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Abstract-This paper proposes a new Kalman filter-based frequency resolution through a better tradeoff between bias
algorithm for multichannel autoregressive (AR) spectrum and variance. Basically, a measurement window of
estimation and adaptive coherence analysis with variable appropriate length has to be chosen in order to reduce the
number of measurements. A stochastically perturbed k -order variance of estimation due to additive noise, while avoiding
difference equation constraint model is used to describe the excessive bias for non-stationary time series. The
dynamics of the AR coefficients and the intersection of intersection of confidence intervals (ICI) rule [3, 7, and 8] is
confidence intervals (ICI) rule is employed to determine the
number of measurements adaptively to improve the time- emped o detemine theewindo izerand he the
frequency resolution of the AR spectrum and coherence number of measurements adaptively to improve the time-
function. Simulation results show that the proposed algorithm frequency resolution of the AR spectrum and coherence
achieves a better time-frequency resolution than conventional function. Simulation results show that the proposed
algorithms for non-stationary signals. algorithm achieves a better time-frequency resolution than

conventional algorithms for non-stationary signals.
This paper is organized as follows. Section II briefly

I. INTRODUCTION reviews the basic of multichannel AR model. Our new
Coherence analysis is a popular spectral analysis Kalman filter with variable measurements algorithm is

technique for analyzing the correlation and synchronization presented in Section III. Section IV is devoted to the
between different spectral components in two time series. adaptive parametric spectrum/coherence estimation from the
Methods for coherence analysis can be broadly classified multichannel AR model. Simulation results and comparison
into non-parametric and parametric approaches according to are given in Section V. Conclusions are drawn in Section VI.
the spectrum estimation methods used. Non-parametric
coherence methods are based on non-parametric spectrum II. MULTICHANNEL AR PROCESS
analysis techniques, such as Fourier transform [1], wavelet Given an M -channel P -order multichannel AR process
transform [2] and Lomb periodogram [3]. Similarly, it is
possible to perform coherence analysis using parametric Ym,n ( n ,I N and m= 1, - ,M ), where N is the
spectrum estimation techniques. Coherence analysis based number of data samples and M is the number of channels:
on autoregressive (AR) model was proposed in [4] and [5]. P
In [5], a multichannel AR model for multivariate non- Yn ApYn-p + ' (1)
stationary time series was employed to evaluate the entire P=1

spectral density matrix and hence the coherence function. where Yn= [Y1,n Y2,n,,', YM,n]T is the measurement vector at
The recursive least-squares (RLS) method was used to track time instant n , and AP , p 1, , P , are M xM AR
slowly time-varying AR coefficient matrix, from which the coefficient matrices. tD is an M -dimensional zero mean
spectral density matrix and coherences can be computed. n

In this paper, we propose a new Kalman filter-based Gaussian white noise with the covariance matrix E .
algorithm for computing the AR coefficient matrices and p
coherence function with variable number of measurements. Let A(z) = IM - Z APzP , where IM is the M xM
Kalman filter is a generalization of the RLS algorithm and it pem

allos piorinfomaton f th sytemdynaicsbe dentity matrix, the spectral density matrix of thisallows prior information of the system dynamics be multichannel AR process can be computed as [5]:
incorporated into the estimating process. In the context of 1
AR parameter estimation, the system dynamic is given by a F(O) -A -1 (z ) [A-1 (zjo )]T (2)
linear state-space model, while the observations or d
measurements are derived from the state of the AR process. where z0 = exp(-2jfT0 / d) , d is the sampling rate and
In the RLS algorithm, the AR parameters are assumed to be 0 E [0, d / 2).
slowly time-varying and the estimation is based solely on If the AR coefficient matrices is time-varying, i.e.
the observations. On the other hand, the proposed Kalman Ap = pn (2) gives rise to a time-frequency representation:
filter-based algorithm employs a variable number of 1
measurements and a stochastically perturbed k -order F(n,0)= d-Al(n,z,),[A4l(n,zol1)]T, (3)
difference equation constraint model to describe the d P
dynamics of the AR coefficients. The basic idea of using where A(n,z) = M- LAn
variable number of measurements is to improve the time- =
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The coherence function between any two channels (say F[x(n -1) - x(n - / n - 1)] + w(n -
the i -th and the j -th components of the signal vector) of where E(n) ]-£(n) w

and
the time series is defined as L

n

F,, j (n, 0) T P(n I~~~n-i) 0T
c,1i(n, 0), -), (n, 0 (4) E[E(n)ET (n)] - ] S(n)ST(n) . S(n) can
F(n,O)F11j(n,0) be computed from the UD factorization or Cholesky

A key step in the parametric coherence analysis is therefore . . T
the estimation or tracking of the time-varying AR coefficient
matrices Ap,n 'As mentioned earlier, the RLS algorithm was of (13) by S-'(n) , we get the following linear regression:
used to estimate the AR coefficients in [5]. In this paper, we Y(n) = X(n)/3(n) + 4(n), (14)
shall introduce a dynamic to the AR coefficients and use the Fx(n-1)
Kalman filter to improve the tracking performance. where X(n) = S-1 (n) Y(n) S -I (n)F

H(n)] y(n)
III. KALMAN FILTER WITH VARIABLE MEASUREMENTS /3(n) = x(n), and 4(n) =-S (n)E(n). Note that E(n) is

Consider a conventional linear state-space model as whitened by S. (n) and the residual -(n)
follows:

x(n) =F(n)x(n -1) + w(n), (5) satisfies E[4(n)4T(n)] I It can be seen that (14) is a

y(n) = H(n)x(n) + £(n), (6) standard LS regression problem with solution:

where x(n) and y(n) are respectively the state vector and ,6(n) =(nn) =(XT(n)X(n)) 'XT(n)Y(n), (15)
the observation vector at time instant n . F(n) and H(n) are and the covariance matrix of estimating /3(n) is
respectively the state transition matrix and the observation E[(,6(n) - ,(n))(,6(n) - 6(n))T]
matrix. The state noise vector w(n) and the observation =P(nIn)=(XT(n)X(n))1 (16)
noise vector c(n) are zero mean Gaussian noise with In other words, the Kalman filter can also be thought of as
covariance matrices Q(n) and R(n) respectively. An t s t a wthe solution to a weighted LS problem with 4(n) = x(n I n)
optimal state estimator in the least mean squares criterion for

I

the above state-space model can be computed by the Kalman and P(n / n) =cov(,/(n)). Using (14)-(16), we obtain an
filter. equivalent Kalman filtering algorithm based on LS

Let x(n I k) ( k = n -1, n ) represent the estimator of estimation.
x(n) given the measurements up to time instant k To derive the proposed Kalman filter with variable
{y(j), j < k} , and P(n/k) is the corresponding error measurement equations, let's rewrite (14) as
covariance matrix of x(n I k). The standard Kalman filter {S (n) F -(n-)] STS(n)F I } x(n)+;(n) (17)
recursions are given by: L y(n) LH(n) (

x(n + 1/ n) F(n)xi(n I n), (7) The lower part of the equation is equivalent to a
P(n +1 / n) F(n)P(n/ n)F(n)T + Q(n), (8) conventional LS estimation of x(n) from the available
e(n) =y(n) - H(n)x&(n n-1), (9) measurement. The upper part is a regularization term that

imposes a smoothness constraint from the state dynamicK(n)=P(n/n-1)1(n)7 (l0) into the LS problem. If F is an identity matrix, (17) is
[H(n)P(n In - )H(n)T + R(n)]-, equivalent to the LMS algorithm with some kind of

x(n I n)=x(n I n -1) + K(n)e(n), (11) diagonal loading. Another observation is that only one
measurement is used to update the state vector. Hence, the

P(n / n) [I - K(n)H(n)]P(n /n-1), (12) bias error will be low especially when the system is fast
where e(n) is the prediction error of the observation vector, time-varying. On the other hand, if the system is time-

and its covaiancmarixsHnP I-I nT +invariant or slowly time-varying, including more
a measurements can help to reduce the estimation variance.

as shown in (10). Recently, Durovi6 and Kovacevi6 [9] These observations motivate us to develop a new Kalman
proposed a new robust Kalman filter frame using the filter algorithm with variable number of measurements to
equivalence between the Kalman filter and a particular achieve the best bias-variance tradeoff for time-series
least-squares (LS) regression problem. Combining (5) and analysis.
(6) together, we get the following equivalent linear model: Suppose the block of measurements used for the state

F I'1 FFx(n-I/n-1I)1 E estimate lie in a symmetry window centered at y(n):

Luni(n) L y(n) j +En), (13 [y(n -L),..,y(n),..,y(n+L)] , where L is the one-side
window size and so h L+1is the total number of
measurements. Including all the measurements in (14) gives:
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Y(n) = S1 (n){Fx(n-l)}T y(n - L), ,y(n),- y(n + L)]T instantaneous spectrum matrix and coherence can be
T T T T calculated by (3) and (4), respectively.

and X(n) = S'- (n)[I, HT (n - L), HT (n) HT (n + L)] If we use our Kalman filter algorithm to estimate the AR
Note that S' (n) is obtained from coefficients ALpn with a block of measurements y(n-i),
P(n/n -1) 0 1 . -L, ,L, the corresponding spectrum and coherence
[0 ° diag{R(n -L),, R(n),. R(n+ L)}] in the will be affected by the number of measurements h = 2L +1.

If h is given a small value, fewer measurements will be
new algorithm. E(n) is whitened by S-1(n) and the used to estimate the AR coefficients so that the spectrum
residual 4(n) satisfies E[4(n)4T (n)] =I. and coherence will have a good time resolution. In other

The linear LS problem (14) in block-update form can words, for fast varying time series, a small block size is
be solved using (15). A method for choosing the window preferred. On the contrary, when a large block size is chosen,
length h will be discussed in the next section. more measurements will be employed to solve the AR

coefficients. As a result, the time resolution will be reduced,
IV. ADAPTIVE COHERENCE ANALYSIS but the variances of the AR coefficient estimation will

decrease and it gives a higher frequency resolution of the
In [10, 11], a stochastically perturbed k -order spectrum and coherence. Consequently, if the instantaneous

difference equation constraint model is used to describe the frequency of the time series changes slowly, a larger block
change or dynamics of the AR coefficients. That is to say, size should be used. When h = 1, the Kalman filter with
the AR coefficients An are modeled as k-order AR multi-measurements algorithm will reduce to the
processes. For convenience, k is assumed to be 1 in this conventional Kalman filter.
paper and we have: Similar to the non-parametric Lomb spectrum and

Ap,n = Ap,n-I +6p,n (18) coherence [3], we will use the intersection of confidence
where 6 is used to describe the change of A and it is intervals (ICI) rule to choose the number of measurements

p,n p,n adaptively in time-frequency plane. The basic idea of the
assumed to be an M xM zero mean Gaussian white noise proposed method is to calculate a series of spectrums or
matrix with covariance Qs (p, n)= Q (n) I p=1,2,, P . coherences with a series of h 's first. The ICI rule will
We define the state matrix A(n) = [A1l, A2 n, ", AP,n ]T and examine a sequence of confidence intervals of the spectrums

or coherences to determine the optimal number of
s,ntr 2,n I

. T tP,n measurements h+ and the corresponding adaptive spectrum
following dynamic state function similar to the state equation or coherence. The details of ICI rule and adaptive
(5) in the state-space model: spectrum/coherence are omitted to save space, and more

A(n) = FA(n -1) + A(n), (19) information can be found in [3, 7, and 8].
where F = diag(lI, , IM) is the state transition matrix, V. SIMULATION RESULTS

p

and the covariance matrix of state noise A(n) is The performances of the proposed algorithms are
evaluated using computer simulations. A two-channel

Q, (n) =diag(Q1 (ii), ,Qb (ni)). ( M = 2 ) non-stationary sinusoidal signal y(t) with
p

From (1), we let Y(n) = [Y,n IY2,n YM,n ] be the duration of 200 seconds (sampling rate d=1 ) was
measurement vector and the observation matrix be generated as follows:
H(n) = [Yl,n-l YMvi,n-I ,n-p I

... YM,n-p] the following y1(n)= Sin(0.4/n)+±w(n) for I.<n< 200s
observation function similar to (6) can be obtained:

Y(n)H(n)A(n)+ T(n), (20) (n) sin(O.4nm)+w2(n) for l<n<lOOs
YTn)ll(n)A(n) lsin(0.81m + f/T3) + w2(n) for 100 < n < 200s

where T(n) (Dn is the observation noise vector with where wl (t) and w2 (t) are two i.i.d. zero mean white
covariance matrix R, (n) If the noises added to every Gaussian noise added to the two channels and the SNR is 20
channel are all i.i.d. zero mean white Gaussian noise with dB. We can see that these two components are correlated as
variance 2 , the covariance matrix E of (Dn will be follows: (1) in phase for the first half of time; (2) differ by a
simplified to =diag(cr2,. I,C2) and RW.(n) becomes phase difference of 2773 for the second half of time.

M The order of the multichannel AR process can be chosen
Ma2 . Equations (19) and (20) together constitute the state- using the AIC rule, and here P is assumed to be 2 for
space equations for our multichannel AR model. So, Kalman simplicity. The number of measurements h 's used to
filter or our proposed Kalman filter algorithm can be used to compute a series of spectrum matrices and coherences are 3,
track the state matrix A(n) . After the AR parameters A(n) 5, 9, and 17. The state noise covariance matrix QA (n) and
are estimated using the proposed Kalman filter algorithm, the the observation noise covariance matrix RT (n) can be
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estimated using the algorithm in [9], and the estimate of L [6] P. Wahlberg and G. Lantz, "Approximate time-variable coherence
in(3) follows the method in [5] analysis of multichannel signals," Multidimensional Systems and

in.3) follows the method in []. rSignal Processing, vol. 13, no. 3, pp. 237 - 264, 2002.
To achieve a better visualization of the coherence, a [7] L. Stankovic, and V. Katkovnik, "The Wigner distribution of noisy

masking operation on the coherence can be applied: signals with adaptive time-frequency varying window," IEEE Trans.

Pi (n, O) Pi X (n, 0) > A, Signal Processing, vol. 47, no. 4, pp. 1099 - 1108, 1999.

lPi,ia n, O)Pj,j (n, 0) and P,,j (n, 0) >A [8] Z. G. Zhang, and S. C. Chan, "Robust adaptive Lomb periodogram
C1j (n, 0) = (n,)P (n, 0) (n, 1 (n, 0) > , (21) for time-frequency analysis of signals with sinusoidal and transient

components," in Proc. IEEE ICASSP 2005, vol. 4, pp. 493 - 496,
else

March 2005.
C 0 elseI [9] Z. M. Durovic and B. D. Kovacevic, "Robust estimation with

where A is a threshold to zero out those locations of P,i or unknown noise statistics," IEEE Trans. Automat. Contr., vol. 44, no.

P. having very small amplitudes. Here, the threshold A is 6, pp. 1292 - 1296, 1999.
[10] G. Kitagawa, and W. Gersch, "A smoothness priors time-varying AR

given as 10% of the maximum value of P, and P coefficient modeling of nonstationary covariance time series," IEEE
Trans. Automat. Contr., vol. 30, no. 1, pp. 48 - 56, Jan 1985.

Fig. 1 shows P,', in the entire spectrum matrix. We can [11] G. Kitagawa, and W. Gersch, "A smoothness priors long AR model
see that the spectrum component based on our Kalman filter method for spectral estimation," IEEE Trans. Automat. Contr., vol.
with fewer measurements has a high time resolution but a 30, no. 1, pp. 57 - 65, Jan 1985.
rather unsatisfactory frequency resolution, while the [12] J. Proakis, C. Rader, F. Ling, C. Nikias, M. Moonen, and I. Proudler,

spectrum with moemaurmnshAlgorithms for Statistical Signal Processing, Englewood Cliffs:spectrum with more measurements has the opposite property. Prentice Hall, 2002.
The adaptive spectrum with ICI rule using adaptive number [13] D. G. Manolakis, V. K. Ingle, and S. M. Kogan, Statistical and
of measurements achieves good time and frequency Adaptive Signal Processing, New York: McGraw-Hill, 2000.
resolution at the same time. The similar behaviors are also P11 (h=3) P11 (h=17)
observed in the coherence function (Fig. 2). The time-
varying coherent structure of the two signal components is 0.4 0.4
clearly identified from the adaptive coherence in the two N N
segments: first half at 0.2Hz, second half at 0.4Hz, and the 0.2 I0.2
jump discontinuity is located at n = 100

0 0
VI. CONCLUSION 50 100 150 200 50 100 150 200n n

A new Kalman filter-based algorithm for multichannel Adaptive parametric spectrum
AR spectrum estimation and adaptive spectrum/coherence
analysis with variable number of measurements has been 04
presented. A stochastically perturbed difference equation N
constraint model is used to describe the dynamics of the AR 0.2
coefficients and the ICI rule is employed to determine the
number of measurements adaptively to improve the time- 50 100 150 200
frequency resolution of the AR spectrum and coherence. The n

method can be applied to wide range of multichannel non- Fig. 1. Parametric spectrum P using different measurements, and
stationary signals such as EEG data, and the details will be .' ~~~~~~~~adaptive spectrum.left for future work. C12 (h=3) C12 (h=17)
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