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Abstract— This paper’s aim is to investigate the diversity per-
formance of spatially correlated multiple-input multiple-output
(MIMO) broadcast channels where multiple communications oc-
cur simultaneously in the same frequency band and time slot from
the base station (BS) to many mobile stations (MS). To deal with
a broadcast system, we employ a previously developed orthogo-
nal space division multiplexing (OSDM) method to decompose the
channel into many uncoupled single-user systems so that the di-
versity can be readily characterized by the second-order statistics
of the resultant channel coefficients. Simulation results reveal that
good performance can still be achieved with correlation as high
as 0.4. Most intriguingly, unlike single-user MIMO channels, the
diversity is more sensitive to the spatial correlation on the trans-
mitter than receiver sides.

Index Terms—Broadcast channels, Diversity, MIMO, Multiuser
communications, Orthogonal space division multiplexing, Separa-
ble channels, Spatial correlation.

I. INTRODUCTION

Recently, considerable attention has been gained to the re-
search on promoting spectral resource reuse in broadcast chan-
nels where multiple communications occur in the same fre-
quency band and time slot from one base station (BS) to many
mobile stations (MS). From the information-theoretic point of
views, this can be accomplished by dirty-paper coding (DPC)
[1]–[5], which can be understood as the counterpart of mul-
tiuser detection in multiple-access channels (MAC or from
many MS to one BS) [6], [7]. Based on so-called known inter-
ference pre-cancellation at the transmitter side, DPC encodes
the data in a way that the codes align themselves as much as
possible with each other so as to maximize the sum-capacity of
a broadcast channel.

Practical techniques attempting to realize the broadcast chan-
nel capacity have also been presented [8]–[11]. In [8], [9], the
broadcast channel is made block diagonal so that co-channel in-
terference (CCI) is eliminated by placing nulls at the antennas
of all the unintended MS. Subsequently in [10], [11], methods
that jointly optimize the BS and MS antenna weights to per-
form orthogonal space division multiplexing (OSDM) are pro-
posed. In OSDM, not only that each MS receives no CCI from
other users, but also that for a particular MS, its activated spa-
tial modes are self-orthogonal as well. It has been demonstrated
in [12] that under the assumption of IID (independent and iden-
tically distributed) channels, extraordinary performance gains
can be achieved.

However, real channel is hardly perfectly correlated, nor per-
fectly uncorrelated. It has been shown in [13]–[15] that for

a single-user multiple-input multiple-output (MIMO) link, the
capacity is very susceptible to the keyhole phenomenon of the
channel, but not so sensitive to the spatial correlation among the
antennas. Thus far, it is very well known how the diversity of
a MIMO channel behaves against the spatial correlation among
the antennas. It is much less understood how spatial correla-
tion impacts the diversity performance of a multiuser MIMO
broadcast system.

In this paper, we aim to investigate the diversity performance
of a spatially correlated MIMO broadcast channel. To deal with
a broadcast system, we employ an orthogonal space division
multiplexing (OSDM) method in [11] to decompose the chan-
nel into many uncoupled single-user systems so that the diver-
sity can be readily characterized by the second-order statistics
of the resultant channel coefficients. In particular, we analyze
the diversity orders in twofold: 1) the average of λ2 (denoted by
Ω) and 2) the inverse of the normalized variance of λ2 (denoted
by Ψ) where λ is the resultant channel gain of the spatial mode
of the OSDM system.

The paper is organized as follows. In Section II, we introduce
the system model of a multi-user MIMO broadcast system. Sec-
tion III presents the channel model we use to characterize the
spatial correlation. A brief review on the OSDM method is in-
cluded in Section IV. Simulation results are presented in Section
V. Finally, we make some concluding remarks in Section VI.

II. MIMO BROADCAST SYSTEM MODEL

For an M -user MIMO system where nT antennas are located
at the BS and nR,m antennas are located at the mth MS, at each
symbol duration, multiple spatial modes (spatial modes are the
channels created from space by distinguishing the signals re-
ceived from different locations), denoted by Nm, can be sup-
ported for the mth user. The value of Nm is not necessarily
equal to the number of antennas at the mth MS, which however
depends the number of antennas at both the BS and MS (for
details, see [11]).

Denoting z
(m)
n as the symbol sent on the nth spatial mode by

the mth user (the time index is omitted for conciseness), we can
write

zm =
[
z
(m)
1 z

(m)
2 · · · z

(m)
Nm

]T
(1)

as the symbol vector for user m where the superscript T denotes
the transpose operation. The overall system can be written as
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[11]

ẑm = R†
m

(
Hm

M∑
m′=1

Tm′zm′ + nm

)
∀m (2)

where zm′ ∈ C
Nm′ denotes the symbol vector transmitted from

the m′th user, Tm′ ∈ C
nT ×Nm′ denotes the linear transmitter

processing for the m′th user’s symbols,

Hm =




h
(m)
1,1 h

(m)
1,2 · · · h

(m)
1,nT

h
(m)
2,1 h

(m)
2,2

...
...

. . .

h
(m)
nRm ,1 · · · h

(m)
nRm ,nT


 (3)

is the IID channel matrix from the BS to the mth MS in which
h

(m)
�,k denotes the fading coefficient from the BS antenna k to the

�th antenna of MS m, Rm ∈ C
nRm×Nm denotes the linear re-

ceiver processing for the mth user’s symbols, and nm ∈ C
nRm

is the noise vector at the receive antennas of MS m, whose en-
tries are zero-mean complex Gaussian random variables with
variance of N0/2 per dimension. Likewise, ẑm ∈ C

Nm is the
mth user signal vector that contains the soft-output estimates of
the transmitted symbols, and the superscript † represents conju-
gate transposition.

We also find it useful to define the multiuser transmit weight
matrix as

T = [T1 T2 · · · TM ] ∈ C
nT ×∑M

m=1 Nm (4)

and the multiuser transmitted symbol vector as

z =


 z1

...
zM


 ∈ C

∑M
m=1 Nm . (5)

Consequently, (2) can be conveniently written as

ẑm = R†
m(HmTz + nm) ∀m. (6)

III. SPATIALLY CORRELATED MULTIUSER MIMO
CHANNEL MODEL

For IID channels in (3),〈
h

(m1)
�1,k1

, h
(m2)
�2,k2

〉
= 0 (7)

if m1 �= m2 or k1 �= k2 or �1 �= �2 where 〈x, y〉 = E[xy∗].
To model spatial correlation among the antenna elements at
the BS and MS, we assume that the correlation among receiver
and transmitter array elements is independent from one another
[14], [15]. This can be justified from the fact that in most situa-
tions, only immediate surroundings of the antenna array impose
the correlation between array elements and have no impact on
correlations observed between the elements of the array at the
other end of the link. In what follows, the channel is considered
to be separable.

Now, we begin by defining the correlation coefficient be-
tween two elements of two distinct mobile receivers as

ρ
(m1,m2)
�1,�2

�
〈
h

(m1)
�1,k , h

(m2)
�2,k

〉
(8)

where it is apparent that the receiver correlation coefficient is
independent of the transmit antenna element, k (due to the sep-
arability assumption of the channel). Further, as the distance
between different MS would be large compared to the wave-
length of radiation, it is reasonable to assume there is no spatial
correlation between elements of different MS, i.e.,

ρ
(m1,m2)
�1,�2

=

{
0 if m1 �= m2,

ρ
(m1)
�1,�2

if m1 = m2
(9)

for all �1, �2. Following this, a matrix of the receiver correlation
coefficients can be constructed as

ΓR = diag(ΓR1 ,ΓR2 , . . . ,ΓRM
) (10)

where

ΓRm
�




ρ
(m)
1,1 ρ

(m)
1,2 · · · ρ

(m)
1,nRm

ρ
(m)
2,1 ρ

(m)
2,2

...
...

. . .

ρ
(m)
nRm ,1 · · · ρ

(m)
nRm ,nRm


 . (11)

Similarly, we define the transmitter correlation matrix as

ΓT �




τ1,1 τ1,2 · · · τ1,nT

τ2,1 τ2,2

...
...

. . .
τnT ,1 · · · τnT ,nT


 (12)

in which
τk1,k2 �

〈
h

(m)
�,k1

, h
(m)
�,k2

〉
(13)

which is independent of both m and �.
From the definitions of (10) and (12), we can effect the spa-

tial correlation by post-multiplying the channel transfer matrix
Hm described before in (3) by the transmitter correlation ma-
trix, Γ1/2

T and pre-multiplying by the receiver correlation ma-

trix, Γ1/2
R so that

H̃ = Γ1/2
R H(Γ1/2

T )† (14)

where

H ≡


 H1

...
HM


 . (15)

Now, the entries of H̃ are correlated to model the spatial corre-
lation among the antenna elements.

With this model (14), implicitly, the correlation between two
channels from the BS to the same MS m can be characterized
by the product of the transmitter and receiver correlation coef-
ficients, i.e., 〈

h
(m)
�1,k1

, h
(m)
�2,k2

〉
= ρ

(m)
�1,�2

τk1,k2 . (16)
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To use the model, the correlation matrices, ΓT and ΓR, have
to be defined, either arbitrarily or empirically. The selection of
the correlation coefficients may vary from different communi-
cation environments. In order to make the analysis tractable, we
use the idea of the single-parameter correlation model in [16] to
determine ΓT and ΓR as a function of a single-parameter, γT

or γRm
. As such, we have

ΓT =




1 γT γ4
T · · · γ

(nT −1)2

T

γT 1 γT
. . .

...

γ4
T γT 1

. . . γ4
T

...
. . .

. . .
. . . γT

γ
(nT −1)2

T · · · γ4
T γT 1




(17)

and

ΓRm
=




1 γRm
γ4

Rm
· · · γ

(nRm−1)2

Rm

γRm
1 γRm

. . .
...

γ4
Rm

γRm
1

. . . γ4
Rm

...
. . .

. . .
. . . γRm

γ
(nRm−1)2

Rm
· · · γ4

Rm
γRm

1




.

(18)

IV. ORTHOGONAL SPACE DIVISION MULTIPLEXING

To deal with a broadcast system, here, we propose an OSDM
scheme to decompose the channel into many uncoupled single-
user systems. Specifically, the objective is to find the weight
matrices, T,R1, . . . ,RM jointly that can ensure interference-
free at all the signal outputs of the spatial modes of the system
and that the resultant channel gains of the spatial modes are
maximized. Mathematically, this can be written as [11]

(T,R1, . . . ,RM )opt = arg max
T,R1,...,RM

M∑
m=1

‖Λm‖2 (19)

where ‖ · ‖ denotes the Frobenius norm of the input matrix [17]
and Λm is defined by

R†
mHmT = [01 · · · 0m−1 Λm︸︷︷︸ 0m+1 · · · 0M ]

mth
sub-block

matrix
(20)

where
Λm = diag

(
λ

(m)
1 , λ

(m)
2 , . . . , λ

(m)
Nm

)
(21)

is of dimension Nm×Nm and λ
(m)
n corresponds to the resultant

channel gain for the nth spatial mode (or the nth signal stream)
of the mth MS. Likewise, 0m′ is the m′th sub-block zero matrix
of dimension Nm × Nm′ . From (20), each sub-block matrix
corresponds to the signals transmitted from each user to the MS
m and hence by making all of them zero except for the mth
user, the CCI can be completely eliminated.

To achieve (19) and (20) simultaneously, an iterative algo-
rithm is proposed as follows:

1. Initialize Rm = I ∀m where I is an identity matrix of
appropriate dimensions.

2. For each m, form the matrix

H(m)−
e �




R†
1H1

...
R†

m−1Hm−1

R†
m+1Hm+1

...
R†

MHM



∈ C

(∑M
m′=1
m′ �=m

Nm′

)
×nT

.

(22)
and obtain the nullspace of H(m)−

e , Qm. Then, compute
the singular value decomposition (SVD) of HmQm =
UmΛmV†

m. Afterwards, find Tm and Rm, respectively,
by

Tm = QmVm|1↔Nm
(23)

and
Rm = Um|1↔Nm

(24)

where the notation ·|1↔Nm
collects the column vectors of

the input matrix that correspond to the Nm largest singular
values.

3. Compute ε = off (HeT) where

He �


 R†

1H1

...
R†

MHM


 ∈ C(∑M

m=1 Nm)×nT (25)

and
off(A) �

∑
k,�

|ak,�|2. (26)

in which | · | takes the modulus of a complex number. If
ε ≤ εTh(= 10−12 typically), proceed to Step 4; otherwise,
go back to Step 2.

4. The convergence is said to be achieved and normalization
is then performed for all columns of T to satisfy the power
constraint.

Numerical results have demonstrated that the proposed itera-
tion can numerically achieve OSDM whenever

• the number of BS antennas is no smaller than the to-
tal number of activated spatial modes of the system, i.e.,
nT ≥∑M

m=1 Nm, and
• the number of receive antennas at MS m is no smaller

than the number of activated spatial modes of that MS,
i.e., nRm

≥ Nm.
Throughout this paper, we shall refer to the above algorithm as
an iterative nullspace-directed SVD (Iterative Nu-SVD).

V. SIMULATION RESULTS

A. Setup

We study the diversity performance of OSDM (obtained by
Iterative Nu-SVD) in terms of both average bit-error-rate (BER)
and the second and fourth-order statistics of the resultant chan-
nel gains by Monte Carlo simulations. The results are plotted
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against various spatial correlation coefficients, γT and γR. Per-
fect channel information is assumed to be available at the trans-
mitter (BS) and all the receivers (MS). The channel model we
use in our simulations is a quasi-static narrow-band Rayleigh
fading channel. We assume 4-QAM is used for all transmission.
Additionally, we assume that the spatial correlation among dif-
ferent users is all the same (i.e., γR1 = · · · = γRM

= γR).
To investigate the diversity gains, two statistical parameters

are examined. They are the average of the squared channel gain
(second-order statistic)

Ω = E[λ2]. (27)

and the inverse of the normalized variance of the squared chan-
nel gain (fourth order statistic)

Ψ =
Ω2

E[(λ2 − Ω)2]
(28)

where λ represents the resultant channel gain of a spatial mode.
The diversity orders of the system can be measured in terms of
Ω and Ψ relative to a system without diversity with Ω = Ψ = 1.
Consequently, Ω can be readily considered as the diversity order
obtained in terms of received power, and Ψ can be considered
as the diversity order obtained for reducing the effect of fading
(i.e., when Ψ → ∞, channel becomes AWGN).

For convenience, we use {nT , [nR1(N1), . . . , nRM
(NM )]}

to denote a broadcast MIMO system where an nT -element BS
is communicating to M MS and each MS m has nRm

receive
antennas and supports Nm spatial modes.

B. Results

Figures 1 and 2 provide the results of BER and diversity or-
ders of {2, [2(1)2(1)]} with particular focus on systems where
users supporting only one stream (or mode). The average re-
ceived signal-to-noise ratio (SNR) is set to 16 dB. Analysis
is done by varying one value of spatial correlation coefficient
γT (γR) while the other γR(γT ) is fixed. As expected, observ-
ing from the results in Figure 1, the BER gets worse if the spa-
tial correlation increases. Intriguingly, the performance degra-
dation is more severe on the transmit correlation factor than the
receive correlation factor (It is worth-noting that this is contrary
to the known results of the single-user MIMO system that the
transmit and receive correlation factors have the same effect on
the system performance.). In particular, when γT approaches
0.99 (perfectly correlated in space), BER becomes 0.5 indicat-
ing that the multiuser system actually breaks down. Otherwise
however, when γR tends to 0.99, the BER performance though
degrades considerably, still stays around 10−3. This can be
explained by recognizing that the orthogonal property of the
system is largely provided by the difference of the channels
seen by the transmit antenna array. As a consequence, when
γT increases, the channels of the users quickly become non-
distinguishable while the effect of increasing γR goes only to
the loss of receive diversity at the users.

More can be observed from the results in Figure 2 where di-
versity orders are given. As can be seen, when transmit correla-
tion factor increases (while γR is fixed to 0), both channel gain

Ω and diversity gain Ψ degrade, and will approach to 0 as γT

tends to 0.99. By contrast, when the receive correlation factor
increases (while γT is fixed to 0), the diversity gain Ψ degrades
but the channel gain Ω almost stays the same. Actually, it can be
easily shown that when the receive antennas are entirely corre-
lated, the multiuser system {2, [2(1), 2(1)]} is equivalent to the
single-user system {1, [2(1)]} with perfect receive correlation
where Ω = 2 and Ψ = 1.

In Figures 3–5, BER and diversity results are, respectively,
plotted for systems with multiple spatial modes per user. The
system configuration we consider is {4, [3(2), 3(2)]} and SNR
is still 16 dB. Results in Figure 3 demonstrate that the BER
performances of all the modes generally degrade when the cor-
relation factor increases. The degradation is not sensitive even
when the spatial correlation is as large as 0.4. Particularly, when
γT tends to 0.99 (while γR is fixed to 0), the BER of both
streams approaches 0.5. Furthermore, when γR tends to 0.99,
the BER performance of stream 2 approaches to 0.5 whereas
the BER performance of stream 1 is about 10−4. This indi-
cates that with high spatial correlation, essentially, at most one
stream can be supported for each user. Similar conclusions can
be drawn from the results in Figures 4 and 5.

VI. CONCLUSIONS

To summarize, this paper has studied the effect of spatial cor-
relation on the performance of the multiuser MIMO antenna
system in broadcast channels. A simple single-parameter spa-
tial correlation MIMO channel model is introduced to investi-
gate the effect. Simulation results have shown that the system
performance including BER and diversity is more sensitive to
the transmit correlation than the receive correlation. Further-
more, the performance is not sensitive to the spatial correlation
and it has been demonstrated that performance degradation is
small even when the spatial correlation is as large as 0.4.
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