2005 IEEE International Symposium on Cluster Computing and the Grid

Selfish Grid Computing: Game-Theoretic
Modeling and NAS Performance Results

Yu-Kwong Kwok, ShanShan Song, and Kai Hwang
University of Southern California, Los Angeles, CA 90089, USA

Abstract— Selfish behaviors of individual machines in a Grid
can potentially damage the performance of the system as a whole.
However, scrutinizing the Grid by taking into account the non-
cooperativeness of machines is a largely unexplored research prob-
lem. In this paper, we first present a new hierarchical game-
theoretic model of the Grid that matches well with the physical
administrative structure in real-life situations. We then focus on
the impact of selfishness in intra-site job execution mechanisms.
Based on our novel utility functions, we analytically derive the
Nash equilibrium and optimal strategies for the general case.

To study the effects of different strategies, we have also per-
formed extensive simulations by using a well-known practical
scheduling algorithm over the NAS (Numerical Aerodynamic Sim-
ulation) workload. We have studied overall job execution per-
formance of the Grid system under a wide range of parameters.
Specifically, we find that the Optimal selfish strategy significantly
outperforms the Nash selfish strategy. Our performance evalua-
tion results can serve as valuable reference for designing appro-
priate strategies in a practical Grid.

Keywords—Grid computing, non-cooperative games, virtual orga-
nizations, selfish behaviors, online scheduling, Nash equilibrium,
optimal strategies, performance evaluation.

I. INTRODUCTION

The lofty goal of Grid computing is to leverage on the in-
terconnection of a large number of geographically distributed
machines to solve computational problems faster at a gigantic
scale [3], [24]. However, this goal is based upon the premise
that the interconnected machines are cooperative in the sense
that they are willing to execute remote jobs. We believe that
as the Grid scales up, this premise may no longer hold. Notice
that the Grid is a large scale peer-to-peer (P2P) system at the
server-level (rather than at the desktop level as in file-sharing
P2P applications). Thus, the “peers”, i.e., the Grid sites, owned
and managed by different organizations, may not always want
to cooperate with each other. Indeed, the various computers
within a Grid site may not even cooperate with each other. This
scenario resembles the situation in the non-cooperation among
states of a large country, or the non-cooperation among depart-
ments in a large organization.

Thus, it is an important research problem to model the Grid
and its constituents by taking into account the potential non-
cooperativeness at various levels. With such modeling, we can
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then study the impact of selfishness and subsequently design
proper strategies to avoid its adverse impacts. This can in turn
lead to a much more efficient utilization of the Grid processing
resources. However, despite that there have been several recent
attempts in scrutinizing the Grid from a so-called “market” ori-
ented perspective [6], [8], [27] (as detailed in Section II), the
modeling problem of the Grid with realistic selfishness con-
cepts is relatively unexplored.

In this paper, we propose a new game theoretic modeling of
the Grid and present our analytical as well as simulation results.
Specifically, we make three contributions:

1) A Hierarchical Game Theoretic Grid Model: We con-

sider that to manage the scalability of a Grid, a hierar-
chical structure must be used. Essentially, the hierarchy
consists of three levels: the global scheduling level, the
inter-site level, and the intra-site level. We believe that
this hierarchical structure matches well with the physical
administrative structure of Grid sites.
Based on this hierarchy, we introduce three different
game theoretic scenarios: the intra-site job execution
game, the intra-site bidding game, and the inter-site bid-
ding game. Due to space limitations, we focus on the
intra-site job execution game in this paper and the other
games, and most importantly, the interplay among the
three games, will be presented in subsequent papers.

2) Mathematical Analysis of the Intra-Site Job Execu-
tion Game: We first propose a novel but realistic util-
ity function for each participating machine within a Grid
site. We then formally derive the equilibrium strategies
and the optimal strategies. Based on these analytical re-
sults, we design algorithms for the machines to achieve a
high utility as well as high performance, despite that the
machines are selfish.

3) Extensive Performance Evaluation of the Model: We
conducted extensive simulations to study the behaviors of
the Grid under different strategies: heterogeneous strate-
gies, Nash strategies, and optimal strategies. Specifically,
based on a well-known practical scheduling algorithm,
namely the MinMin algorithm [4], we studied the utility
and job execution performance (in terms of makespan and
slowdown ratio) of the Grid system under a wide range of
parameters. Our performance evaluation results can serve
as valuable reference for designing appropriate strategies
in a practical Grid.

The rest of the paper is organized as follows. Section II
presents a brief review of related work. In Section III, we de-
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scribe our proposed hierarchical Grid model and the associated
game theoretic research problems. We then describe in detail
our modeling and analytical formulations of strategies for the
intra-site job execution game in Section IV. Section V contains
a detailed discussion about our simulation setup and the para-
meters used. We present the extensive simulation results and
our interpretations in Section VI. The last section concludes
the paper.

II. RELATED WORK

Recently we have witnessed an intensive interest in using
game theoretic and market-oriented approaches in the analysis
and design of distributed computing and networking algorithms
[11, [16], [20], [21], [23], [28]. There have also been some re-
cent results on game theoretic job allocation and scheduling re-
ported in the literature [17]. Regev and Nisan [22] suggested
the so called POPCORN market for trading online CPU time
among distributed computers. In their system a virtual currency
called “popcoin” was used between buyers and sellers of CPU
times. The social efficiency and price stability were studied us-
ing the Vickrey auction theory [19]. Similar approaches were
also proposed by other researchers [5], [7], [8], [26].

Wolski et al. [27] proposed a model called G-Commerce
in which computational resources among different Grid sites
are traded in a barter manner. The efficiency of two different
market conditions—commodities markets and auctions—were
studied by simulations. They concluded that a commodity mar-
ket is a better choice for controlling Grid resources compared
with auctions. Ghosh et al. [9] study the load balancing issues
in a mobile computational Grid. In their model, there was a
wireless access point (WAP) which mediates the requests from
different mobile devices constituting the Grid. Using Nash Bar-
gaining Solution (NBS), they devised a framework for unifying
network efficiency, fairness, utility maximization and pricing.

Larson and Sandholm [13] pioneered the consideration of the
computation cost involved in determining the valuations which
are essential inputs to the auction system. They defined the
notion of “miscomputing ratio” which characterizes the impact
of selfishness on the efficiency of the auction. Nisan and Ronen
[17], [18] formally defined the job allocation in a distributed
system using a truthful mechanism framework.

Grosu and Chronopoulos [10] recently designed a load bal-
ancing system based on the Vickrey-Clarke-Groves (VCG)
mechanism [19] in which each computer optimizes its “prof-
its” by considering the payment and cost involved in handling
a job. Volper et al. [25] proposed a game-theoretic middleware
called GameMosix. Selfish behaviors are modeled by “friend-
ship relationships” in that computers will help each other only
when they have established friendship relationships before.

With reference to the above mentioned related work, our pro-
posed models and analytical formulations are novel in that we
consider the hierarchical relationships among individual com-
puters in a gigantic computational Grid. Our work is also the
first of its kind in investigating the selfishness issues within a
Grid site.

ITI. A HIERARCHICAL SEMI-SELFISH GRID MODEL

As mentioned earlier in Section I, the ultimate scale of a com-
putational Grid is gigantic, and thus, the Grid, pretty much like
the Internet itself, will cross organizational and national bound-
aries. An open question is that how such a gigantic distributed
computing platform, which is likely to be composed of hun-
dreds of thousands of processors, is to be structured and main-
tained. We believe that a hierarchical structure, as depicted in
Figure 1, is the only feasible solution.

In our study, we envision that each “Grid site” is not going to
be a single computer but rather a network of computers', each
of which is a cluster of machines or a tightly-coupled massively
parallel machine. Thus, eventually we may have hundreds of
Grid sites, each of which consists of tens of multiprocessors
(i.e., clusters and parallel machines). Indeed, such a structure,
again resembling the Internet itself, closely matches the “ad-
ministrative” structure of computing resources in organizations.

For instance, the computer science department of a univer-
sity might own a large cluster of PCs, the electrical engineer-
ing department might possess another, and the physics depart-
ment might manage a massively parallel supercomputer. Yet all
these computing resources participate in the global Grid com-
munity according to the university’s mandate. Thus, at the
intra-site level, the participating computers, each of which is
autonomous, form a federation. At the inter-site level, the par-
ticipating Grid sites form another level of federation.

With the hierarchical structure shown in Figure 1, there are
also two levels of job scheduling and dispatching, depicted in
Figure 2. Specifically, the job submission system, which is im-
plemented as a global middleware, channels user submitted jobs
to the global scheduling system. We envision that such a job
submission middleware can be easily constructed using Web
services tools (e.g., WSDL and SOAP messages [2]). Equipped
with a global Grid processing resources registry (again could
be based on the UDDI protocol), the global scheduler performs
Jjob allocation, according to a certain scheduling algorithm.

Most importantly, at the inter-site level, the scheduler has
only the knowledge of the processing capability of each Grid
site as a whole, without regard to the details within the site.
In this manner, the scalability of scheduling at the global
Grid level can be efficiently handled. Furthermore, again this
scheduling model conforms well to the administrative struc-
ture of the Grid community in the sense that the global sched-
uler probably should not “micro-manage” the execution of jobs
down to the machine level. The global scheduler makes use
of the “capability parameters” supplied by the Grid sites as the
inputs to the scheduling algorithm. These capability parame-
ters are, in turn, mediated by the local job dispatcher at each
Grid site based on its information about the local participating
machines.

As described above, our hierarchical model, while captur-
ing the realistic administrative features of a real-life large-scale
distributed computing environment, is also generic in nature.
Indeed, this federation-based Grid model opens up a large va-
riety of interesting research issues. Firstly, any efficient online

IThroughout this paper, we use the term “computer” and “machine” to re-
fer to a monolithic autonomous computing platform that possibly consists of
multiple CPUs.
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job scheduling algorithm can be used. Furthermore, it is an im-
portant study about how the various parameters are generated
and communicated. Indeed, from the hierarchical model, we
can formulate three different game theoretic job allocation and
execution problems:

1) Intra-Site Job Execution Strategies: This problem con-
cerns about the strategies of the participating computers
inside a Grid site. Specifically, although the various com-
puters participate in the making up of the Grid site, each
individual computer is selfish in that it only wants to exe-
cute jobs from local users but does not want to contribute
to the execution of remote jobs.

For example, even though a cluster of PCs in the com-
puter science department is designated as one of the
member computer of a university-based Grid site, the
cluster’s administrators and/or users may still prefer to
dedicate the computing time to process local requests as
much as possible. However, if every participating com-
puter does not contribute, the Grid site as a whole will
fail to deliver its promise as a serving member of the

Grid community, thereby defying the original motive of

forming the Grid. Thus, one of the participating com-
puter eventually has to take up a job assigned to the Grid
site by the global scheduler.

This problem is interesting in that we need to determine
how a participating computer should formulate its job ex-
ecution game theoretic strategy so as to maximize its own
utility (i.e., execute more local jobs) without rendering
the whole site non-operational. We focus on this problem
in this paper.
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2) Intra-Site Bidding: This problem concerns about the de-
termination of the advertised “execution capabilities” for
jobs submitted to the global scheduler. Recall that for
the scheduler to allocate jobs using a certain schedul-
ing algorithm, it needs to know all the sites’ execu-
tion capabilities—in our study, these are modeled as
the execution times needed for the pending jobs. To
determine the execution time needed for a certain job,
within a Grid site each participating computer can make
a “declaration”—a notification to the local job dispatcher
specifying the time needed to execution the job.

The local job dispatcher can then “moderate™ all these
declarations to come up with a single value to be sent
to the global scheduler. For example, if the local
job dispatcher is aggressive in job execution, it could
use the “minimization” approach—taking the minimum
value of the declarations from all the member comput-
ers. On the hand, a conservative approach is to perform
“maximization”—taking the maximum value instead.
This problem is also interesting in that we need to ana-
lyze, possibly using auction theory, to determine the best
strategies for each member computer in “bidding” (i.e.,
making execution time declarations). Specifically, we
need to determine whether truthful revelation is the best
approach in the bidding process.

Inter-Site Bidding: Similar to the intra-Site situation, at
the inter-site level, the various local job dispatchers also
need to formulate game theoretic strategies for computing
the single representative value of the job execution time
to be sent to the global scheduler.

Another exciting avenue of research is to study the inter-play
of these three games, i.e., how the selfishness of each individ-
ual computer affects the intra-site bidding, which, in turn, will
impact the inter-site bidding in a complicated manner.

Indeed, different combinations of the above games will re-
sult in different Grid structures. For a semi-selfish Grid, the
intra-site games are non-cooperative while the inter-site game
is cooperative. This model fits most nowadays’ Grid situation
because a Grid is usually formed after some cooperative ne-
gotiations at the organization level. However, the individual
machines operated by bottom-level departments may not coop-
erate among each other. For a fully-selfish Grid, the games are
assumed to be non-cooperative at all levels. This model is the
most general model. Finally, the ideal Grids are modeled by
cooperative games at all levels.

Due to space limitations, in this paper we only present our
formulation, analysis, and results on the first problem intro-
duced above. Specifically, to simplify the model, we assume
that the inter- and intra-site bidding processes, truthful mecha-
nisms [14] are used. In subsequent papers, we will present our
results on the untruthful revelation of participating machines
within each Grid site and the inter-site auction problem.

3)

IV. SEMI-SELFISH COOPERATION MECHANISMS AND
MIXED STRATEGIES

In this section, we present our analytical formulation of the
game theoretic framework for the intra-site job execution mech-

anism. We first describe the job model and execution policies.
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We then formulate the 2-player case, followed by the general n-
player case. Game theoretic algorithms induced by our analysis
are formalized at the end of this section.

In our game theoretic study of Grid job scheduling, we con-
sider a class of malleable jobs [11], each of which has following
execution time model: T'(J;) = ax + %, where ay, is the serial
portion of the job Ji and by, is the parallel portion that can be
shortened (hence, malleable) if more processors are available.
That is, the execution time decreases in a linear manner as the
number of processors allocated to the job increases. Thus, we
assume that each job is a parallel application that can be exe-
cuted using multiple processors. Consequently, the “cost” for
each participating computer (e.g., possibly a cluster of PCs) in
executing a job is the number of processors, P, devoted to the
job, during the job’s execution time.

To model the “selfish” behavior of each participating com-

puter (i.e., each player) in a Grid site j, we propose the follow-
ing utility function:
_F
=P
where U; is the utility of player ¢, P! is the total number of
processors in player 4, and P is the total number of processors
it used for a remote job. Here, we assume that P > 0 because
there is always some overhead for a computer to participate in
the Grid (e.g., need to expend some processing resources to
monitor the Grid status, or to advertise its capabilities, and so
on). Essentially, each machine is selfish in the sense that it
does not want to contribute to the Grid community if possible
by minimizing the utilization of the machine by remote jobs.
However, the Grid site as a whole would like to maximize its
Reputation Index (RI) which quantifies the contributions of the
site.

Specifically, the RI value R; will be incremented if an as-
signed job is successfully executed at site j and decremented
if the job fails (the failure of a job will be elaborated below).
In the following, we propose our novel formulation of this as-
signed job execution mechanism as a non-cooperative game
[19] to study the dynamics of the conflicting goals of the selfish
machines and the Grid site as a whole.

In our model, we assume that after a job is assigned to a Grid
site, the job is associated with an execution deadline in that
the job can be held in the job queue at the local job dispatcher
for a certain period of time. Let us denote this time by 27. We
elaborate the rationale behind this policy in Section IV-B. Thus,
in the execution game, there are two rounds of “moves”. Within
each round, each computer acts according its selfish strategy
and it can choose to either ignore the job or take it up.

We consider mixed strategies [19] in our study. Essentially,
each computer uses a probabilistic “wait-and-see” approach—
try to avoid the work by waiting, with a certain probability,
for some other computer to take it up. Now, consider that if
a job is taken up immediately after it is assigned, the amount
of resources occupied is given by: P™ = P, + Q, where P, is
the fixed overhead component of resources but () is a variable
component which depends on how much time is left for the job
(here, the player index indicated by the subscript is dropped for
clarity). Specifically, if the job is taken up immediately after
assignment, then Q = P where P is the number of processors

U; (D

needed in order to finish the job using the amount of time adver-
tised by the Grid site to the global scheduler. On the other hand,
if the job is executed after one round (i.e., 7 units of time) be-
cause no computer takes it up in the first round, then the number
of processors involved becomes: P" = P,+Q = P,+P+P,,.
That is, the waiting time 7 has to be compensated by “throwing
in” P,, more processors to the job. Let us consider a simple
scenario first—only two computers are involved.

A. The 2-Player Game

Let us consider two participating computers, denoted by M;
and M, having mixed strategies s;, where 0 < s; < 1 for
1 = 1,2. Here, s;, called the degree of cooperation (DoC) in
our study, is the probability (i.e., the mixed strategy) that the
assigned job is taken by computer M;. Now, in the first round,
if M chooses not to take up the job, there are two possible
outcomes: (1) M, takes it up; or (2) M- also does not take it
up. Suppose that after the first round, if the job is not taken up,
M will take it up with probability 1. As such, we have:

Q=5P+(1—-s51)(1—-32)(P+Py) 2

By symmetry, a similar expression can also be derived for M.
Suppose P, = aP, where 0 < a < 1 (i.e., 7 is not a long pe-
riod of time with respect to the job’s execution time; elaborated
in Section IV-B). Here, « is called the selfishness penalty fac-
tor because it quantifies the amount of extra resources incurred
should the machine refuses to take up the job earlier. Differen-
tiating U; with respect to s, gives:

oU,

N 3

= ~(—P%(82(1 +a)—a)

Depending on the value of so, %%1 takes on different val-
ues:

D se <= g—(sjf > 0: M;’s best “execution strategy”
is “always do it”, i.e., s = 1.
2) 89 > ﬁ& = %%L < 0: M’s best “execution strategy”
is “always ignore”, i.e., s; = 0.
3) s9 = 1—‘_{_‘3 - %‘—;—11 = 0: My’s best “execution strategy”
is any one of the two possible actions, i.e., it is indifferent.
Theorem I: The strategy combination (sy,s2) =
(T3a Tra) achieves a Nash Equilibrium [19] in the 2-player
game, i.e., no player can benefit by unilaterally deviating from
this strategy combination.

Proof: Theorem is true because Q = P by Equation (2) and
thus, U; does not depend on the value of s; (for i = 1, 2) under
this symmetric combination. (Q.E.D.)

It should be noted that deviating from the Nash equilibrium
strategy does not make the utility worse. In fact, the only re-
quirement of the Nash equilibrium is that unilateral deviation
does not lead to a better utility. However, this equilibrium is
a weak one and the solution is degenerated [19] in that each
player ¢ can choose any strategy provided the other player fixes
its strategy to be Tra

Now, let us consider the case where each of the two comput-
ers is patient enough to wait for one more time interval 7 (i.e.,
the absolute deadline) before committing itself to take up the
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job. Thus, the variable component of the number of processors
involved becomes:

Q = s$1P+ (1 - 81)(1 - Sg)(Slp + P, +

(1—51)(1 = s2)(P+2Py)) )

With some sample numerical values (i.e., P* = 256, P, = 4,
P = 32, and o = 0.5), Figure 3(a) shows the relationships
among Uy, s1, and so. We can draw a number of conclu-
sions:
o If M; always takes up the job, i.e., s; = 1, its utility is
independent of Mo’s strategy so;
o The maximum value of the utility increases with so;
o For small values of s, the optimal strategy for M, is to
always take up the job;
o For large values of sq, the optimal strategy for M is to
always wait;
o For some values of s, the optimal strategy for M, is the
interior of the strategy space, i.e., 51 € (0,1).

i} s =04181 R

U‘(s!‘lz)
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(a) Uy(s1, s2) versus s1 with various
values of so

(b) Utility versus s

Fig. 3. Relationships among the utility function U; and DoP s; of machine
M, and the DoP s, of machine M.

Furthermore, it can be shown that the best execution strategy
with variable s, for M is:
2(1 4 2a)(1 —52)2 — (1 —a)(1 —s9) — 1
2(1 4+ 2a)(1 — 52)%2 — 2(1 — s2)

S1 = )
If we take s; = s2 and a = 0.5 so as to solve this cubic equa-
tion, we can get only one real root: s; = s3 = 0.4131.
However, again this Nash equilibrium is sub-optimal, as ev-
ident by the following analysis. Let us take s; = s = s in
Equation (4) and substitute it into the utility function U (here,
the subscript is dropped because of symmetry). We then con-
sider the case of setting % = 0 under this “enforced” symmet-
rical strategy combination. We have: :

4(142a)s® —3(3+8a)s® +2(4+13a)s—2(1+5a) = 0 (6)

Solving this cubic equation with o = 0.5, we also get only
one real root: s = 0.6567. Figure 3(b) shows the variation of
the utility function with symmetrical strategies (i.e., s = s2).
We can see that the optimal strategy is s; = sy = § = 0.6567,
while the Nash equilibrium strategy is s; = s; = 0.4131. Thus,
the Nash equilibrium utility is Pareto inefficient [19], which is a
common characteristic in non-cooperative game models. Fortu-
nately, under our hierarchical scheduling model, we can make
use of the local job dispatcher to guide the players (i.e., the

participating computers) to use the optimal strategy. This is
elaborated in Section IV-D below.

Here, we assume that there are only exactly two rounds of
moves. We can easily extend the analysis to the general oo-
round case where there are infinite number of rounds [12].
However, as explicated below, in practice a 2-round policy is
more appropriate.

B. The Two-Round Policy

In the above analysis, the selfishness penalty factor « is de-
fined as: o = E}g—‘,ﬁ. It can be shown that:

07 T

1+a=_I‘- M

where I is the execution time for the parallel fraction of the
job. Here, first of all, we can see that with a fixed value of «,
T varies from one job to another. Secondly, as « gets larger, 7
becomes a larger fraction of I".

Indeed, with o = 0.1 (i.e., 10% more processors are needed
to finish the job after each round), 7 is equal to 9.1% of I'. On
the other hand, with @ = 0.5 (i.e., 50% more processors are
needed to finish the job after each round), 7 is equal to 33.3%
of I'. Thus, with a = 0.5, after two rounds of waiting, 66.7%
of originally useful execution time is wasted and 200% of the
originally needed resources are needed to finish the job. In view
of this, it is deemed to be reasonable to consider that the job is
rejected if it is not taken up by any player after two rounds. As
detailed in Section IV-D, a rejected job is re-scheduled by the
global scheduler to a possibly new site in the next batch.

C. The n-Player Game

We can easily extend the 2-player 2-round game to the n-
player scenario, i.e., there are n participating computers in a
Grid site. Specifically, we have the following theorem.

Theorem 2: The variable component of the number of
processors involved in the n-player game is:

Q = P(s;+(s: +0) H(l —5;)+(142a) H(1 —-5;)%) (8)

Thus, the symmetric Nash equilibrium strategy is given by:

214202 -(1-a)f—1
N 2(1 + 2a)€2 — 2¢

»>

®

where £ = (1 — 3)"~ L.
Proof: Can be easily shown by mathematical induction on n.
(Q.ED.,)

On the other hand, the optimal strategy is given by the fol-
lowing theorem.

Theorem 3: The optimal symmetric strategy § is given by the
unique legitimate real root? of the following equation:

1-n(s+a)(1—s)" 14+ (1-s)"—2n(1+2a)(1-5)>""1 =0
(10

2When n is odd, there is only one real root; when 7 is even, there are three
real roots but only one of them is within the (0, 1) interval.
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Proof: Can be easily shown by mathematical induction on 7.
(Q.E.D.)

Again, we can also easily extend the 2-round case to the oo-
round case for this n-player scenario [12]. Indeed, we use the
generalized co-round equations in the algorithms formalized
below as well as in our simulation study.

D. Algorithms for Intra-Site Game Players

Using Algorithm 1, the local job dispatcher continuously
communicates with the global scheduler (e.g., via some SOAP
messages) to check if the global scheduler is soliciting execu-
tion time estimates for pending jobs. If so, the local job dis-
patcher will in turn solicit such estimates within its jurisdiction.
Here, we assume that the local job dispatcher uses a conserv-
ative approach in that it uses the maximum value of the local
estimates as the representative value for the global scheduler.

Algorithm 1 Local Job Dispatcher
1: if global scheduler solicits “execution time estimates” for a
job, Ji then
2:  Solicit execution time estimates from all participating
computers, 7T;(Jx);
Return max{T;(Jy)} to the global scheduler;
end if
if a job is assigned to the site then
Check the currently active number of participating com-
puters, 7;

7:  Broadcast the value of optimal strategy § according to
the optimal equation of the oo-round case [12] to all the
participating computers;

8: forround = 1, 2 (i.e., a total of 27 units of time) do

if a computer M, takes up the job (ties are broken ran-

domly) then
10: Send the job to M;;
11: Declare that the job is unavailable;
12: end if
13:  end for
14:  if no computer takes up the job then
15: Declare that the job fails;
16: endif
17: end if

If there is a job assigned to the Grid site, the local job dis-
patcher will then coordinate the intra-site job execution game.
Specifically, to enforce the participating sites to use the optimal
strategy, it first determines the value of § based on the current
number of active participants (i.e., n) in the site. Then, it waits
to see if within two rounds (i.e., 27 units of time) the job is
taken up by some participant. If so, the job is handed over to
the volunteer; otherwise, the job is declared as failed and the
global scheduler is notified. Consequently, the global sched-
uler needs to re-schedule the job in the next batch, inevitably
leading to a longer overall makespan for the whole set of jobs.
Furthermore, the global scheduler will deduct the RI value of
the concerned Grid site, which in turn will hurt the reputation
of Grid site. Corresponding to Algorithm 1, each participating
machine uses the Algorithm 2 to play the intra-site game.

Algorithm 2 Participating Machine (Player 7)
1: if local job dispatcher solicits “execution time estimates”
for a job, .J; then
2:  Return the local estimate of T;(.Jy ) using the value of de-
sired number of processors P to the local job dispatcher;

3. end if

4: if a job is assigned to the site then

5:  Receive from the local job dispatcher the broadcast value
of optimal strategy § derived from the generalized oo-
round case [12];

6: forround = 1, 2 (i.e., a total of 27 units of time) do

7 if Random < § then

8: Declare that this machine takes up the job;

9: Execute the job;

10: end if

11:  end for

12: end if

V. SIMULATION SETUP

This section describes the experimental setup in our perfor-
mance evaluation of the three strategies: Optimal, Nash, and
Random. The Optimal strategy is based on Algorithms 1 and
2. The Nash strategy is also based on the same algorithms but
with the s; values computed according to Nash equation of the
oo-round case instead of using the optimal co-round equation.
The Random strategy models the situation where all the players
are completely uncoordinated and use heterogeneous s; values
randomly generated from a uniform distribution in the range [0,
25Nash]-

A hierarchical semi-selfish Grid infrastructure is simulated
using a discrete event-driven simulator. At the inter-site level,
m cooperative Grid sites are simulated. At the intra-site level,
a variable number of selfish players are simulated for each site,
as governed by n which is the mean number of players in our
simulation platform.

Jobs are submitted to a centralized job scheduler. Each site
reports their required processing times, in a “truthful” manner
[19], to the centralized scheduler. The well known Min-Min
scheduling heuristic [4] is used for the inter-site scheduling.
Specifically, for each job, the Grid site that gives the earliest
Expected Time to Completion (ETC) is identified first. Then
the job that has the minimum earliest ETC is selected and then
assigned to the identified Grid site. According to the 2-round
policy, a job may be rejected repeatedly without being executed
even after multiple scheduling batches. Thus, we incorporate
a policy in our simulator that enforces a selected Grid site to
execute a job which has been rejected three times.

We use three months of accounting records for the 128-node
iPSC/860 located in the Numerical Aerodynamic Simulation
(NAS) Systems Division at NASA Ames Research Center [15].
This trace contains 92 days data, gathered in year 1993. There
are 16,000 jobs in the whole trace. For testing the job execution
performance under a high-throughput Grid environment, the 92
days trace data is proportionally squeezed to 46 days. We map
the 128 nodes to 12 Grid sites—four of the sites each contain
16 nodes, and the other eight sites each contain 8 nodes. Our
simulations are based on the arrival time, job size, and runtime
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data provided by the trace. This trace was sanitized to remove
the user specified information and pre-processed to correct for
system downtime [15].

In our experiments, the initial values of RI at all sites are
set to 0.5. The RI at each site is then updated for every batch
process. Using the following equation, the new RI value of site
j is calculated from the old value plus some new input value
gathered from that batch.

1 W2 T

RISV — quld + J + J J
J J (ﬁl W/lola] ﬂ2 I/Vtotal 7 vvtotal )

an

where Wiy, is the total workload processed by all sites in a
batch, W}, W7, and W represent the workload accepted in the
first round, accepted in the second round, and rejected eventu-
ally by site 7, respectively. The corresponding weighting fac-
tors are 3, f2, and v, respectively, which are all positive real
numbers. In our study, they are set to 1, 0.5, and 1. Based on
the RI updating rule above (i.e., Equation (11)), those sites that
accept more jobs (in particular, accept jobs at the first round)
will increase their reputation quickly, and those sites that reject
more jobs will have their RIs declining rapidly.

V1. PERFORMANCE EVALUATION RESULTS

In this section, we present our simulation results over the
NAS workload for the three strategies: Random, Nash, and Op-
timal. We evaluate the overall system performance using the
following metrics:

e Makespan: The largest finish time among all the jobs;

o Turnaround Time: The average time spent by a job in the

system;

o Slowdown Ratio: The ratio of the average turnaround time

to the average waiting time of all jobs;

o Reputation Index: Defined in Section IV;

e Utilization: The fraction of resources used by remote jobs;

and

o Job Rejection Rate: The percentage of jobs rejected by a

site.

Due to space limitations, we can only show the results of
the effects of varying values of the selfishness penalty factor
a. The full-set of results can be found in [12]. As indicated
in Figure 4, a major observation is that the Optimal strategy
consistently outperforms the Random and Nash strategies by a
considerable margin. For example, the Optimal strategy’s per-
formance is 5 to 18% better than the other two strategies in
terms of makespan, turnaround time, and slowdown ratio. Fur-
thermore, the job rejection rate of Optimal is only around 2 to
3% but those of Random and Nash are around 40% on average.

Thus, we have an important conclusion: it is not necessarily
bad for the machines to behave selfishly provided that they all
use the same optimal mixed strategy values s; computed by our
analysis. Another interesting conclusion is that the Nash equi-
librium strategy is quite poor—almost the same as the Random
strategy. Indeed, although there is no incentive for each player
to deviate from the Nash equilibrium, the resulting equilibrium
performance is not much different from that of a totally unco-
ordinated job execution scenario.

As to the effects of o, we can see that as a larger « is used
(i.e., heavier penalty), the makespan, turnaround time, slow-
down, and utilization increase, while the job rejection rate de-
creases. This can be explicated by the fact that as the penalty
is heavier, more time is needed to compensate for the refusal of
job execution. For the RI, we can see from Figure 4(f) that the
Optimal strategy is robust to the variation of «, while a larger
a leads to a higher RI in the Random and Nash strategies. On
the other hand, as the RI evolution illustrated in Figures 4(g)
and 4(h) shows, a larger selfishness penalty factor is needed for
the Nash strategy but the Optimal strategy generates a linearly
increasing RI.
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VII. CONCLUSIONS

We have presented a novel and general hierarchical Grid
computing model by taking machine selfishness into account.
Our model matches well with real-life administrative struc-
ture of a practical Grid computing platform which is open and
owned by a large number of autonomous management units or-
ganized at the inter-site and intra-site levels.

In this paper, we focus on the intra-site level to present a de-
tailed mathematical analysis of the selfish behavior of individ-
ual machines within a Grid site. Nash equilibrium and optimal
strategies are analytically derived. Using the analytical results
obtained, we have performed extensive simulations to study the
overall system performance under a wide range of parameters.

‘We have reached two important conclusions. Firstly, it is not
necessarily bad for the machines to behave selfishly provided
that they all use the same optimal mixed strategy values s; com-
puted by our analysis. Secondly, the Nash equilibrium strategy
is quite poor—almost the same as the Random strategy. Indeed,
although there is no incentive for each player to deviate from the
Nash equilibrium, the resulting equilibrium performance is not
much different from that of a totally uncoordinated job execu-
tion scenario.

Finally, the question as to how to link the selfish factors in
these Grids with appropriate trust negotiation models for Grid
computing is still a wide open research problem. We are cur-
rently working on integrating the three different games into a
unified framework which is then incorporated into our previ-
ously proposed trust binding methodology [24].
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