PERFORMANCE ANALYSIS OF THE DOUBLY-LINKED LIST PROTOCOL FAMILY
FOR DISTRIBUTED SHARED MEMORY SYSTEMS
ALBERT C.K. LAU. NELSON H.C. YUNG and Y.S. CHEUNG

Department of Eleétrical and Electronic Engineering, The University of Hong Kong
Chow Yei Ching Building, Pokfilam Road, Hong Kong,

ABSTRACT The doubly-linked list (DLL) protocol provides a
memory efficient, scalable, high-performance and yet easy fo
implement method to maintain memory coherence in
distributed shared memory (DSM) systems. In this paper, the
performance analysis of the DLL family of protocols is
presented. Theoretically, the DLL protocol with stable owners
has the shortest remote memory access latency among the
DLL protocol family. According to the simulated performance
evaluation, the DLL-S protocol is 65.7% faster than the DDM
algorithm for the linear equation solver, and is 16.5% faster
for the matrix multiplier. From the trend of the performance
figures, it is predicted that the improvement in performance
due to the DLL-S protocol will be considerably greater when a
larger number of processors are used, indicating that the
DLL-S protocol is also the most scalable of the protocols
tested.

1. Intreduction ;

Distributed Shared-Memory (DSM) [1] is an important
aspect of parallel processing because it allows programmers to
use the shared-memory programming model on systems that
have distributed main memory. Traditionally, interprocessor
communications in distributed memory multiprocessors rely on
message passing, in which the programmers are responsible
for handling all the formatting, sending and receiving of
messages. With DSM, however, interprocessor
communications can be performed simply by reading and
writing the shared memory space, while the underlying
mechanism is transparent to the programmers. In order to
create a shared memory space from physically distributed
memory, a DSM protocol is generally required to handle the
remote memory accesses and to maintain memory coherence.

In this study, the base system architecture of the DSM
system is assumed to be a generalized multiprocessor model,
called the hierarchical cluster model [2]. In this model,
multiple clusters are connected by an interconnection network
(Figure la). Each clusters has a small number of Processing
Elements (PEs) and its focal memory (Figure Ib). In the
hierarchical cluster model, programmers have to use both the
shared-memory model for intra-cluster communications and
the message-passing model for inter-cluster communications.
With DSM, the complications of the underlying architecture
are hidden from the programmers, who see only a uniform
contiguous memory space.

One of the early software DSM system is IVY (3], which
implemented the DSM concept as virtual shared memory. In
IVY, when a page fault occurs in a cluster’s local memory, the
faulting page is fetched from a remote cluster that has a valid
copy of the page, instead of loading from disk. It experimented
with various DSM algorithms and concluded that the Dynamic
Distributed Manager (DDM) algorithm generally had the best
performance. In the DDM algorithm, pages can migrate and
replicate freely throughout the system as needed for shared
accesses by different clusters. The page management is
performed by individual owner cluster of a page that keeps the
copy-set, which is the set of clusters that has valid copies of the

0-7803-3529-5/96/$5.00 © 1996 IEEE

cluster

cluster
1 n

[interconnection network J
Figure la. The hierarchical cluster model.

1 2 . .n,
PE PE PE
M-bus -
main
memory

Figure 1b: A cluster

page. Whenever there is a write access to a page, the owner of
the page invalidates all other copies of the page in the system
listed in the copy-set. then transfers the ownership to the
cluster that writes to the page.

As the DDM algorithm is an extension of the basic virtual
memory system, a standard feature supported by virtually ail
contemporary microprocessors, the overhead caused by the
algorithm is small. However, there are rooms for improvement
in the DDM algorithm. First, the DDM algorithm performs
write invalidation by using information from the copy-sets,
which are dynamic memory structures whose maximum size is
the number of clusters.in the system. The worst case total size
of the copy-sets is thus equal to the number of pages in the
system times the maximum size of a copy-set — for a system
with 1024 clusters and 128 Mbyte main memory with 1 Kbyte
pages, the maximum total size of all copy-sets in a cluster has
128x2% (more than 128 millions) entries! This severely limits
the scalability of the system. Second, the burst of invalidation
messages generated by the owner during write-invalidations
may congest the part of network around the cluster — in the
worst case, for a system with N clusters, if every cluster in the
system is invalidating a page in every other clusters, the
number of messages sent will be N- (N - 1), i.e., the maximum
instantaneous number of invalidation message in the system is
O(N%. In Li’s paper [3], a method to partially distribute the
copy-set using trees of clusters was proposed; however, as
dynamic memory structures are still needed in the algorithm,
the problem is still not completely solved.

To address this problem, the Doubly-Linked List (DLL)
protocol [4] was proposed. The DLL protocol is a software
DSM algorithm that is suitable for implementation in the
distributed operating systems of a wide varieties of
multiprocessor systems. As in the DDM algorithm, the DLL
protocol is transparent to programmers and allows migrations
and replications of memory pages. However, instead of using
copy-sets, linked lists of clusters formed by the P-links which
require constant storage space in the page tables are used to
perform write invalidation. The total space required to store all
the P-links in a cluster is equal to the number of pages in the

system — for the same- 1024 clusters system as mentioned
- above. only a constant 128x2'" (1024 times fewer than the
worst case of DDM) entries is needed to store the P-links.
Moreover, the use of links allows invalidations to be performed
in a distributed way in which the owners need not send large
bursts of invalidation messages — for a system with A clusters.
the maximum instantaneous number of messages is 2N, ie..
O(N). Furthermore, in the DDM algorithm. every cluster
performing an invalidation of a page needs to send an
acknowledgment message, whereas in the DLL protocol, only
one acknowledgment message is needed for the invalidation of
a page. Therefore, in theory. the DLL protocol minimizes both
the possibility of network congestion and the number of
messages used.

In this paper. the performance analysis of the basic DLL
protocol (DLL-B), the DLL protocol with N-link Reduction
(DLL-R) and the DLL protocol with stable owners (DLL-S), is
presented. In the basic protocol, the cluster that most recently
acquires a page becomes the owner of the page. Although this
method lengthens the time required to locate the owners, it
speeds up the read-modify-write memory access sequences
which are used in many applications. As the read operations
change the owner of the page to the requesting cluster. it can
then perform the write invalidation directly. The DLL-R
protocol is developed to shorten the time required to locate the
owners by partially reducing the length of the chains of N-
links, and yet it preserves the quick read-modify-write
advantage of the basic protocol. In the new DLL-S protocol,
ownership is not - transferred during read accesses, thus
‘eliminating the need to trace through chains of N-links to
locate the owner. In addition, multiple read accesses can be
serviced simultaneously by clusters that have copies of the
page. However, it loses the fast read-modify-write advantage of
the basic protocol.

Theoretically, the DLL-S protocol has the shortest remote
memory access latency among the DLL family of protocols.
According to the simulation study. the DLL-S protocol
achieves an improvement of 65.7% over the DDM algorithm
. for the linear equation solver, and an improvement of 16.5%
for the matrix multiplier.

The organization of the paper is that the DLL-B and the
DLL-R protocols are outlined in the section 2. The DLL-S
protocol is discussed in section 3. A theoretically analysis of
the protocols is presented in section 4. The performance
evaluations of the protocols by simulations are presented in
section 5, and finally, conclusions are made in section 6.

2. The Basic DLL Protocol

In the DLL protocol family, the memory space is divided
into fixed size pages as in virtual memory systems (Figure 2).
Each ciuster maintains its own page table, which contains
information about all the memory pages in the system. Each
memory page in the page table can have one of the three states
-- E (exclusive), S (shared) or I (invalid). E state means the
cluster has the only copy of the page in the whole system. §
state the cluster has a copy of the page but it is not the only
copy. I state means the cluster does not have a valid copy of
_the page.

Every page has an owner cluster, although page ownership
can be transferred. In the DLL-B protocol. the owner of a page
is the cluster that most recently acquired the page. It is the

Cluster 0 local memory

;::::7:::.'::::::::.‘E Cluster 1 local memory
Figure 2. The shared (virtual) memory space.

responsibility of the owner to supply the page to the requesting
clusters. Also contained in the page table are the P-link and
the N-link for each page. The P-link points to the cluster that
is the previous owner of the page, while the N-link points to
the cluster to which the page ownership is given. A null N-link
means the cluster is the owner of the page. From any cluster,
the owner of a page can be reached by following its N-links;

and from the owner of a page, all clusters in the system that
have copies of a page can be visited by following the P-links.

2.1 Read Accesses

Read accesses to pages with E or S states are performed
locally; however, when a cluster performs a read access to an 1
page. a remote read access is required to obtain the page from
the owner. The cluster sends a read-request (RR) message to
the page’s N-link. Following the chain of N-links, the message
will eventually reach the owner of the page, which replies by
sending a copy of the requested page back to the requesting
cluster through the read-data (RD) message. It then points its
N-link to the requesting cluster and scts the page state to S.
The requesting cluster, on teceiving the RD message, copies
the page to its local memory, sets the page state to S and its N-
link to NULL and points its P-link to the servicing cluster. At
this point, the requesting cluster becomes the new owner of the
page and completes the read access.

The following is an example of a remote read access:
Assume cluster c0 is the owner of page p0 and cluster cl.
whose p0 is I state and the N-link of p0 points to c0, now
performs a read access to p0. Therefore, ci1 sends an RR
message to c0, which replies by sending an RD message
containing a copy of p0 to ¢1, changes the state of p0 to S and
sets the N-link to point to ¢cl. When ¢l receives the RD
message, it copies the page p0 to its local memory, changes the
page state to S, N-link to NULL and P-link to ¢0, and
completes the read access. The process is depicted in Figure 3.

Shared (virtual}
Memaory Space

Cluster 2 local memory

[~——> message
..... » P_hnk i

Figure 3: Read request by ¢l

2.2 Write Accesses :

If a cluster performs a write.access to an E-page, the
request can be completed locally; otherwise, a remote memory
access is generated. If the page state is S, all other copies of the
page in the system must be invalidated to maintain memory
coherence. A write-invalidate (WI) message is sent through the
chain of N-links to the owner, which sets its own page state to
1 and sends a write-invalidate-forward (WIF) message to the
page’s P-link. The WIF message goes through the chain of P-
links, thus invalidating all copies of the page in the system,
except the one in the requesting cluster, which ignores the

366

message. When the WIF message reaches the end of the P-
links chain, a write-invalidate-performed (WIP) message is
sent back to the requesting cluster. On receiving the WIP
message, the requesting cluster sets the page state to E. and
both the N-link and the P-link to NULL. At this point, the
write access is completed.

The following is an example of a write access to an S page.
First. assume the page table state in Table ! and now ¢0
performs a write access to p0. Since p0 is in state S in c0, other
clusters with copies of ¢O must have their copies invalidated.
Therefore, a WI message is sent to the cluster pointed to by the
N-link, i.e.. cluster ¢c1. Following the N-links. ¢l forwards the
W1 message to ¢2, which is the current owner of p0. Cluster c2
then sends a WIF message to the cluster potnted to by its P-
link, i.e., cluster c1, changes the state of its p0 to I, and resets
its P-link to null and N-link to c0. Cluster c1. on receiving the
WIF message, changes the state of p0 to I. forwards the
message to the cluster pointed to by its own P-link. i.e.. cluster
¢0, and reset its P and N-links to null and c0. respectively.
When ¢0 receives the WIF message. as it is the requesting
cluster, it ignores the message. Since ¢0’s P-link is nuil, all
copies of pO in the system, except the ome in c0, are
invalidated. At this point, cO should send a WIP message back
to the requesting cluster; however. as the requesting cluster is
<0 itself, so this message is skipped. Finally, cO changes the
state of p0 to E, sets both of its P and N-links to null, and
completes the write access. The cluster ¢0.-becomes the new
exclusive ewner of p0. The process is depicted in Figure 5.

S messige |
| == Ndink |
{_P-link all NULL |

Figure 5: Write request by c0

State | P-link | N-link
c0 S null cl
cl. S [c2
c2 S cl nuil

Table I: State of p0 in c0, ¢l & €2

If the write access is performed to an I page. a copy of the
page must first be obtained from the owner before all the
copies are invalidated. The cluster sends a write-request (WR)
message through the chain of N-links to the owner, which
replies first by sending a copy of the page back to the
requesting cluster with the wrire-data (WD; message.
Afterwards, the invalidation process as in a write access to an
S page is performed. When the requesting cluster receives both
the WD and the WIP messages, it copies the page to its local
memory, sets the page state to E, and both the N-link and the
P-link to NULL. At this point, the write access is completed.

The following is an example of a write access to an I page.
Again assume the state of the system in Table I and now,
another cluster, ¢3, performs a write access to pO which is in I
state, It sends a WR message via the N-links to the owner of
pO0, i.e., cluster ¢2. When c2 receives the WR message, it first

sends a WD message. which contains a copy-of p0, to ¢3. &t
then sends a WIF message to the cluster pointed to by its P-
link and changes the state of its own p0 to I and resets its P
and N-links to null and to c3. respectively.

The WIF message, following the P-links, goes through
every cluster that contains a copy of p0, i.e., ¢l and ¢0, which
also changes the state of p0 to I and reset the P and N-links to
null and to ¢3. respectively. When the WIF message reaches
c0. whose P-link is originally null, ¢0 will send a WIP message
to c3. When c3 receives both the WD and the WIP messages, it
copies p0 into its local memory, and set both the P and N-links
to null. The cluster ¢3 becomes the new exclusive owner of p0.
The process is depicted in Figure 4.

| = > N-link |
P-link all NULL |

Figure 4: Write request by c3

2.3 Advantages and Disadvantages

One major advantage of the DLL protocol is the constant
page table size for a given system memory size. As mentioned
earlier, page tables of protocols that use sets or trees varies
dynamically in size, making these protocols difficult to
implement. In DLL, however, page movement is kept track of
by using the N-links and . P-links, which- only require a
constant amount of memory in the page tables. -

Second, in the DLL protocol, the responsibilities of
invalidating a page are distributed by the chain of P-links to ail
clusters that have copies of the page. This prevents the large
burst of messages generated by the owner during invalidations,
Moreover, only one acknowledgment message is sent for each
invalidation of a page, instead of one per cluster that has the
page as in the DDM algorithm,

Third, in the basic DLL protocol, the cluster that most
recently performs a read access to a page becomes the owner of
the page. This favers read-modify-write sequences that when a
cluster performs write accesses to page immediately after
reading from it. it can perform the write-invalidation directly
without the need to locate the owner.

Nevertheless. the DLL protocol does have its
disadvantages. First, as copies of pages in different clusters
have to be invalidated one by one, the time required for the
invalidation process is long. This calls for the use of other
performance enhancement techniques such as relaxed memory
consistency model [5}]6] and write-buffering [7], which aliow
certain memory accesses to be performed before the
completion of previous accesses. Second, in the DLL-B
protocol, a message travels to the owner by going through a
chain of N-links. which grows longer for every read request
performed to the page. The time wasted in following the N-
link can be substantial as the chain of N-links grows long.

367

2.4 The DLL Pratocol with N-link Reduction

To address the second drawback of the DLL-B protocol
discussed in the previous section. the DLL protocol with N-
link reduction (DLL-R) was developed to reduce the length of
the chain of N-link during read accesses. N-link reduction
reduces the length of the chain of N-links during every read
request to a page. According to DLL-B. the cluster that
generates the read request will become the new owner of the
page after the request has been serviced. Therefore. all the
clusters that are involved in forwarding the RR message may
change their N-links to the requesting cluster. even though the
request has not yet been completed. The requesting cluster
should lock the page and queue all accesses to it until the RD
message is received.

For instance, assume the N-link of cluster c¢O points to
cluster ¢1 and that of cl points to cluster ¢2, which is the
owner of page p0. Cluster cO now put a lock on p0 and sends a
RR message to its N-link. i.e., cl. to request read access to p0.
When cl receives the RR message. it forwards the message to
¢2 and at the same time sets its N-link to point to c0. which

will become the new owner of p0 after the completion of the

read access. Therefore, the N-link of cluster ci is reduced.
Although only the N-links of clusters that are previously
involved in forwarding a message are reduced. N-link
reduction puts no extra cost to the protocol because it only uses
the original RR message without adding new information to it.

3. The DLL Protocol with Stable Owners
The objective of developing the DLL-S protocol is to
completely reduce the chains of N-links used in locating the
owner of pages. Moreover, it allows multiple read accesses to
the same page to be serviced simultancously by different
clusters that have copies of the page.
The memory organization and initialization method of the
. DLL-S are the same as the DLL-B and the DLL-R. The initial
order of distribution of the pages is again imaterial to the
correctness of the protocol provided that the page table of each

- cluster is initialized to reflect the initial page placement.

3.1 Memory Access Methods

The read access methods of the DLL-S are different from
that of the DLL-B but the write access methods are essentially
the same. The read access methods are explained below.

If a page is in an E or S state. the cluster already has a
valid copy of the page and thus read accesses to the page can
be handled locally. However, as in the DLL-B, when a read
access is performed to an I page. the page must be obtained
from another cluster that has a valid copy of the page. It sends
an RR message to the cluster pointed to by its N-link. If the
cluster receiving the RR message does not have a valid copy of
the requested page, it forwards the message to its own N-link.
Eventually, the RR message reaches a cluster that has a valid
copy of the requested page. Note that this cluster may or may
not be the owner of the page. When a cluster that has a valid
copy of the requested page receives the RR message. it creates
an RD message that contains a copy of the requested page and
copies of its N-link and P-link and sends it back to the
requesting cluster, changes the state of the requested page to S
and sets its P-link to point to the requesting cluster. When the
requesting cluster receives the RD message. it copies the page
to its local memory and set the local physical address field of
the page table accordingly. changes the state of the page to S

and sets its N-link and P-link to the values stored in the RD
message. If the received N-link is NULL, meaning the replying
cluster is the owner of the page. the requesting cluster sets its
N-link to point to the replying cluster. The requesting cluster
then completes the read access.

In the process. the requesting cluster is attached to the
linked list of clusters joined by their P-links. The N-links of all
clusters in this list point to the owner of the page, i.e., the head
of the linked list. This arrangement is to facilitate the write
request and write invalidate operations, which must still be
serviced by the owners. ‘

The following is an example of a read request of the
DLL-S. Assuine a small system with 3 clusters, c0-c2, with c0
being the initial owner of page p0 and cl has just completed a
read request to p0. The current page table entry of p0 in each
cluster is as shown in Table 2

Cluster State |- P-link N-link
c0 S cl NULL
cl S NULL c0
c2 1 NULL c0

Tabie 2. Initial state of p0 in each cluster

. Now. another cluster, c2, performs a read access to p0.
Since it does not have a copy of p0, it sends an RR message to
its N-link, i.e., c0. When ¢0 receives the RR message, it again
replies by sending an RD message that contains a copy of p0
and the value of its N-link (NULL) and P-link (pointing to c1
by the last example) back to c2; then, it sets its P-link to point
to c2. When c2 receives the RD message, it copies the page to
its local memory and sets its N-link to point to c0 and P-link to
point to ¢l according to the value in the RD message. At this
point. the read access is completed. The process is depicted in
Figure 6. Note that c2 is now part of the linked list in which
¢0 is the head and cl is the tail. The state of the page table in
these clusters are summarized in Table 3.

1. RR
c0 >_‘T — .
2 RD
\
i} . ~
| == message |
| == = Nink |
- - b pink |
Figure 6. Read request by ¢2
Cluster State P-link N-link
<0 S c2 NULL
cl S NULL c0
c2 S cl c0

Table 3. Final state of p0 in each cluster

3.2 Significance of the DLL-S Protocol

The DLL-S protocol shows two improvements over the
DLL-B and DLL-R. First, all clusters in the system that have
copies of a certain page can service a remofe memory access to
that page so the number of read accesses that can be serviced
simultaneously is equal to the number of clusters that have
copies of the page. This exploits more parallelism.

Second, in the DLL-S. all clusters in a linked list have their
N-links pointing to the owner of the page. This is not only an
improvement over the DLL-B, in which a message must go
through a chain of N-links to reach the owner, but also an

368

improvement over the DLL-R. in which the cham of N—lmks is
only partially reduced.

The only additional cost of the DLL-S is that the RD -

message now contains the value of the N-link and P-link of the
replying cluster, in addition to the copy of the requested page.
This addition (several bytes). however. is very small compared
to the usual page size (hundreds or thousands of bytes) and can
therefore be justified. Nonetheless. as the ownership of pages is
no longer changed by read accesses. the advantage of the fast
read-modify-write sequence in the basic DLL protocol is lost.

4. Theoretical Analysis of the Protocols

This section compares the DLL-B, DLL-R and DLL-S
protocol. and the DDM algorithm theoretically with respect to
the areas including remote memory access latency, page table
size and message distribution.

4.1 Remote Memory Access Latency

The remote memory access latency (Try) is defined as the
time interval between the issue of a remote memory access and
the completion of that access. It can be divided into 3 parts,
namely the send time (7s). the invafidation time (77) and the
reply time (7). The software overhead and qucuing delay for
remote memory accesses are approximaiely the same for the
protocols discussed and therefore will not be inciuded in the
comparison.

4.11 Send Time

The send time is defined as the time required for the
memory access request message 1o travel from the requesting
cluster to the cluster that will service the request. In order to
evaluate the send time, one must first understand the concept
of cycles of accesses.

Define one 'cycle of accesses to a page’ to be all the
accesses performed to the page between two invalidation
operations of that page. For instance. cluster c0 performs a
write access to page p0. thus invalidating all copies of p0 in
other clusters; then, all clusters performs read access to p0 to
read the value written by ¢0; finally, cO writes to p0 again —
this is considered as one cycle of access.

The significant of cycles of accesses in the analysis of
remote memory. access latency is that if a certain cluster skip a
cycle of accesses to a certain shared page. a maximum of one
additional step will be necessary for any wessages from that
cluster to reach their destination. Consider the following
example: Cluster 0 performs a read access to page 0 in cycle
0. then, another cluster ¢l performs a write access to page 0,
thus endmg cycle 0 and starting cycle t. Cluster cO does not
perform any accesses to page O before vet another cluster ¢2
performs another write access to page 0. thus ending cycle 1
and starting cycle 2. In this case. cluster c0 skips a cycle (cycle
1) of page 0. Now, if cO performs a remote memory access to
page 0. it will send a message to cl. which is no longer the
owner of page 0 because ¢2 has written to page 0. Therefore,
one additional step is needed between cl and ¢2 before the
message can reach its destination. This additional number of
messages needed is only a maximum because there are chances
that the message can reach its destination without going
through all the steps. For example. if the second cluster that
writes to page O is cl instead of c2. then c0’s remote memory
access message will reach its destination in only one step.

By the above argument, the following can be deduced: If a
cluster skips n cycles of accesses to a certain page, a

maximum of n-additional steps will be required for the request
message of a rentoie memory access performed by that cluster
to that page to reach its destination.

- The effect of cycles of accesses applies to 1he DLL
protocols. as well as to the DDM algorithm. In the following
analysis, we shall assume the clusters never miss cycles of
accesses. In cases where cycles of memory accesses are
skipped. the above rules may be used to estimate the additional
overhead required.

In the analysis, the physical distances between any two
clusters are assumed to be the same in order not to bias the
study 1o any particular network topology. The time required for
a request message to travel one hop, ie., from a cluster to
another, is assumed to be ¢.. while the time require for a data
message to travel one hop is assumed to be 1, Note that both ¢,
and 1, depends of the speed and latency of the network, which
in turn depends on the traffic condition of the network. and ¢,
also depends on the system page size.

4.1.1.1 Send time for the DLL-B protocol

According to the DLL-B protocol, the send time is not a
constant but rather a variable depending on the number of
clusters that the request message goes through before it reaches
the owner. As a chain of N-links is used to locate the owner of
a page in DLL-B, we can deduce that the send time Ts of any
particular remote access is:

T,(DLL-B)=n, ¢,)

In equation (1), the cluster that performs the remote access
request is the n,th cluster to do so in the current cycle of
accesses of the page. Recalling from the DLL-B definition.
assuming that the cluster skip no cycle of accesses, a request
message from a cluster will require only one step to reach the
owner of a page if it is the first read access performed to the
page after the most recent invalidation. Then. for every cluster
that performs read access to the page. the chain of N-links will
grow one step longer.

If, on average, the number of clusters that perform memory

access to the page in one cycle of access equals to 7 . the
average send tite 75 for this particular page will be:

= 14 2+.. 471, 1+n,

I(DLL-B) = = -t = 5 -1,)

Notice that the average send time for DLL-B is O(#).
This means that if more clusters share the same page, the
average sent time for that page will be higher. This limits the
scalability and the amount of parallelism of the system.
4.1.1.2 Send time for the DLL-R protocol)

In the DLL-R protocol, since the N-links of all clusters that
are involved in forwarding an RR message are updated to point
to the requesting cluster, i.e., the new owner, one would expect
its performance to be better than O(#,). In fact, for clusters
that have not missed any cycle, the send time 7Ty is:

75 (DLL -R first cluster) = £, 3
for the first cluster that perform remote access to the page
immediately following its invalidation; and is:

Ts(DLL-R) = 4)
for all clusters that perform remote read access to the page
after the first. Therefore, the average send time for DLL-R for
a page shared by an average of 7, clusters is:

369

1+2(n, - 1) i
], = ZFF £, <2, (5)

r r

T,(DLL-R) =

Note that the average send time still incrcases swhen the
number of clusters sharing a page increases: however, there is
an upper-bound of 21, — a major improvement over DLL-B.

4.1.1.3 Send time for the DLL-S protocol
In the DLL-S protocol. the owner of a page is not changed
by read accesses. Therefore, provided that a cluster has not
skipped the previous cycle of accesses. il always knows exactly
where the owner of a page i1s. Hence. the send time is:
Ty(DLL-S) =T, (DLL-S) =1, (6)
If a cluster skipped the previous cycle of accesses,
additional steps will be required as discussed earlier. However,
as any clusters that have a certain page may service the read
request to that page. the chance that additional steps are
required is small indeed.
4.1.1.4 Send time for the DDM algorithm
In the DDM algorithm, the owner of a page is not changed
by read accesses. so the send time required is the same as in
the DLL-S protocol: v
7, (DDM) = T, (DDM) = ¢, %)
Note that in the DDM algorithin. only the owner of the
page may service a read request.

4.1.1.5 Comparison oo

When comparing the sent time, the DLL-S protocol and the
DDM algorithm are the clear winner. However. the DLL-S
protocol has an advantage here because every cluster that has a
copy of a page may service a read request to that page: while in
the DDM algorithm, only the owner may service any request.

The send time of the DLL-R is slightly poorer than the above -

two but is still acceptable owing to the 2/, upper-bound.

4.1.2 Invalidation Time
The invalidation time is defined as the time between the
receipt of the write request by the owner of the requested page
and the receipt of all the acknowledgment messages by the
requesting cluster. The invalidation time for read accesses is
-always zero.
"'4.1.2.1 Invalidation time for the DLL protocol family
‘The invalidation time of all variations of the DLL protocol
" is the same. For a remote write request. if this is the a,th
remote request performed to the page during the current cycle
of accesses. the number of copies of the page in the system is
n,. Therefore, apart from the owner's copy of the page. n, - 1
WIF messages plus one WIP message are required to
invalidated all other copies of the page. The invalidation time
and average invalidation time are thus:
T,(DLLY=n_t, 7,(DLL)=#,t,

4.1.2.2 Invalidation time for the DDM algorithm

During write invalidation in the DDM algorithm. copies of
the page are invalidated in parallel. with one invalidation
message and one acknowledgment message for each of them.
Therefore, the invalidation time for remote write access is
constantly equal to:

7,(DDM) = 7, (DDM) = 21,

4.1.2.3 Comparison

From the above analysis. the DDM algorithin scems to be
the obvious winner. However, the effect of network congestion

®

®

is not taken into account here. In the DDM algorithm, as
copies of the page are invalidated in parallel, a large burst of
invalidation messages are sent by the owner simultancously.
According to the characteristics of common networks, the
latency of the networks rises sharply when the traffic reaches
60-80% of the capacity of the network [8][9]) As a result, ¢, for
the DDM algorithm may increase radically when a large burst
of messages is generated. thus increasing the overall
invalidation time. Our simulation showed that the actual
invalidation time of the DDM algorithm could be longer than
the invalidation time of the DLL protocol.

4.1.3 Reply Time

The reply time of a remote memory access is defined as the
time interval between the generation of the data message by
the cluster that services the request and the receipt of it by the
requesting cluster. The réply time for write invalidation
requests is always zero as no data message is generated.

The reply time for all read and write requests is the same
for all the protocols discusséd and is equal to £, It is because
the data message is always sent directly to the requesting
cluster.

4.2 Page Table Size

The page table size is constant for all the DLL family of
protocols. There is one record for each page in the system and
four fields in each record, namely the state of page, N-link, P-

~link and local physical address. In the page table of the DDM

algorithm, there is also one record for each page in the system
and four fields in each record, namely the state of page,
probable owner. copy-set and local physical address. The state
of page and the local physical address field of the two DSM
algorithmns are the same. and the N-link field is equivalent to
the probable owner field. Therefore, we need only to compare
the size of the P-link field to that of the copy-set.

Let the memory required to store a cluster ID be one unit:
then the total size of the P-link field in a cluster is n,, where n,
is the number of pages in the system. On the other hand, the
copy-set is a dynamic memory structure whose size range from
zero to N. where V is the number of clusters in the system. As
a result, the worst case total size of the copy-sets in a cluster is’
n,+ N. In other words, the worst case size of the copy-sets is N
times that of the P-links. For typical application, the number of
clusters sharing the same pages could be several hundreds or
thousands, meaning the total size of the copy-sets could be
several hundreds or thousands times larger than the P-links.
Moreover, enough memory must be saved for the copy-sets;
otherwise the system may fail by running out of memory.

4.2.1 Message Distribution

In order to look into the message distribution of the
protocols, the pattern by which a cluster generates message is
analyzed, In the DLL family of protocols, each cluster usually
only generates one message at any one time, except in the case
of a WR request. in which the owner generates a WD and a
WIF message simultaneous. Therefore, the maximum number
of messages generated by a cluster is 2 and the total worst case
number of messages generated in the whole system
simultaneously is 2V, which is O(V).

For the DDM algorithm, the maximum number of
messages generated by a cluster is NV - 1, which occurs when
the owner of a page services a write-request and has to send a
data message plus N - 2 invalidation messages to invalidate

370

every other cluster’s copy of the page. Therefore, the worst
case number of messages generated in the whole system
simultaneously is N - (V - 1). which is O(V*):

Although it is the worst casc situations. scveral insights
can be gained from the above analysis. First. a clusler in the
DDM algorithm can generate many more messages than a
cluster in the DLL protocols. which means high probability of
congestion at that part of the network. Second. in general. the
number of messages in the network at any one time would be
higher for the DDM algorithm than for the DLL protocols,
requiring a higher-bandwidth network. Third. owing to the
burst nature of the messages genérated 'by the write
invalidation operations in the DDM algorithm. it highly favors
a broadcast or multicast network: on the other hand, the DLL
protocol works well with any kind of network.

5. Simulated Performance Evaluation

The simulations are implemented as user level programs in
a network of workstations running PVM 3 [10]. The network
transfer rate of 0.8 byte/cycle (equivalent to 40MB/s on a
S0MHz system) and the message passing latency of 500 cycles
are assumed [11]. The page size is set to be lkbyte for all three
algorithms. In various studies of irnterconnection network
performance. the latency is shown to rise sharply when the
network becomes saturated [8][9].

Two. common applications, namely the linear equation
solver and the matrix multiplier, are used in the simulations to
evaluate the performance of the DSM protocols. The linear
equation solver solves 256 equations by the Gauss-Seidel
method {12] which is an iterative method — the results are
repeatedly read, recalculated and written back to the shared’

memory. Therefore, there are a large amount of read-modify-
write sequences involved. The matrix multiplier multiplies two ~
64x64 square matrices by reading the corresponding elements.”

multiplying and adding the results. then writing the results
back to the shared memory. The number of shared memory
accesses in the matrix multiplier is much smaller than in the
linear eguation solver., and there is no read-modify-write
sequence. These programs are written with the assumption of a
true shared memory. i.¢., the distributed nature of the system is
hidden. Systems of up to 16 clusters arc simulated.

Figure 7 depicts the plot of the speedup” for the linear
equation solver, in which the speedup is obtained by:
Process time by 1 cluster

speedup =
P P Processing time by N cluster

With a speedup of 4.07 with 16 clusters. the DLL-S
protocol is the best performer, although the performance of the
DLL-R protogol is very close to that of the DLL-S protocol.
With the shorter remote memory access latency and parallel
read accesses offered by the DLL-S as discussed before, one
would expect: a greater improvement over the DLL-R.
However, as'there are many read-modify-write sequences in
the linear equation solver, the DLL-B and DLL-R protocols
with their quick read-modify-write property have a greater
advantage, and therefore they perforin better. In this case, the
DDM algorithm achieves only a speed up of {.55 and 3.35
with 8 and 16 clusters, which are 39.6% and 17.5% less than
the DLL-S. This 1s mainly because of the network congestion
and increase in network latency caused by the bursts of
invalidation messages.

In order to understand further the impact of the quick read-

Speedup

12 16
No. ot clusters

Figure 8. Plot of speedup for the linear equation solver
50,000

40,000 4
30,000 -
20,000 -

10,000

No. of control msg.

0 = ; +

16
No, of clusters .
Figure 7. Plot of no. of control msg. for linear equation solver

14,000
12,000
10,000
8,000 - -
6,000
4,000 | -
2,000

0

No. of data msg.

o] 4 8
No. of cluster
Figure 9. Plot of no. of data msg. for linear equation solver

modify-write feature, the total number -of control messages.
i.e., messages that do not contain memory page data, and the
total number of data messages are plotted for the DLL-R and
the DLL-S protocols in Figure 7 and Figure 9. From the plots,
the DLL-R protocol uses 26% more control messages but 15%
fewer data messages than the DLL-S protocol. The extra
control messages are used by the DLL-R protocol to go
through the N-links. which are only partially reduced.
However, to explain the larger number of data messages used
by the DLL-S protocol, one have to look into the details of the
iterative method used in the linear equation solver. In each
iteration of the solver, the results from the previous iteration
are read from the shared memory, and the new results are
written back to the memory after some calculations. In the
DLL-R. after the results are read, the cluster becomes the
owner of the page in which the results are stored, so when the
results are written back to the memory, the WI request can be
service immediately and no data message is involved in the
write accesses. In the DLL-S, however, reading the results
from the memory does not give the ownership of the page to
the cluster, so when the results are written back, a W1 request
is sent to the current owner of the page. If before the WI
request is serviced, the cluster receives a WIF message (from
another cluster also trying to write the iteration results to the
page). thus invalidating its copy of the page, the previous WI
request have to be aborted and a new WR request, which
involves a data message transfer, is generated. As a result, the
number of data messages used by the DLL-S protocol is

371

10
g o -DLL-B]
c 8+: @ -DILR- - 4
3 i —%—- DLL-S|
g 64 —a -DDM ... - -
g9 / R
Eg 4 T L -4
8 & o).’
“w o A
£ 24 - < / .
e ‘/D
R 4]
]
z 0 4 8 12 16

No. of clusters
Figure 10. Plot of avg. inst. no. of msg. for lincar equation solver

6 - -

Speedup’
w
oot

o AN

|
]

No. of clusters
thure 11. Plot of speedup for matrix multiplier

" significantly higher than that used by the DLL-R protocol.

Figure ‘10 shows ‘the average instantaneous number of
messages in the system for the linear equation solver. This is
an indication of how frequently messages are generated by the
protocols. With an average of more than 8 messages in the
system, at any one time, the DDM algorithm generates
messages much more frequently than the DLL protocols,
owing to its large number of invalidation and acknowledgment
messages required. The DLL-B protocol has the average
instantaneous number of messages in the system equal to 5.1,
‘which is larger than the other the DLL protocols. It is because
remote memory access messages have to go through long
chains of N-link to reach the owner. which makes these
‘messages exist in the network for a longer time. The fact that
the DLL-S protocol generates more messages at one time than
the DLL-R protocol and yet has better performance is due to its
parallel ‘read accesses feature, whi’ch services more RR
messages at one time.

Figure 11 depicis the speedup obmmed by the protocols for
the matrix multiplicr. With a speed up of 5.82 with 16 clusters,
the DLI.-S protocol is again the best performer, followed by
the DLL-R protocol, which has speed up of 5.32 with 16
clusters. The difference between the DLL-S protocol and the
DLL-R protocol is larger in this case — the DLL-S protocol is
9.4% faster than the DLL-R protocol in the 16 clusters case —
chiefly because there is no read-inodify-write sequence in the
matrix multiplier so the quick read-modify-write advantage of
the DLL-B and DLL-R protocols is not exploited. This is also
the reason of the performance of the DLL-B protocol being so
close to the DDM algorithm.

Finally, from the trend of the graphs. the differences
between the performance of the DLL-S protocol and the other
three protocols are predicted to be even greater when the
number of clusters used is larger than 16. This indicates that
the DLL-S protocol is the most scalable of the four DSM
protocols discussed.

6. Conclusions

The DLL protocol is a memory efficient. scalable, high-
performance and yet casy to implement protocol to maintain
memory coherence in DSM systems. In this paper, the DLL
protocols with stable owners is introduced and its performance
compared. both theoretically and by simulation, to the basic
DLL protocol and the DLL protocol with N-link reduction. as
well as the DDM algorithm. From the ‘results; it appears that
the DLL.-S protocol has superior performance to the others.

However, one drawback of the DLL-S protocol as
compared to the DLL-B and DLL-R protocol is that it does not
have the advantage of quick read-modify-write, which turns
out to affect its performance to some extent. This fact also
suggests that different applications may favor different DSM
protocol and therefore. a protocol can never be absolutely the
best.

References

[1] B.Nitzberg and V. Lo, “Distributed Shared Memory: A Survey of
Issue and Algorithms,” IEEE Computer, pp. 52-60, Aug. 1991.

[2] K. Hwang, Advanced Computer Architecture, McGraw Hill, pp.
19-27, pp. 248-256, pp. 487-590, 1993. '

[3] KLi and P.Hudak, -“Memory Coherence in Shared Virtual

Mermory Systems,” ACM Trans. Computer Systems, Vol. 7 No.

4. pp. 321-359, Nov. 1989. .

A.CK. Lau, KHW. Leung, NHC. Yung and P.Y.S. Cheung,

“On the Doubly-Linked List Protocol for Distributed Shared

Memory Mutliprocessor Systems.” Proc. IEEE Ist Intl. Conf. on

Algorithms and Architectures for Parallel Processing, pp. 293-

302, Apr. 1995.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons and J.

Henmessy, “Memory Consistency and Event Ordering in Scalable

Shared-Memory Multiprocessors,” Proc. 17th Annu. Int. Symp.

Computer Arch., pp. 15-26, Jun. 1990.

K. Gharachorloo, S. Adve, A. Gupta, J. Hennessy and M. Hill,

“Programming for Different Memory Consistency Models,”

Journal of Parallel and Distributed Computing, 15, pp. 399-

4047, 1992.

M. Dubois, C. Scheurich and F. Briggs, “Memory access

buftering in multiprocessors, " Proc. 13th Annu. Int. Symp. on

Computer Arch., pp. 434-442, Jun. 1986.

W. Dally and H. Acki. “Deadlock-Free Adaptive Routing in

Multicomputer Networks using Virtual Channels,” IEEE

Transactions on Farallel and Distributed System, pp. 466475,

Apr. 1993,

P. Mohapatra, S. Wong and C. Das, “Performance Analysis of

Combining Multistage Interconnection Networks,” Proc. of 1994

International Conf. on Parallel Processing, pp. 13-16, Aug.

1994,

[10] A.Geist, A Beguelin. J.Dongarra, W Jiang, R.Manchek,
V.Sunderam, PVA 3 User’s Guide and Reference Manual, Oak
Ridge National Laboratory, 1994,

[11] TMS320C4x User's Guide, Texas Instruments, pp.1-1 - 1-12,

1992.

[12] S.AKL, The Design and Analysis of Parallel Algonthm.s Prentice

Hall, pp. 203-205, 1989.

4]

5]

[6]

7

18]

(91

3n

