
Scheduling Algorithms for Peer-to-Peer Collaborative File Distribution

Jonathan S.K. Chan Victor O.K. Li King-Shan Lui
Department of Electrical and Electronic Engineering

University of Hong Kong, Pokfulam, Hong Kong, China
{skjchan, vli, kslui}@eee.hku.hk

Abstract

Peer-to-Peer file sharing applications on the Internet,
such as BitTorrent, Gnutella, etc., have been immensely
popular. Prior research mainly focuses on peer and
content discovery, overlay topology formation, fairness
and incentive issues, etc, but seldom investigates the data
distribution problem which is also a core component of
any file sharing application. In this paper, we present the
first effort in addressing this collaborative file distribution
problem and formally define the scheduling problem in a
simplified context. We suggest several types of algorithms,
including a novel Bipartite Matching algorithm, for
solving the problem. Simulation results show that our
weighted bipartite algorithm finds an optimal solution for
all cases tested. Therefore, we believe our algorithm is a
promising solution to be employed as the core scheduling
module in P2P file sharing applications, shortening the
total download time experienced by users.

1. Introduction

Peer-to-Peer (P2P) applications have become
immensely popular in the Internet. Among P2P
applications, collaborative sharing of large video/audio
files and software is perhaps the most popular one.
Compared with traditional client/server file sharing
approaches (e.g. FTP, WWW), P2P collaborative file
sharing has one major advantage, namely, scalability. The
performance of client/server approach deteriorates rapidly
as the number of simultaneous clients increases, since the
outgoing bandwidth of the server is shared among all
simultaneous clients. Interestingly, in a well-designed P2P
file sharing network, more peers participating in the file
sharing session generally means better performance, as
each peer could download simultaneously from multiple
peers without any obvious bottleneck links.

Experiments, such as those in [1], have shown that
using parallel downloading scheme in P2P file sharing
systems, in which an end user opens multiple connections
with multiple file sources to download different portions
of the file from different sources and then reassembles the

file locally, could result in higher aggregate download rate
and thus shorter download time. Due to the significant
performance improvements with collaborative file sharing,
there has been widespread use of P2P file sharing
applications like BitTorrent [2], Gnutella [3], Kazaa [4],
Napster [5], etc., just to name a few.

P2P file sharing systems have been attracting much
research attention for the past few years since its recent
inception. Although there are many papers related to P2P
systems investigating issues of diversified interest, most
of them focus on topics like overlay topology formation,
peer discovery, content search, sharing fairness and
incentive mechanisms, etc. Few of them really look into
the data distribution scheduling problem, which is the
core of any file sharing systems since without actual data
transmission and distribution, no file sharing is possible.
A schedule tells each peer which piece should be sent and
to whom. A poor data distribution schedule could result in
considerably longer download time, while a good
schedule could shorten the completion time and
efficiently utilize all resources like network bandwidth.
This article presents the first effort in addressing the “data
distribution scheduling problem” in P2P collaborative file
sharing systems and proposes a novel bipartite graph
model for efficiently solving the scheduling problem.

The major contributions of this paper are summarized
as follows:

� We propose the push-based decision model instead of
the commonly used pull-based model, in order to
eliminate the transmission of file piece request
messages.

� We formally define the data distribution scheduling
problem and derive a lower bound of transmission
time for a simplified scenario.

� We propose several algorithms (including a novel
bipartite graph model) for determining the file piece
distribution schedule, and evaluate their performance
by simulations.

� Simulation results show that the bipartite graph
model finds the optimal schedules for all the cases we
tested.

The rest of this paper is organized as follows. Section 2
briefly describes some related work. The communication

1-4244-0030-9/05/$20.00 ©2005 IEEE

model, notations and analysis are given in Section 3.
Section 4 presents various algorithms for approaching the
scheduling problem defined in Section 3, followed by an
evaluation of simulation results in Section 5. Some of our
future directions are presented in Section 6 and we
conclude the paper in Section 7.

2. Related Work

Due to the dramatic increase of broadband user
population, there has been large-scale deployment of P2P
file sharing systems in the Internet. BitTorrent [2, 6] is
one of the most popular P2P file sharing applications with
thousands of simultaneous users. A shared file is chopped
into multiple small pieces (each about 256Kbytes or
512Kbytes). Some tracker servers are used to periodically
announce the list of connected peers who participate in
the same sharing session. Each peer then uses this peer
list to contact other peers and reports to them which
pieces he currently possesses, and requests those missing
pieces he does not have from those peers who have them.
A peer can maximize its downloading speed by requesting
different pieces from different peers at the same time. A
poor scheduling algorithm may lead to every peer getting
nearly the same set of pieces and consequently decreases
the number of file piece sources which a peer can
simultaneously download from. BitTorrent employs the
Rarest Element First algorithm, in which those pieces that
most peers do not have are downloaded first. This
algorithm is good at increasing the availability of different
file pieces in the network and can distribute all pieces
from the original source to different peers across the
network as quickly as possible. However, our simulation
results show that Rarest Element First is not an optimal
scheduling algorithm.

From the algorithmic point of view, a series of papers
[7, 8, 9, 10] has investigated the problem of broadcasting
or multicasting a single message in heterogeneous
networks. [7] studies the performance on completion time
of various algorithms in a network where nodes have
different processing times and the transmission times
between different node pairs are also different. It shows
that the well-known Fastest Node First may result in
solutions which are worse than the optimal by an
unbounded factor and subsequently proposes the Fastest
Edge First and Earliest Completing Edge First algorithms
to better solve the problem. If all transmission times are
the same but nodes have different processing times, [8]
proves that the problem of minimizing the maximum
completion time of broadcasting a single message in
networks is NP-hard. It also shows the Fastest Node First
heuristic in computing broadcast schedules can produce
an 1.5 approximation schedule for the same problem.
However, it should be stressed that the above papers [7, 8,
9, 10] only analyze the case when there is only one single

message for transmission. Our aim in this paper is to
analyze the case when the “message” is chopped into
multiple pieces situated at different nodes waiting for
complete distribution. It is obvious that our problem is
much more complex than previous work and we present
the first effort in addressing this problem based on some
simplifications.

3. Problem Definition

Due to the initial complexity we face when first
studying this problem, we develop our model based on
several simplifications and assumptions.

3.1. Communication Model

3.1.1. Homogeneous Network. We assume a
homogeneous network model to begin our first attack to
the problem. In a homogeneous network, all peers have
the same uploading and downloading bandwidth. The
transmission time for sending a message from any node to
any other node is the same. An example is shown in
Figure 1, where all peers are situated at the edge of the
network, with logical links connecting every pair of peers
(i.e. fully-connected graph).

Figure 1. Homogeneous network

3.1.2. Notations and Definitions. Let the number of
participating peers be N and the number of file pieces be
M. The shared file F is chopped into M small pieces F =
{F1, F2, …, FM} and each peer possesses a subset of F.
We represent the file piece possession information as an
N×M matrix P, called the possession matrix. Pij = 1 if and
only if node i possesses file piece Fj (1≤i≤N, 1≤j≤M);
otherwise Pij = 0. We use Pt to denote the possession
matrix at time t. Refer to Figure 1 where F = {F1, F2, …,
F8} and {…} next to a node indicates the pieces that the
node possesses, the possession matrix at the beginning
(t=0) is:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11000010
10100101
11010010
00001001
00000101

P0

Due to the homogeneous network assumption in
Section 3.1.1, the data distribution can be made in discrete
cycles synchronously. In each cycle, each peer can only
send and receive at most one file piece. Given an initial
possession matrix P0, after one cycle of file piece
distribution, a new possession matrix P1 will be formed.
That is, Pk denotes the possession matrix after k cycles.

We also refer to a possession matrix as a problem
instance since it provides all the information we need to
solve the problem. A problem instance P is feasible if for
each file piece in {F1, F2, …, FM}, at least one peer

possesses it. That is,]M,1[j,1P
N

1i
ij ∈∀≥∑

=

. A problem

instance is infeasible if it is not feasible, meaning that
there is no way for every peer to get all file pieces since
there is at least one file piece not available in the system.

A schedule specifies how file pieces are distributed
among peers. At each cycle, for each peer, a schedule
determines which file piece the peer has to send out and to
whom. A possible schedule for P0 above is:

Node 1: send piece 3 to node 2
Node 2: send piece 4 to node 1
Node 3: send piece 5 to node 5
Node 4: send piece 6 to node 3
Node 5: send piece 2 to node 4

Formally, we use two matrices to represent the
schedule in one cycle. We use an N×M matrix T to
represent the piece transmission schedule, which specifies
which piece a peer receives. Tij = 1 if and only if node i
receives file piece j, otherwise Tij = 0. We use another
N××××N matrix S to indicate the senders of the file pieces. Sij

= 1 if and only if node i receives file piece from node j;
otherwise Sij = 0. Similar to P, we use superscript to refer
to different cycles. That is, Tk and Sk together form the
schedule to be performed at cycle k. For the above
example schedule, we have:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

00100
10000
01000
00001
00010

S0

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

00010000
00000010
00100000
00000100
00001000

T0

Node 1 receives piece 4 sent from Node 2 and
therefore, 1S0

12 = and 1T 0
14 = .

There are several properties that a valid schedule (a
schedule that does not violate any assumptions) should
observe and they are listed as follows. (Superscripts in
matrices are dropped to enhance readability when the
context is clear.)

• There must be at least one file piece distributed
among the peers in each cycle (at least one entry in S

and T is 1)
• A node cannot send a piece that it does not possess (if

Sij = 1 and Tik = 1, then Pjk = 1)
• A node cannot send more than one file piece in a

cycle (sum of every column in S is at most 1)
• A node cannot receive more than 1 file piece in a

cycle (sum of every row in S is at most 1)
It is not difficult to see that a valid schedule may not be

a good one. For example, we should not arrange Node 2
to send file piece 1 to Node 1 since Node 1 already
possesses that piece. Formally, in a good schedule,

0T k
ij ==== if 1P k

ij ==== for the same i, j at any cycle k.

Given the possession matrix Pk-1 and a valid and good
schedule Sk-1 and Tk-1 at cycle k-1, the possession matrix
at cycle k (k > 0) can be obtained by adding Pk-1 and Tk-1.
Mathematically, Pk = Pk-1 + Tk-1. Refer to the above
example,

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=+=

11010010
10100111
11110010
00001101
00001101

TPP 001

Intuitively, if we keep on applying a valid and good
schedule in each cycle to a feasible problem instance, all
peers will get all the file pieces eventually and the file
distribution can terminate. In other words, given an initial
feasible P0 and a valid and good schedule, after certain,
say k0, cycles, j,i,1P 0k

ij ∀= . k0 is the time needed for

complete distribution of the whole file to all peers. An
optimal schedule is a schedule that requires the minimum
number of cycles to complete among all possible
schedules. Our goal is to develop algorithms that aim at
finding optimal schedules.

3.1.3. Pull-based vs. Push-based. Here we distinguish
two models for determining the transmission schedule:
pull-based and push-based. In both models, peers have to
exchange their file piece possession information
periodically. They differ in how to make the decisions of
which piece to send and to whom.

The pull-based model is commonly used in existing
applications, such as BitTorrent, in which the receiver
determines which file pieces he needs from others and
subsequently sends request messages to the nodes he
chooses. The file source who receives these request
messages could choose to accept or reject the requests
based on some policies, such as his available bandwidth
and the requestors’ contributions. One disadvantage of
this model is that there will be many short-length but
frequent request messages flowing through the network,
taking up network bandwidth and processing time. In
addition, for the distributed pull-based model, it may
happen that all peers decide to request the same file piece
from the same source, thus wasting queuing time at the

source node (or even getting rejected by the source node).
For example, in the following problem instance, all nodes
may send requests to node 1 for piece 1 since piece 1 is
the rarest piece (most needed piece, since only one node
in the network has it). We refer to this problem as request
collision.

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11101010
10101100
11010110
01011010
00110101

P

In view of the above problem, we propose the
push-based model, in which the sender decides which file
piece and to whom he would like to send. In a
homogeneous network, in the beginning of a cycle, every
node can construct the possession matrix P based on the
possession information from its peers and this matrix is
the same for every node. Based on P, each peer
determines the file piece to send and the recipient directly,
without the need of request messages used in the
pull-based approach. To avoid the request collision
problem, an algorithm that generates valid schedules (as
defined in Section 3.1.2) is employed. The scheduling
algorithm determines what each peer should do based on
the possession matrix. As long as each peer executes the
same valid scheduling algorithm using the same matrix,
peers should send file pieces without any conflict.

In Section 4, we describe several scheduling
algorithms that are suitable for the push-based model and
evaluate their performance by simulations in Section 5.

3.2. Analysis

In this section, we analyze the lower bound of k0,
which is the number of cycles needed for complete
distribution of the whole file to all peers. We consider the
case that each peer can both send one file piece and
receive one file piece for each synchronous cycle and the
problem instance is feasible (definition in Section 3.1.2).

Let ri be the total number of 0s across row i, that

is ()∑
=

−=
M

1j
iji P1r , we can find the maximum number of 0s

across all rows { }i
]N,1[i

max rmaxr
∈

= . Let cj be the total number

of 1s along column j, that is ∑
=

=
N

1i
ijj Pc , we can find the

minimum number of 1s along all columns
{ }j

]M,1[j
min cminc

∈
= .

Lemma 1: The lower bound of k0 is given by

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

min
2max0 c

N
log,rmaxk .

Proof: The first term
max0 rk ≥ is simple, because the

node with rmax missing pieces must need at least rmax

cycles to receive the whole file since he can only get one
file piece from others for each cycle. For the second term

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

min
20 c

N
logk , we focus on the distribution of one

particular file piece. For every cycle, we try to best
distribute this particular file piece. At cycle 0, there are
cmin 1s along the column. At cycle 1, there will be 2×cmin

1s along this column. At cycle 2, 22×cmin 1s, and so on. At
cycle k0, there will be

min
k c2 0 × 1s along this column,

which should be greater than or equal to N. That is,

Nc2 min
k0 ≥× , which gives

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

min
20 c

N
logk . As k0 must be

an integer,
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

min
20 c

N
logk . Hence,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

min
2max0 c

N
log,rmaxk .

As an example, in the following problem instance, at
least three cycles (not two) will be needed for complete
distribution.

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11111100
11111110
11111110
11111110
11111111

P

This is because file piece 1 will need 3
1
5

logk 20 =⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠

⎞
⎜
⎝

⎛
≥

cycles, rather than 2rk max0 =≥ cycles.

As mentioned before, our goal is to develop scheduling
algorithms that minimize k0. We shall use this lower
bound to evaluate our algorithms through simulation
results presented in later sections. Although this bound
may not be tight for all problem instances, our simulation
results indicate that it is tight for most of the cases.

4. Scheduling Algorithms

We now present three sets of transmission scheduling
algorithms. They are Rarest Piece First (RPF), Most
Demanding Node First (MDNF), and Bipartite Matching
(BPM). All of them run in polynomial time.

4.1. Rarest Piece First (RPF)

The Rarest Piece First algorithm is borrowed from the
Rarest Element First algorithm employed in BitTorrent. In
RPF, those file pieces that most peers do not have (rarest)
are distributed first.

Definition 1: The rarity cj of piece j is the number of

peers who have piece j. That is, ∑
=

=
N

1i
ijj Pc .

RPF aims at increasing the availability of different file
pieces in the network, such that peers may still have some
pieces that other peers want. In case the file is published
by a single source who may just seed (remain available to
contribute) the file for a short period of time, RPF also
tries to distribute all pieces from the original source to
different peers across the network as quickly as possible,
so that the distribution can continue even if the original
source leaves.

We classified two variations of the RPF algorithm
based on the different orders for nodes to make decisions.

4.1.1. RPF – Node-Oriented. In the node-oriented
variation, each peer chooses the rarest piece (with
smallest cj) to send out among those pieces it currently
has. There is no preference on the choice of recipient; he
only sends this piece to the one with the lowest row index
who does not have this piece and has not been assigned to
receive any piece yet. This process is done node by node
(i.e. row by row in the possession matrix). The
complexity of this algorithm is O(NM(N+logM)), where
N is the number of peers and M is the number of file
pieces. For example,

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11000010
10100101
11010010
00001001
00000101

P0

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

11000010
10110101
11110010
00001101
00001101

P1

The schedule determined for P0 is (arrows are put for
easier understanding):

Node 1: send piece 3 to node 2
Node 2: send piece 4 to node 1
Node 3: send piece 5 to node 4
Node 4: send piece 6 to node 3

At P0, node 1 is the first to make decision and it
chooses piece 3 because among pieces 1 and 3 he
currently has, piece 3 is the rarest (only two peers have it,
while three peers have piece 1). Then he will send to node
2, since node 2 does not have piece 3 and has not been
assigned to receive any piece yet. Node 2 is the next to
select his choice. Similarly, node 2 chooses its rarest piece,
piece 4, to send to node 1. This process continues node by
node until no more transmissions can be scheduled. The
resulting problem matrix at the next cycle, P1, is also
shown with those just transmitted pieces underlined. Note
that in this case, only four transmissions can be scheduled
(maximum is five), and this is the reason for its relatively
poor performance when compared with other types of
algorithms like MDNF, BPM that we will present later.

4.1.2. RPF – Piece-Oriented. Unlike the node-oriented
variation, piece-oriented variation performs scheduling

piece by piece (i.e. column by column) starting from the
globally rarest piece first, then the second globally rarest
piece, etc. For each piece (column), starts from the lowest
row index node, if that node has this piece and has not yet
been assigned to send any piece to others, assign him to
send out this piece. There is again no preference on the
choice of recipient; the peer just sends to the one with the
lowest row index who does not have this piece and has
not been assigned to receive any piece yet. This process
continues until no more transmissions can be scheduled
for this column; then we go to the next column until all
columns are scheduled. Its complexity is O(M(N+logM)).
For example, in the same problem instance,

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11000010
10100101
11010010
00001001
00000101

P0

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

11000110
10100111
11110010
00011001
00001101

P1

The schedule is determined in the following sequence:
Node 2: send piece 4 to node 1
Node 3: send piece 5 to node 2
Node 4: send piece 6 to node 3
Node 5: send piece 2 to node 4
Node 1: send piece 3 to node 5

At P0, column 4 is selected for scheduling first since it
is the globally rarest piece (only one peer has it, and its
column number is the smallest). After node 2 sends this
piece 4 to node 1, no more transmission can be made in
piece 4, so we go to the next globally rarest piece, column
5. After column 5, then we schedule column 6. After
column 6 is done, all rarest columns having only one
possessing peer are done; then we go back to column 2 to
schedule node 5 sending piece 2 to node 4. Node 3 cannot
send again, as he has been assigned already. The process
completes by scheduling the last column, column 3.

The performance of these two variations is quite
similar as shown by simulation, with each outperforming
the other in some cases. But in general, the RPF
algorithms, which are derived from the Rarest Element
First algorithm of BitTorrent, perform much worse than
the following algorithms.

4.2. Most Demanding Node First (MDNF)

As indicated in Section 3.2, the number of cycles
needed depends on two factors: how many pieces a peer
needs and how rare a file piece is. To reduce the time for
distribution, both factors have to be considered. RPF only
considers the second factor but ignores the first one. The
Most Demanding Node First algorithm takes care of the
first factor by adding one additional criterion for choosing
recipients and the performance improvement over RPF is
significant with this simple enhancement.

Definition 2: The demand di of node i is the number of

un-received pieces for node i. That is, (((())))∑∑∑∑
====

−−−−====
M

1j
iji P1d .

We attach a demand di to every node and we prefer to
send to the node with largest di. In case several nodes
have the same demand, we just send to the node with the
lowest row index.

Since MDNF is also based on RPF, we again have the
same two types of variations.

4.2.1. MDNF – Node-Oriented. Similar to the RPF –
Node-Oriented approach, we schedule the transmissions
node by node; while choosing recipients we send to the
one with the highest demand di that does not have the
piece and has not been assigned to receive any piece yet.
Its complexity is the same as RPF – Node-Oriented, i.e.
O(NM(N+logM)). For example,

5
4
4
6
6

11000010
10100101
11010010
00001001
00000101

P0

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

11010010
10100111
11110010
00001101
00001101

P1

The schedule is determined in this sequence:
Node 1: send piece 3 to node 2
Node 2: send piece 4 to node 1
Node 3: send piece 5 to node 5
Node 4: send piece 6 to node 3
Node 5: send piece 2 to node 4

The demands for each node are written at the right of
P0. At P0, node 1 chooses its rarest piece, piece 3, to send
out and chooses the most demanding node, node 2, to
receive this piece. Similarly, node 2 sends piece 4 to node
1. Node 3 now sends piece 5 to node 5 (instead of node 4)
because node 5 is more demanding than node 4, and so on
for other nodes.

4.2.2. MDNF – Piece-Oriented. This is similar to the
RPF – Piece-Oriented approach. Its complexity is
O(M(logM+NlogN)), and we present an example as
follows.

5
4
4
6
6

11000010
10100101
11010010
00001001
00000101

P0

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

11100010
10100111
11010110
00011001
00001101

P1

The schedule is determined in this sequence:
Node 2: send piece 4 to node 1
Node 3: send piece 5 to node 2
Node 4: send piece 6 to node 5
Node 5: send piece 2 to node 4
Node 1: send piece 3 to node 3

At P0, the globally rarest piece, column 4, is selected
first, so node 2 sends piece 4 to the most demanding node,
node 1. Similarly, node 3 sends piece 5 to node 2. Then,
node 4 sends piece 6 to node 5 because both node 1 and

node 2 have been assigned and node 3 is less demanding
than node 5. And it is similar for other nodes.

MDNF performs better than RPF in most cases but is
still not optimal. A common characteristic that is shared
between RPF and MDNF is that the maximum number of
transmissions for each cycle cannot be achieved as in the
example in Section 4.1.1. To fix the problem, we try to
match as many sender and receiver pairs as possible in
each cycle and the algorithm is described in the next
section.

4.3. Bipartite Matching (BPM)

In this section, we present a novel bipartite matching
graph model for finding transmission schedules which
outperforms the above two sets of algorithms. We
transform the problem instance to the well-known
maximum bipartite matching problem so as to find as
many sender and receiver pairs as possible in each cycle.
Weights are added to the nodes to achieve better matching.
We first describe how to transform the problem and then
explain the algorithm in detail.

4.3.1. Problem Transformation. A bipartite graph is a
graph G = (V, E) such that there is a partition V = L ∪∪∪∪ R,
L ∩∩∩∩ R = φφφφ, so that every edge connects a node from L
with a node from R. A matching is a subset of the edges in
E such that each vertex in V is incident to at most one
edge in the matching. The maximum bipartite matching
problem is to find a maximum matching, matching that
consists the maximum number of edges, in a bipartite
graph. The maximum bipartite matching problem can be
reduced to the well-known max-flow problem, which can
be solved by the Edmonds-Karp algorithm. To apply the
algorithm, a flow network is constructed according to the
bipartite graph. The flow network adds a supersource and
a supersink to the bipartite graph. The supersource has an
edge to each node in L and each node in R has an edge
going to the supersink. Due to space limitation, we cannot
describe the problem and the algorithm in detail. We refer
interested readers to [11] for more formal discussion.

We now describe how to construct the flow network
graph from a problem instance P.

Definition 3: The flow network graph from P is a
directed graph G = (V, E). }t,s{RLV ∪∪= . L and R are

the left and right batches of nodes having cardinality the
same as the number of peers N, i.e., NRL == . s, t are

the supersource and supersink respectively. The edges
consist of three sets, C}Rv|)t,v{(}Lu|)u,s{(E ∪∈∪∈= ,

where }Lu|)u,s{(∈ , }Rv|)t,v{(∈ are the sets of edges

from the supersource to left batch nodes and right batch
nodes to the supersink respectively.

)}0P1P(jand,Rv,Lu|)v,u{(C vjuj =∧=∃∈∈= are the edges

from left to right batch nodes and depends on the
possession matrix Pij. There is an edge from u to v if u
can be a sender to v, which means peer u has at least one
file piece that peer v does not have. All edge capacities are
one.

The following example illustrates the transformation
process. For the following possession matrix Pij, the flow
network is as shown.

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11000010
10100101
11010010
00001001
00000101

P

Figure 2. Possession matrix and its BPM graph

There are links from L1 to R2, R3 and R5, but not R4
because peer 1 can send piece 3 to peer 2, 3, and 5.
However, peer 1 has nothing to send to peer 4 as peer 4
already has pieces 1 and 3 that peer 1 has. The arguments
for other links are similar. There are O(N2) edges and the
complexity for constructing the BPM graph is O(N2M).

To find the maximum matching CS⊆ , we adopt the
well-established Edmonds-Karp algorithm, which is a
particular implementation of the general Ford-Fulkerson
method [11]. It finds augmenting paths by using
breath-first search from the supersource s to the supersink
t. Nodes with smaller indices have higher preference in
expanding states in breath-first search. Its complexity is
O(VE)=O(N3). For the above example problem instance
in Figure 2, we will have the following maximum
matching S, with matched pairs highlighted.

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11000010
10100101
11010010
00001001
00000101

P

Figure 3. Maximally-matched BPM graph and the
scheduled transmissions

After matching the pairs of sending and receiving
nodes, we choose the rarest piece among these two
matched nodes for transmission and this requires O(M)
time. The transmission schedule is thus,

Node 1: send piece 3 to node 2
Node 2: send piece 4 to node 5
Node 3: send piece 5 to node 4
Node 4: send piece 6 to node 3
Node 5: send piece 2 to node 1

However, although BPM always returns a schedule
with the maximum number of transmissions for each
cycle, the performance is not satisfactory, as it does not
consider whether we can match more in subsequent cycles.
For instance in the following counter example,
Using BPM, total 6 cycles are needed.

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

00000
10011
10001
11001
11100

P0

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

00001
10011
10011
11101
11101

P1 …

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11111
11111
11111
11111
11111

P6

Using MDNF – Node-Oriented, only 5 cycles are needed.

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

00000
10011
10001
11001
11100

P0

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

00100
10011
11001
11011
11101

P1 …

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11111
11111
11111
11111
11111

P5

The key point is that at P0, the maximally-matched
schedule (4 transmissions) by BPM blocks peer 5 from
contributing anything at P1, as all other peers have piece 1
already. The better one is MDNF – Node-Oriented; which
lets peer 5 to also contribute something at P1, thus
shortening the whole distribution time by one cycle.

4.3.2. BPM – Simple-weighted. The problem of BPM is
that it does not take care of the rarity of file pieces and the
demands of nodes as in RPF and MDNF in matching. To
find a better matching, we put weights in the nodes so as
to give priorities to some nodes during the matching
process. For example, if we give a higher weight to peer 5
in the above example, peer 5 will be matched and will not
be idle.

We put weights on nodes on both sides and these
weights reflect the demands of the peers and the rarity of
the file pieces they possess. Definition 2 defines the
demand di of a peer in Section 4.2. We now define how to
measure the rarity of the file pieces a peer possesses.

Definition 4: The rarity possession index γi of peer i is
the sum of number of 0s in other peers for those pieces

that peer i has. That is, ()∑∑
= =

=
N

1a

M

1b
abi)i(Bγγγγ where Bab is an

N×M matrix and
⎩
⎨
⎧ =∧=∧≠

=
otherwiseif0

)0P()1P()ia(if1
)i(B abib

ab
.

For example, for P in Figure 2, γ1 = 2 + 3 (number of
zeros in column 1 plus number of zeros in column 3).

Our BPM – Simple-weighted algorithm works as
follows:
1. Construct the flow network graph according to

Definition 3.
2. Find the rarity possession indices of all peers and

assign the values as weights on the nodes in L
accordingly.

3. Find the demands of all peers and assign the values as
weights on the nodes in R accordingly.

4. Employ the Edmonds-Karp algorithm to find the
weighted maximal matching.

5. For each matching, identify the rarest piece to be sent.

Consider an example,

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11111
01100
01010
00110
11100

P

Figure 4. BPM – Simple-weighted graph and the
scheduled transmissions

The numbers besides the right-side nodes R are the
demands di, and the numbers besides the left-side nodes L
are the rarity possession indices γi. For example, L1 has γ1

= 5 because for pieces 3, 4, 5 that peer 1 has, there are a
total of five 0s along columns 3, 4, and 5. By preferring
paths with largest γi first, we ensure those peers who have
rare pieces can send first. On the other hand, the
algorithm tends to select a node with higher demand to be
a receiver, thus making sure the most demanding nodes
can get file pieces.

Simulation results show that BPM – Simple-weighted
performs better than MDNF and RPF. However, there are
still a few cases that it cannot achieve the optimal as
shown below.
Using BPM – Simple-weighted, total 5 cycles are needed.

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01101001
01010011
00001111
01110100
01010011
10110100
11011000
00101101

P0

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01101011
01011011
00101111
01110110
01010111
10111100
11011010
10101101

P1 …P5 = 1

An optimal schedule requires only 4 cycles.

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01101001
01010011
00001111
01110100
01010011
10110100
11011000
00101101

P0

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01101011
01010111
00101111
01110110
11010011
10110110
11011100
10101101

P1 …P4 = 1

The reason is that P0 is very special in that all demands
di=4 are the same, and so the weights on R become

useless. In addition, the rarity possession indices γi only
ensure those peers with larger γi can be matched with
someone else, but do not imply those rarest pieces can
actually be sent to those in need. In the above example at
P1, BPM – Simple-weighted matches peer 1 with 2, peer 2
with 3, and peer 3 with 1, which by no ways the rarest
piece 7 can be sent out to others.

4.3.3. BPM – Enhanced-weighted. Due to the above
problem, we further enhance BPM – Simple-weighted by
adding the rarity demand index δi (defined below) to the
demand di to make up the total weight for the right-side
nodes R. That is, right-side weights = di + δi.

Definition 5: The rarity demand index δi of peer i is
the reciprocal of the sum of number of 1s in other peers
for those pieces that peer i does not have. That is,

()∑∑
= =

=
N

1a

M

1b
ab

i

)i(D

1
δδδδ

where Dab is an N×M matrix and

⎩
⎨
⎧ =∧=∧≠

=
otherwiseif0

)1P()0P()ia(if1)i(D abib
ab

.

A final example to illustrate the solution of the
previous problem,

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01101001
01010011
00001111
01110100
01010011
10110100
11011000
00101101

P

Figure 5. BPM – Enhanced-weighted graph and the
scheduled transmissions

The right-side weights are in the form di + δi. For
example, R1 has δ1 = 1/15 because for pieces 2, 5, 7, 8
that peer 1 does not have, there are a total of fifteen 1s
along columns 2, 5, 7 and 8. By adding the rarity demand
indices δi to the right-side weights, those peers having the
rarest pieces will be matched with those who really need
these rarest pieces first. Note that δi = 1/di is not
necessarily true in general. The example above is just a
special case only.

BPM – Enhanced-weighted finds optimal schedules for
all cases we tested in simulations. Therefore, we
conjecture that BPM – Enhanced-weighted is an optimal
scheduling algorithm for solving this simplified P2P
collaborative file distribution problem.

5. Simulation Results

We randomly generate the problem instances (with
each individual matrix element independently generated)
and employ various algorithms presented in the previous
section to find transmission schedules. We note the
number of cycles needed by using that particular
algorithm and compare it with the lower bound we
developed in Section 3.2. We use the sub-optimal ratio as
the performance measure.

Definition 6: The sub-optimal ratio is the number of
cases that the particular algorithm cannot return the lower
bound number of cycles needed over the total number of
cases simulated. That is,

casesofnumtotal
casesoptimalsubofnum

ratiooptimalsub
−

=− .

Below is the graph for the sub-optimal ratios for all the
above mentioned algorithms over varying problem size
with N=M. We simulated 100,000 cases for each
simulation point.

Figure 6. Sub-optimal ratios of various scheduling
algorithms (all) over varying problem size

For a particular set of algorithms (i.e. RPF, MDNF,
BPM), the performance of different variants are similar.
The performance of MDNF is always better than RPF,
while the performance of BPM is always better than
MDNF (with the exception of BPM – Un-weighted). We
find that for small problem sizes (e.g. 5x5, 6x6), the RPF
algorithms perform very poorly; with about 10-20% cases
returning sub-optimal solutions. With increasing problem
size, the sub-optimal ratio decreases. For RPF and MDNF,
the sub-optimal ratios are generally higher (e.g. small
peak at 7x7, 9x9) for odd problem sizes. It is because RPF
and MDNF generally match peers with one another (e.g.
peer 1 send to peer 3, and peer 3 send back to peer 1),
thus making one odd peer idle, degrading the performance.
This odd number problem does not happen in BPM. In
Figure 7, we magnify Figure 6 by only showing the
sub-optimal ratios for MDNF and BPM.

Figure 7. Sub-optimal ratios of various scheduling
algorithms (MDNF+BPM) over varying problem size

With the exception of BPM – Un-weighted, BPM
algorithms outperform all other types of algorithms. The
reason for the unsatisfactory result of BPM – Un-weighted
has been discussed in Section 4.3.1. The small
sub-optimal ratios of weighted BPM for small problem
sizes (eg. 5x5, 6x6, 7x7) is due to the loose lower bound
estimation for special problem instances like this.

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11100
11100
11100
11100
11111

P0

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11100
11100
11100
11101
11111

P1

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

11100
11101
11110
11101
11111

P2 …P4 = 1

The optimum is 4 cycles, which is higher than the
lower bound of 3 cycles predicted. We check all those
“sub-optimal” cases of BPM – Enhanced-weighted and
find that all of them belong to the above special class.
Therefore, we find no cases that BPM –
Enhanced-weighted returns sub-optimal solution and thus
conjecture that it is an optimal scheduling algorithm.

We further perform simulations for varying file size (M)
with fixed peer size (N), and the case for varying peer size
with fixed file size.

Figure 8. Sub-optimal ratios of various scheduling
algorithms over varying file size (peer size = 10)

Figure 9. Sub-optimal ratios of various scheduling
algorithms over varying peer size (file size = 50)

From Figure 8, the sub-optimal ratios of RPF and
MDNF increase with increasing file sizes, while from
Figure 9, the sub-optimal ratios of RPF and MDNF
decrease with increasing peer sizes. The rate of increase
with increasing file size is smaller than the rate of
decrease with increasing peer size, thus making the
sub-optimal ratios drop with increasing problem size as
shown in Figure 6 and 7. In all cases, BPM –
Enhanced-weighted returns the optimal solution.

6. Future Work

In this paper, we have investigated the simplified
problem of P2P file distribution scheduling with
symmetric bandwidth and homogeneous network
assumptions. We shall study the case for asymmetric
bandwidth, which is common in the Internet as domestic
users usually connect using the Asymmetric Digital
Subscriber Line (ADSL) technology where uploading
bandwidth is smaller than downloading bandwidth. We
shall also study the case when the network is
heterogeneous with asynchronous transmission time for
different pairs of nodes.

7. Conclusion

Peer-to-Peer file sharing applications have become
immensely popular in the Internet, but previous research
seldom investigates the data distribution problem which
should be the core of any file sharing applications. We
formally define the collaborative file distribution problem
with the possession matrix and transmission matrix
formulation and suggest several types of algorithms (RPF,
MDNF and BPM) for solving the scheduling problem of
deciding who send which file pieces to whom. In
particular, our novel Bipartite Matching model
outperforms all other algorithms and can return the
optimal solution for all cases as shown by simulations.
Therefore, we conclude that the BPM –

Enhanced-weighted algorithm is a promising algorithm
for practical deployment as the core scheduling algorithm
in P2P file sharing applications.

8. Acknowledgement

This research is supported in part by the Areas of
Excellence Scheme, established by the University Grants
Committee, Hong Kong Special Administrative Region,
China, Project No. AoE 99-01.

9. References

[1] P. Rodriguez, and E.W. Biersack, “Dynamic Parallel Access
to Replicated Content in the Internet,” IEEE/ACM
Transactions on Networking, Vol. 10, No. 4, pp. 455-465,
August 2002

[2] The Official BitTorrent Website, http://www.bittorrent.com/
[3] The Official Gnutella Website, http://www.gnutella.com/
[4] The Official Kazaa Website, http://www.kazaa.com/
[5] The Official Napster Website, http://www.napster.com/
[6] B. Cohen, “Incentive Build Robustness in BitTorrent,”

http://www.bittorrent.com/bittorrentecon.pdf, May 2003
[7] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna, “Efficient

Collective Communication in Distributed Heterogeneous
Systems,” Proc. International Conf. on Distributed
Computing Systems, pp. 15-24, June 1999

[8] S. Khuller, and Y.A. Kim, “On Broadcasting in
Heterogeneous Networks,” Proc. ACM-SIAM Symposium
on Discrete Algorithms, pp. 1011-1020, January 2004

[9] M. Banikazemi, V. Moorthy, and D.K. Panda, “Efficient
Collective Communication on Heterogeneous Networks of
Workstations,” International Conf. on Parallel Processing,
pp. 460-467, August 1998

[10] P. Liu, “Broadcast Scheduling Optimization for
Heterogeneous Cluster Systems,” Journal of Algorithms,
Vol. 42, No. 1, pp. 135-152, January 2002

[11] T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, MIT Press, Cambridge, MA,
2nd edition, 2001

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

