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ABSTRACT

This paper proposes a new family of approximate QR-

based least squares (LS) adaptive filtering algorithms 

called p-TA-QR-LS algorithms. It extends the TA-QR-LS 

algorithm [6] by retaining different number of diagonal 

plus off-diagonals (denoted by an integer p) of the 

triangular factor of the augmented data matrix.  For p=1 

and N, it reduces respectively to the TA-QR-LS and the 

QR-RLS algorithms. It not only provides a link between 

the QR-LMS-type and the QR-RLS algorithms through a 

well-structured family of algorithms, but also offers 

flexible complexity-performance tradeoffs in practical 

implementation. These results are verified by computer 

simulation and the mean convergence of the algorithms is 

also analyzed.

1. INTRODUCTION 

Adaptive filtering is widely used in communications, 

control, and many other applications. Many adaptive 

filtering algorithms have been proposed [1]. The recursive 

least square (RLS) algorithm has a fast convergence speed 

but a very high arithmetic complexity of )( 2NO  (where N

is the number of taps of the adaptive filter). A numerically 

more preferred implementation is based on the QR 

decomposition, which usually exhibits better numerical 

property due to the reduced condition number [2].  

Moreover, by exploiting the shifting property in adaptive 

filtering, the arithmetic complexity for updating the 

triangular factor can be further reduced to )(NO . However, 

the back-solving step still requires )( 2NO  operations.  In 

order to reduce the complexity of the back-solving step in 

the QRD, Liu proposed an approximate QR-LS algorithm 

(A-QR-LS) [3] and a related QR-LMS algorithm [4] 

based on Householder transformation [2], which 

combines the recursive updating of the triangular matrix 

and the back-solving of the parameters. Another related 

QRD block algorithm proposed by Bhouri et al [5] 

approximates the upper triangular factor by a series of 

block upper triangular matrices and includes [3] as its 

special case when their sizes are reduced to one.  Like the 

fast Newton algorithm [8], the goal is to approximate the 

covariance matrix or its factor to reduce the arithmetic 

complexity. Recently, Chan and Yang [6] showed that the 

A-QR-LS algorithm in [3] is equivalent to an element-

wise normalized LMS algorithm with time-varying step-

sizes. It reduces to the QR-LMS algorithm in [4] when all 

the normalization constants are chosen as the Euclidean 

norm of the input signal vector. Based on these 

observations, they proposed a transform domain A-QR-

LS (TA-QR-LS) algorithm based on square-root free 

(SRF) Givens rotation method [2] which possesses both 

fast convergence speed and a reduced arithmetic 

complexity. It was also shown in [7] that a block version 

of the QR-LMS algorithm represents a fast 

implementation of the fast affine projection algorithm 

(APA). In this paper, we propose a new family of QR-

based algorithms called the p-TA-QR-LS algorithm. By 

retaining different number of diagonal plus off-diagonals 

(denoted by p, Np1 ) during the QRD, the triangular 

factor of the data matrix can be approximated to different 

levels according to the value of p.  Coupling with the 

back-solving step as in [6], we obtain a new family of 

QR-based algorithms with different complexity-

performance tradeoff, parameterized by the values of the 

integer p.  For p=1, it reduces to the TA-QR-LS algorithm 

in [6].  When p=N, the conventional QR-RLS algorithm is 

obtained. Other values of p generate a series of new QR-

based algorithms with complexity-performance tradeoff 

between these two well-known families of algorithms.  It 

thus provides a direct link between the QR-LMS-type and 

the QR-RLS algorithms through a uniformly-structured 

family of algorithms parameterized by p.  The proposed 

algorithm differs from the block algorithm in [5] in how 

the triangular factor is approximated and hence the 

solution method.  It can be viewed as the generalizations 

of the QR-LMS and A-QR-LS algorithms in filling their 
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gaps with the QR-RLS algorithm.  Moreover, we shall 

that the resulting algorithms with p<N is a LMS-type 

algorithm and they converge in the mean.  Likewise, their 

performances can further be improved using 

transformation as in the TA-QR-LS algorithm.  The rest 

of this paper is organized as follows: the TA-QR-LS 

algorithm in [6] is briefly reviewed in section 2. The 

proposed p-TA-QR-LS algorithm and its mean 

convergence analysis are presented in section 3.  In 

section 4, experimental results and comparisons are given. 

Finally, conclusions are drawn in section 5.  

2. THE TA-QR-LS ALGORITHM 

Consider the linear estimation of a parameter vector 

with observation d(j) and input 
T

NN jxjxjxj )](,),(),([)( 21x  given by the 

model )()()( jjjd T
N
x , where )( j  is a zero mean, 

additive white Gaussian noise sequence.  In least squares 

estimation, the time averaged squares error is minimized: 
n

j

jn

N jen
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   (1) 

where )()()()( njjdje T

Nx , )(n  is the estimated 

parameter vector at time n, and  is a constant forgetting 

factor with a value between 0 and 1. (1) can also be 

written more compactly in matrix form as  
22 )()()()()()( nnnnnn T

N eWeWe (2)

where )()()()( nnnn NXde , Tndddn )](,),1(),0([)(d ,

)1,,,,()( 1nndiagnW is a diagonal weighting 

matrix, and T

NNNN nn )](,),1(),0([)( xxxX .  The QR-LS 

(or QR-RLS in this paper) method [6] is frequently used 

to solve for the optimum value of )(n  because of its 

superior numerical property.  The QR-RLS method [6] is 

summarized below in Table 1.  
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where )1(nQ and  )1(nN are unitary and  upper triangular 

matrices, respectively. 
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3.  (Back-solving) Solve the triangular system )(ˆ)()( nnnN Nd for 

the LS estimate )(n at time n by back-substitution: 
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    where jir ,  and 1,Nir  are the corresponding elements in )(nN  and 

)(ˆ nNd . )(ni  is the i-th element of )(n .

Table 1. QR-RLS algorithm. 

In [4], Liu proposed an approximate QR-LS (A-QR-LS) 

algorithm with an arithmetic complexity of )(NO  by 

approximating the upper triangular as a diagonal matrix, 

which simplifies the QRD and the back substitution 

above. More precisely, the quantities inside the square 

bracket in step 3 of table 1 are computed from )1(ni

and are denoted by:  

)1()1( 1, nrns NNN ,

])1()1()1([)1(

1
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N

ij

jjiNii nnrnrns

1,2,1 NNi ,                  (3) 

or equivalently: 
),1()1()1(, nsnnr iiii .,...,1 Ni (4)

Given the values of )1(nsi and )1(, nr ii , (4) together 

with the relationship )()()( nnnd T
N
x  can be viewed as 

a system of linear equations in the variable )(n :

),1()()1(, nswnnrw iiii Ni ,...,1 ,

)()()( ndnnT

Nx ,
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where w  is the square root of the forgetting factor. (5) 

can also be written in matrix form as: 
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Therefore, (6) can be solved by computing the QRD 

of )(n , which actually works with the following 

appended matrix:  
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With this special structured-approximation of the 

triangulated augmented data matrix (c.f. step 2 in table 1), 

the A-QR-LS algorithm is able to combine the updating 

and the back solving processes together using the 

Householder transformation, yielding a very efficient 

algorithm. Liu et al. also proposed a related QR-LMS 

algorithm [5]. In [7], Chan and Yang showed that A-QR-

LS is equivalent to an element-wise normalized LMS 

algorithm with time-varying step-sizes which will reduce 
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to [5] when all the normalization constants are chosen as 

the Euclidean norm of the input signal vector. They also 

proposed an improved transform domain approximate 

QR-LS (TA-QR-LS) algorithm based on the Givens 

rotation. Moreover, unitary transformation such as DCT is 

employed to improve the convergence speed when the 

input is colored. 

3. THE p-TA-QR-LS ADAPTIVE ALGORITHM 

3.1. Derivation of the new algorithm 

From (7), we can see that the A-QR-LS algorithm retains 

an approximate triangular factor of the augmented data 

matrix so as to reduce the arithmetic complexity to )(NO .

It is therefore natural to expect that better performance 

can be achieved by retaining more off diagonal elements 

of this factor.  Obviously, when the whole upper 

triangular matrix is retained, we obtain the QR-RLS 

algorithm but the back-solving step has a complexity of 

)( 2NO .  In this paper, we proposed to retain the main 

diagonal and  p-1 nearby off-diagonals of the triangular 

factor, hence the name  p-A-QR-LS algorithm.  We shall 

show later that the p-A-QR-LS algorithm with a given 

positive integer p has a complexity of order )(NpO and a 

performance, which generally improves as p increases.  

Therefore, the family not only provides a link between the 

QR-LMS-type and QR-RLS-type algorithms, but also a 

practical tradeoff between performance and complexity 

when p is varied from 1 to N.

In the proposed p-A-QR-LS algorithm, the diagonal as 

well as nearby (p-1) off-diagonals are retained. This 

yields:  

)1(000

)1()1(000

)1()1(

)1(

0

00)1()1()1(

000)1(1()1(

)1(

111

1222

1

1,2,22,2

p1,2,11,1

nr

nrnr

nrnr

nr

nrnrnr

nrnrnr

n

N,N

,NN,NN

,NN,NN-

,NN-p

pp

p

0

0

D

(8)

Motivated by the A-QR-LS algorithm, (6) is now 

modified to 
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The QRD is then applied to solve for (6) by eliminating 

all the elements of )(nT

Nx  sequentially using Givens 

rotations. The procedure is very similar to that used in the 

TA-QR-LS algorithm [7]. However, the back substitution 

is considerably different from that in [7]. Since the 

elements of both the diagonal and the (p-1) off-diagonals 

are retained, the back substitution consists of two parts. 

The first part, for the nonzero diagonal and off-diagonal 

entries, is similar to the conventional back-substitution of 

the QR-RLS algorithm. It has a complexity of )(NpO . The 

second part consists of the approximation resulting from 

the zero off-diagonal entries, and it can be updated at a 

lower complexity similar to the TA-QR-LS algorithm. It 

has a complexity of )(NO . Also for further reducing the 

arithmetic complexity and improving the convergence 

speed, two techniques in [7] are adopted for the p-A-QR-

LS algorithm: the SRF Givens rotation method and the 

transform domain preprocessing (such as DCT). The p-

TA-QR-LS algorithm so obtained is summarized in Table 

2. From (8) and Table 2, it can be seen that when p=1, the 

proposed algorithm reduces to the TA-QR-LS algorithm 

with a complexity of )(NO , and when p=N, it equals to the 

QR-RLS algorithm with a complexity of )( 2NO . With this 

additional flexibility, the new algorithm can be tailored 

for various applications with different performance and 

complexity requirements. It is also possible to select a p

that will yield an algorithm with low complexity while the 

performance will remain comparable to that of the QR-

RLS algorithm. Derivation of a similar complex version 

of the algorithm only requires little extra efforts and the 

details are omitted. 

3.2. Mean convergence Analysis 

By applying the techniques in [5, 7], the solution of 

equation (6) with respect to different p can be written 

formally as 
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pp DDD and using the matrix 

inversion lemma, (10) can be simplified to 
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which clearly shows that with p varying from 1 to N,

)(ˆ npD  serves as an approximation of the input correlation 

matrix to different levels and varies from a diagonal 

matrix to its exact LS estimate.  Assume the desired signal 

is given by
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1. Initialization
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     8N Multiplications 

     3N  Additions 

    (3/2)*(2N-p)(p-1)  Multiplications 

    (2N-p)(p-1)  Additions 

p(p-1)/2  Multiplications 

p(p-1) /2  Additions 

    (N-p)(p+1)  Multiplications 

    (N-p)(p+1)  Additions 

Table 2. Square-root free Givens rotation-based p-TA-

QR-LS algorithm. 

)()()( nnnd T
Nx . Substituting it into (11) and letting 

V )()( nn  be the coefficient estimation error vector 

gives 
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where
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When n is sufficiently large and assume the input process 

is stationary, the matrix )(npD  will converge to a constant 

matrix pD  and therefore in the following analysis )(ˆ 1 npD

is treated as a constant matrix 1ˆ
pD .  Denoting )(nNx

 as the 

output of a unitary transformation T of the input 

vector )(n , i.e., )()( nn NxT , and for simplicity, 

assuming T is real so that T
TT

1 , we can rewrite (12) as 
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By defining )()( 1 nn p TDY  and substituting it into (13), 

we get )(~)1(
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where )()( nn pVDV . Let us evoke the classic 

independent assumption of )(n  (thus )(nY  is also 

independent), and further assume that the estimation error 

vector V(n) is uncorrelated with the transformed input 

signal vector Y(n) when the stepsize is sufficiently small. 

Then, taking expectation on both sides of (14) and 

noticing that 0)](~[ nE  yields
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Consider the trace (tr) of the matrix , following the 

linearity of the trace and expectation operators and the 

fact that 10 w , we have )
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Since the eigenvalues Nii ,,1,  of the symmetric 

matrix  are all positive and
N

i itr
1

)( , it follows 

that 1)(0 tri , and therefore, the mean of the 

estimation error vector in (15) is guaranteed to converge 

to a steady-state value 0)]([VE .

4. SIMULATION RESULTS

We now evaluate the performance of the proposed p-A-

QR-LS and p-TA-QR-LS algorithms using computer 

simulation. The algorithm with different parameter p is 

tested in an adaptive system coefficient estimation 

problem. The order of the unknown system is set to 14 

and the coefficients are randomly generated. The power of 

the additive white Gaussian noise )(n  is set to be 0.0001. 

The forgetting factor w for all the tested algorithms are 

equally set to be 0.99. The Mean Square Difference 

(MSD), defined as the sum of the square of the coefficient 

estimation errors, is used to evaluate the convergence 

behavior of the algorithms. All the results are averaged 

over 100 independent runs. Three experiments were 
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conducted. Exp.1: input is a white Gaussian noise (WGN) 

sequence with zero mean and unit variance, no 

transformation employed; Exp.2: input is a WGN-driven 

AR process whose parameters are fixed at [1 –1.5 1 -0.25] 

with normalized unit power, no transformation employed; 

Exp. 3: input is the same as in Exp.2, DCT is employed. 

Fig. 1 shows the results of Exp.1. All the algorithms with 

different p approach the same steady state error, whereas 

when p increases, the algorithm with larger p has faster 

initial convergence, which complies well with our 

previous analyses. Fig. 2 shows the results of Exp.2 and a 

similar conclusion can be drawn except that the 

convergence speed of those algorithms with small p is 

hindered by the colored input.  However, when the DCT 

is included, the results of Exp.3 as depicted in Fig. 3 show 

that the convergence speed for the p-TA-QR-LS

algorithms with small p is significantly improved. All 

these observations verify the flexibility of the proposed 

algorithm and reveal its potential to be applied to different 

applications. 

5. CONCLUSION 

A new family of approximate QR-based LS adaptive 

algorithms called p-TA-QR-LS algorithms is presented. It 

retains different number of diagonal plus off-diagonals in 

triangular factor of the augmented data matrix and 

generates a series of new QR-based algorithms with 

complexity-performance tradeoff between the QR-LMS-

type and QR-RLS-type algorithms.   These results are 

verified by computer simulation and the mean 

convergence of the algorithms is also analyzed. 
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