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Abstract—This paper proposed a new factorization of a class of 
perfect reconstruction (PR) causal-stable modified discrete 
Fourier transform (MDFT) filter bank (FB) with IIR filters, 
whose prototype filter has identical denominator in their 
polyphase components.  This factorization technique, which is 
based on the lifting scheme, is also complete for the PR FIR 
MDFT FB. It can be applied to convert a nearly PR MDFT 
FBs to a structural PR system, which is very useful to their 
multiplier-less realization because the PR property in these 
structural FBs is unaffected by coefficient quantization.   
Therefore, it is possible to employ canonical signed digits (CSD) 
or sum of powers of two coefficients to approximate the 
coefficients in the factored form without changing the PR 
property.   

Introduction  

Perfect reconstruction filter banks (PR FBs) have 
important applications in speech, audio, image and array 
processing. An efficient class of M-channel PR FBs is the 
discrete Fourier transform (DFT) filter bank, which is well-
known for its computational and design efficiency in 
realizing channels with equal bandwidth. The condition for 
which such DFT FBs is perfect reconstruction was reported 
in [1,2] and the resultant DFT FB is called the modified 
discrete Fourier transform (MDFT) filter bank. Like the 
cosine modulated filter banks (CMFBs) [3,10], they offer 
good frequency characteristics while requiring very low 
design and implementation complexities. A recent study had 
shown that MDFT FBs with IIR filters have the potential 
advantage of realizing PR systems with lower system delay, 
sharper cutoff and higher stopband attenuation over their FIR 
counterparts [4]. Like the design of IIR CMFB, the design of 
IIR MDFT FB is also complicated by the highly nonlinear 
objective function and PR constraints associated with the IIR 
analysis filters. In [4], the authors suggested to use the same 
denominator for the polyphase components of the prototype 
filter in the MDFT FB so that the PR constraints can be 
considerably simplified. However, when the number of 
variables and constraints increases, the optimization 
procedure is rather sensitive to the initial guess of the 
prototype filter.  In [4], a new method for designing NPR and 
PR IIR MDFT FBs was also proposed. First of all, a PR FIR 
MDFT FB with similar specification is designed by 
nonlinear optimization, which is considerably simpler than 
designing an MDFT FB with IIR filters. The PR FIR 
prototype filter is then model reduced to an NPR IIR MDFT 

FB by modifying a model reduction technique proposed in 
[5]. The NPR IIR MDFT FB has a reasonably good 
reconstruction error and it is employed as the initial guess to 
constrained nonlinear optimization softwares, such as 
fmincon from MATLAB, for designing the PR IIR MDFT 
FB. Design results show that both NPR and PR IIR MDFT 
FBs with good frequency characteristics and different system 
delays can be obtained readily by the method [4].  Some 
advantages of this method are that the stability of the model-
reduced filter is guaranteed and the IIR filters so obtained 
closely approximate the properties of the original FIR filter. 
In addition, the modified model reduction technique in [6] 
produces a prototype filter with polyphase components with 
identical denominator, which considerably simplifies the PR 
constraints. By using these NPR IIR prototype filters as the 
initial guesses to the constrained nonlinear optimizer, 
significantly better convergence speed and reliability over 
the direct nonlinear optimization is achieved.  

In this paper, the factorization of PR IIR MDFT FBs is 
studied.  It can be applied to convert a nearly PR MDFT 
FBs to a structural PR system, which is very useful to their 
multiplier-less realization because the PR property in these 
structural FBs is unaffected by coefficient quantization.   
Therefore, it is possible to employ canonical signed digits 
(CSD) or sum of powers of two coefficients to approximate 
the coefficients in the factored form without changing the 
PR property.  Factorization of the biorthogonal FIR CMFBs 
has been studied in [7,9,11].  In [7,9], a new factorization 
for a class of IIR CMFB previously proposed in [8] was 
developed. This factorization is based on the lifting scheme 
and it is also complete for PR FIR CMFBs and two-channel 
PR IIR filter banks if the determinant of the polyphase 
matrix is equal to a constant multiple of signal delays.  
Since the unconstrained optimization using the lifting 
coefficients results in highly nonlinear objective function, 
the design problem is formulated as a constrained 
optimization in the filter coefficients. The factorization 
technique is then applied to convert it to a structural PR 
system. Like the lifting scheme, it also can reduce the 
arithmetic complexity of the filter bank asymptotically by a 
factor of two.   

The paper is organized as follows: Section II is devoted 
to the theory of PR FIR MDFT FBs. The theory and design 
of PR IIR MDFT FBs is recalled in Section III and the 
proposed factorization is described in Section IV following 
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by an example in Section V. Conclusions are drawn in 
Section VI. 

I. PR FIR MDFT FBS 
The theory of MDFT FBs will be recalled briefly here. 

Interested readers are referred to [1,2] for more detail. 
Assume all analysis and synthesis filters in this paper are 
derived from an identical real-valued low-pass prototype 
filter )(nh  which has a transition band from M/π−  to 

M/π . The complex analysis and synthesis filters for type-I 
and type-II MDFT FBs are: 
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respectively, where 12,...,0 −= Mk  and 1,...,0 −= Nn . It is 
clear that the two types of MDFT FBs differ in the phase of 
the modulation and the way the real and imaginary parts are 
taken to form the subbands. For simplicity, we consider an 
2M-channel MDFT FB with an overall delay of 

1)12( −+= MsD . The PR condition on the polyphase 
components of the prototype filters for the two types of 
MDFT FBs are the same: 

s
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where 12/0 −≤≤ Mk , c  is a constant, s  is an integer and 
)(zGk  are the type-I order-2M polyphase components of the 

prototype filter )(nh . It is equivalent to the PR condition for 
an M-channel biorthogonal CMFB with a system delay of 

12 −= sMDcmfb . If )2/( MNs = , the prototype filter )(nh  
is linear phase. 

II. PR IIR MDFT FBS 
Assume that the polyphase components of the IIR 

prototype filter takes on the following form: 
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that is, they have an identical denominator. Hence, the PR 
condition is (3) will reduce to 
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where 12/,...,0 −= Mk . It is equivalent to the PR 
condition for the IIR CMFBs studied in [8]. Also, to ensure 
that analysis and synthesis filters are stable, all the roots of 

)(zD  shall remain inside the unit circle.  

Similar to CMFBs, MDFT FBs are obtained by 
frequency shifting of the prototype filter. To achieve a good 
frequency characteristic, the stopband error of the prototype 
filter needs to be minimized. This leads to the following 
objective function: 
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where sω  is the stopband cutoff frequency of the prototype 
filter. For 2=d , the objective function is the familiar least 
squares design criterion. If approximate equip-ripple 
passband and stopband errors are desired, the value of d  
can be chosen as 4. 

Let the z-transform of the IIR prototype filter be: 
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where nN and dN  are respectively the lengths of the 
numerator and the denominator of the prototype filter. It is 
easy to show that if the type-I polyphase components of the 
prototype filter have the identical denominator, then 

0)( =nb  whenever 12 +≠ kMn , and 
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The PR condition in (5) suggests that the length of 
denominator in the polyphase components should not be 
longer than the length of the numerators, otherwise it would 
be very difficult to balance the various powers of z on both 
sides of (5). The design problem can be formulated as a 
constrained optimization problem where (6) is minimized 
subject to the PR and stability constraints in (5). 

Although the use of identical denominator greatly 
simplifies the design procedure, the optimization procedure 
is still sensitive to the initial guess of the prototype filter 
when the number of variables and constraints increases. To 
overcome this problem, a PR FIR MDFT FB with similar 
specification is first designed. The PR FIR prototype filter is 
then model reduced to an NPR IIR MDFT FB by modifying 
a model reduction technique proposed in [5]. The resulting 
NPR IIR MDFT FB will have a similar frequency 
characteristic as the PR FIR counterpart and reasonably 
good reconstruction error. It can therefore be employed as 
the initial guess to constrained nonlinear optimization 
softwares, such as fmincon form MATLAB, for designing 
the PR IIR MDFT FB. The IIR FB so obtained has a better 
performance than its FIR filter, especially when the 
transition bandwidth and system delay are reduced.  
Normally, it is not difficult to obtain a PR violation as low 
as 1510 −  for the final IIR MDFT FB.   It can therefore be 
factored to a structural PR system, to be discussed below. 
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III. FACTORIZATION OF M-CHANNEL PR 
MDFT FBS 

Following the factorization of IIR CMFBs in [7,11], the 
PR condition of PR IIR MDFT FBs can be viewed as an 
ideal )}()}()()()()(:{ 2

00 zDczzNzBzNzAz s
kMk

−
+ =+=φφ  

generated by )(zN k  and )(zN kM + . For simplicity, assume 
that the common factors of )(zN k  and )(zN kM + , which 
must divide the right hand side of (5), have already been 
removed and they are co-prime to each other. The general 
solutions of )(1 zN kM −−  and )(12 zN kM −−  in (5) are given by 
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for some )(~
1 zN kM −−  and )(~

12 zN kM −−  in the ideal )(0 zφ , and 
some )(zQ in the field F[z]. Dividing both sides of (9) by 

)(zD , we have 
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)(~
1 zG kM −−  and )(~

12 zG kM −−  are particular solution to (3). By 
using the Euclidean algorithm, )(zN k  and )(zN kM + , since 
they are co-prime, can be written as 
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where K  is a non-zero constant. Dividing both sides of (12) 
by )(zD , we have 
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Then, a particular solution for )(~
1 zG kM −−  and )(~

12 zG kM −−  
can be constructed as follows 
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where c and cd  are respectively the scale factor and the 
sum of the delays generated during the division of the 
Laurent polynomials. So the desired solution is 
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where )()(~ zKQzQ kk = . It should be noted that in the FIR 
case, 1)( =zD . Therefore, this factorization is also 
applicable to the FIR MDFT FBs and type II MDFT FBs. 
Note that the factorization in (12) is non-unique and it is 
possible to eliminate either the highest or lowest powers of 
the Laurent polynomial.  In this paper, this option is 
employed to obtain a factorization with a lower dynamic 
range in its coefficients.  

IV. EXAMPLE 
In this section, we will give an example to show the 

efficiency of the factorization proposed. A 4-channel PR FIR 
biorthogonal MDFT FB with a length   

2045 =×== mMN  was first designed by nonlinear 
optimization. The total system delay of the 4-channel FIR 
MDFT FB is 

1312)132(12/)12(_ =−×+×=−+= MsD fbmdft  samples. 
After the PR FIR MDFT FB was designed, the modified 
model reduction [4,6] was then used to model reduce the FIR 
MDFT FB to an NPR IIR MDFT FB with similar frequency 
characteristics. Using the prototype filter of the NPR IIR 
MDFT FB so obtained as the initial guess, a PR IIR MDFT 
FB with the similar specification can be obtained by solving 
a constrained nonlinear optimization problem.  The 
coefficients of the numerator and the denominator of the IIR 
prototype filter obtained are listed in table I. The 
factorization proposed in section IV was then applied to this 
PR IIR MDFT FB and the coefficients of the factorization 
are given in Table 2.   

To avoid large dynamic range of the coefficients in the 
factorization,  )(3 zq  is obtained by removing both the 
lowest and the highest power of 1−z , that is, 0z  and 2−z . 
This gives cd =1 in the matrix factor of )(3 zq .   This is 
obtained by searching the possible factorizations for 
coefficients with low dynamic range. 
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The frequency responses of the analysis filter banks 
before and after factorization are shown in Fig. 1(a) and 1(b), 
respectively.  It can be seen that the frequency response of 
the PR system is very close to the nearly PR system after 
optimization.  The latter has a PR violation of the order 
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1510 − .  The smaller the PR violation, the closer will the 
factored FB to its nearly PR version.   

TABLE I.  COEFFICIENTS OF THE IIR PROTOTYPE FILTER 

Coefficients of numerator 

)(1 zN
 

-0.00373633968267 
0.17432052918835 
0.09176840168736 
-0.00985074712100 

)(3 zN  

-0.00947433498353 
0.29599743806411 
-0.05521523117019 
0.00283859339749 

)(2 zN
 

-0.02288183380604 
0.27043453622126 
-0.01313803466332 
0.01264518725457 

)(4 zN  

0.05981538177822 
0.22251382040226 
-0.03967320266941 
0.00385979165614 

 

Coefficients of denominator 

)(zD  

1.00000000000000 
-0.01834999387356 
0.00000000000000 
0.00000000020258 
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Figure 1.  The frequency responses of  (a) analysis filter bank 
before factorization and (b) analysis filter bank after factorization  

 

TABLE II.  COEFFICIENTS OF THE FACTORIZATION 

 0z  1−z  

)(1 zq  3.27612703851365 0 

)(2 zq  -0.20457826897225 0.03303591540458 

)(3 zq  -14.54646033651212 1.39077673176299 

)(4 zq  0.01004380235816 -0.26040131543809 

K  0.23725548037474 0 

)(' zQ−  1.49789163696030 -0.08127204296356 

c  0.13154856295746 0 

V. CONCLUSIONS 
A new factorization of a class of PR causal-stable MDFT 

FB with IIR filters is presentation. This factorization 
technique, which is based on the lifting scheme, is also 
complete for the PR FIR MDFT FB.  It can be applied to 
convert a nearly PR MDFT FBs to a structural PR system, 
which is very useful to their multiplier-less realization 
because the PR property in these structural FBs is unaffected 
by coefficient quantization.  A design example is given to 
illustrate the effectiveness of the approach. 
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