conjecture that BPM – Enhanced-weighted is an optimal 
scheduling algorithm for solving this simplified P2P 
collaborative file distribution problem. 



5. Simulation Results 

We randomly generate the problem instances (with 
each individual matrix element independently generated) 
and employ various algorithms presented in the previous 
section to find transmission schedules. We note the 
number of cycles needed by using that particular 
algorithm and compare it with the lower bound we 
developed in Section 3.2. We use the sub-optimal ratio as 
the performance measure. 

Definition 6: The sub-optimal ratio is the number of 
cases that the particular algorithm cannot return the lower 
bound number of cycles needed over the total number of 
cases simulated. That is, 

casesofnumtotal
casesoptimalsubofnum

ratiooptimalsub
−

=− . 

Below is the graph for the sub-optimal ratios for all the 
above mentioned algorithms over varying problem size 
with N=M. We simulated 100,000 cases for each 
simulation point. 

Figure 6. Sub-optimal ratios of various scheduling 
algorithms (all) over varying problem size 

For a particular set of algorithms (i.e. RPF, MDNF, 
BPM), the performance of different variants are similar. 
The performance of MDNF is always better than RPF, 
while the performance of BPM is always better than 
MDNF (with the exception of BPM – Un-weighted). We 
find that for small problem sizes (e.g. 5x5, 6x6), the RPF 
algorithms perform very poorly; with about 10-20% cases 
returning sub-optimal solutions. With increasing problem 
size, the sub-optimal ratio decreases. For RPF and MDNF, 
the sub-optimal ratios are generally higher (e.g. small 
peak at 7x7, 9x9) for odd problem sizes. It is because RPF 
and MDNF generally match peers with one another (e.g. 
peer 1 send to peer 3, and peer 3 send back to peer 1), 
thus making one odd peer idle, degrading the performance. 
This odd number problem does not happen in BPM. In 
Figure 7, we magnify Figure 6 by only showing the 
sub-optimal ratios for MDNF and BPM. 

Figure 7. Sub-optimal ratios of various scheduling 
algorithms (MDNF+BPM) over varying problem size 

With the exception of BPM – Un-weighted, BPM 
algorithms outperform all other types of algorithms. The 
reason for the unsatisfactory result of BPM – Un-weighted
has been discussed in Section 4.3.1. The small 
sub-optimal ratios of weighted BPM for small problem 
sizes (eg. 5x5, 6x6, 7x7) is due to the loose lower bound 
estimation for special problem instances like this.
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The optimum is 4 cycles, which is higher than the 
lower bound of 3 cycles predicted. We check all those 
“sub-optimal” cases of BPM – Enhanced-weighted and 
find that all of them belong to the above special class. 
Therefore, we find no cases that BPM – 
Enhanced-weighted returns sub-optimal solution and thus 
conjecture that it is an optimal scheduling algorithm. 

We further perform simulations for varying file size (M) 
with fixed peer size (N), and the case for varying peer size 
with fixed file size. 

Figure 8. Sub-optimal ratios of various scheduling 
algorithms over varying file size (peer size = 10) 



Figure 9. Sub-optimal ratios of various scheduling 
algorithms over varying peer size (file size = 50) 

From Figure 8, the sub-optimal ratios of RPF and 
MDNF increase with increasing file sizes, while from 
Figure 9, the sub-optimal ratios of RPF and MDNF 
decrease with increasing peer sizes. The rate of increase 
with increasing file size is smaller than the rate of 
decrease with increasing peer size, thus making the 
sub-optimal ratios drop with increasing problem size as 
shown in Figure 6 and 7. In all cases, BPM – 
Enhanced-weighted returns the optimal solution. 

6. Future Work 

In this paper, we have investigated the simplified 
problem of P2P file distribution scheduling with 
symmetric bandwidth and homogeneous network 
assumptions. We shall study the case for asymmetric
bandwidth, which is common in the Internet as domestic 
users usually connect using the Asymmetric Digital 
Subscriber Line (ADSL) technology where uploading 
bandwidth is smaller than downloading bandwidth. We 
shall also study the case when the network is 
heterogeneous with asynchronous transmission time for 
different pairs of nodes. 

7. Conclusion 

Peer-to-Peer file sharing applications have become 
immensely popular in the Internet, but previous research 
seldom investigates the data distribution problem which 
should be the core of any file sharing applications. We 
formally define the collaborative file distribution problem 
with the possession matrix and transmission matrix 
formulation and suggest several types of algorithms (RPF, 
MDNF and BPM) for solving the scheduling problem of 
deciding who send which file pieces to whom. In 
particular, our novel Bipartite Matching model 
outperforms all other algorithms and can return the 
optimal solution for all cases as shown by simulations. 
Therefore, we conclude that the BPM – 

Enhanced-weighted algorithm is a promising algorithm 
for practical deployment as the core scheduling algorithm 
in P2P file sharing applications. 
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