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Abstract—This paper proposes new approximate QR-based 
algorithms for recursive nonlinear least squares (NLS) 
estimation. Two QR decomposition-based recursive algorithms 
are introduced based on the classical Gauss-Newton (GN) and 
Levenberg-Marquardt (LM) algorithms in nonlinear 
unconstrained optimization or least squares problems.  Instead 
of using the matrix inversion formula, recursive QR 
decomposition is employed, which is known to be numerically 
more stable in finite wordlength implementation.  A family of 
p-A-QR-LS algorithms is then proposed to solve the LS 
problem resulting from the linearization of the NLS problem.  
It achieves different complexity-performance tradeoffs by 
retaining different number of diagonal plus off-diagonals 
(denoted by an integer p) of the triangular factor of the 
augmented data matrix. Simulation results on identifying a 
nonlinear perceptron are provided to illustrate the principle of 
the new algorithms. 

I. INTRODUCTION 
       Recursive least squares parameter estimation is frequently 
encountered in digital signal processing, communications and 
control applications.  The problem of linear least squares (LS) has 
been extensively studied and many efficient algorithms such as the 
least mean squares (LMS) and the recursive least squares (RLS) 
algorithms have been proposed.  Interested readers are referred to 
the references in [1,2,6] for more details.  On the other hand, the 
training of neural networks [9,11,12] nonlinear system 
identification [10], and many other real-time applications involving 
nonlinear models usually require the recursive parameter 
estimation of the system parameters using the least squares 
criterion.  A commonly used method, which is based on the 
Levenberg Marquardt (LM) method [8] and the matrix inversion 
formula-based RLS implementation, is the Recursive Maximum 
Likelihood algorithm in [10].  The recursive LM, recursive Gauss-
Newton (GN) and recursive steepest descent (SD) have also been 
proposed for neural network training in [9,11,12], respectively.  In 
this paper, we develop a QR decomposition-based framework for 
implementing the recursive GN and LM algorithms.  It is well 
known that QR decomposition-based method for solving the linear 
LS problem is numerically more stable than using the matrix 
inversion formula under finite wordlength implementation.  Also, 
efficient hardware implementation in form of systolic arrays and 
cordic processors are readily available.  Therefore, it is highly 
desirable to develop a QR-based framework for solving the 
recursive nonlinear LS (NLS) problem.  Starting from the 
conventional GN or LM algorithms for solving the nonlinear LS 

problem [8], we shall systematically show that the recursive GN 
and LM algorithms can be formulated as a time-recursive LS 
problem and solved using the recursive QR method in adaptive 
filtering.  Further, a new family of suboptimal algorithms called 
the p-A-QR-LS algorithm, which spans both the LMS and QR-
RLS algorithms, is proposed to achieve different complexity-
performance tradeoffs in solving the linear LS problem resulting 
from linearizing the recursive NLS problem. Simulation results for 
identifying the parameters of a perceptron are used to demonstrate 
the usefulness of the proposed algorithms.  The paper is organized 
as follows: Sections II and III are devoted to the derivation of the 
QR-based recursive GN and LM algorithms.  The p-A-QR-NLS 
algorithms are introduced in Section IV.  Simulation results are 
given in Section V and conclusions are drawn in Section VI. 

II. THE QR-BASED RECURSIVE GAUSS-NEWTON (RGN) 
ALGORITHM 

       Consider the estimation of a parameter vector °θ  from a time 
series: )()()( jjgjd η+= °θ , j=0,….,n, with )( jg °θ  being a known 
function of °θ and )( jη  being a zero mean, additive white 
Gaussian noise sequence.  In least squares estimation, the time 
averaged squares error )()()( jgjdje θ−=θ  is minimized: 
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where λ  is a constant forgetting factor with a value between 0 and 
1. This nonlinear least squares problem can be solved by a number 
of methods such as the steepest descent, Gauss-Newton and 
Levenberg-Marquardt algorithms. Using the conventional Gauss-
Newton algorithm, )(nθ , the locally optimal estimate can be 
iteratively computed as follows: 
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where kjk jg θ∂∂= /)()]([ θθJ , Tne )](,,0,0[)( θθR = , kθ  is the k-th 
element of θ , l  is the iteration number.  In real-time application, 
such iteration is usually computationally prohibitive to implement 
and it is desirable to embed this iteration into the time recursion.   
More precisely, the estimate at the n-th time instant is: 

))(())(()))(())((()()1( 1 nnnnnn TT θRθJθJθJθθ −−=+ .    (3) 

In other words, only one Gauss-Newton iteration is performed at 
each time instant and hopefully when more observations are 
available as n increases, the parameter vector °θ  can be estimated.  
The term ))(())(()))(())((()( 1 nnnnn TT θRθJθJθJθ −=∆  can be viewed 
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as the solution of the following linear LS problem resulting from 
the linearization of the nonlinear objective function at )(nθ : 

2
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x
−=∆ .    (4) 

Since the linearization is done around the current estimate )(nθ , the 
whole Jacobian matrix ))(( nθJ  and the residual have to be 
evaluated again and their sizes grow linearly with n.  Because of 
this reason, a further simplification is necessary.  Suppose that the 
approximated Jacobian matrix at the (n-1)-th time instant is 

)1( −nJ .  Then )(nJ can be approximated by 
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where )(nφ  is a column vector with its k-th element given by 

)(|/)()]([ nkk ngn θθφ θ∂∂= .  In principle, we are assuming that the 
change in )( jθ  is small enough that the previous values can be 
reused in the calculation.  As a result, only the partial derivatives 
of kng θ∂∂ /)(θ at the current estimate need to be calculated.  
Similarly, the residual vector ))(( nθR  can be recursively 
approximated as 
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Accordingly, )(nθ∆  can be approximated by solving the following 
simplified LS problem: 
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This is recognized as the conventional recursive LS estimation 
problem, which can be computed using the QR decomposition 
method in Table 1.  To limit the effect of additive noise, a stepsize 
parameter 1)(0 ≤< nµ can be introduced in the parameter updates: 

)(ˆ)()()1( nnnn θθθ ∆⋅−=+ µ .    (8) 
 

TABLE I.  QR-RLS ALGORITHM 
1. Given the augmented data matrix  
              ])1()1()[1()1( −−−=− nnnn RJWD , where 

          )1,,,,()( 1 λλλ −= nndiagnW , and its QRD at time (n-1): 
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where )1( −nQ and  )1( −ℜ n are unitary and  upper triangular matrices, respectively. 
2. (QRD) Form the new augmented data matrix 
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Tφψ .  Get the new QRD by Givens rotations or 

Householder reflections as 
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3.  (Back-solving) Solve the triangular system )(ˆ))(ˆ)(( nnn Rθ =ℜ ∆ for the estimate 

)(ˆ nθ∆ at time n by back-substitution: 
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    where jir ,  and 1, +Nir  are the corresponding elements in )(nℜ  and )(ˆ nR . )(ˆ niθ∆  is the 

i-th element of )(ˆ nθ∆ . 

III. THE QR-BASED RECURSIVE LEVENBERG-MARQUARDT 
(RLM) ALGORITHM 

      If the LM algorithm is used to solve (1), then (2) is modified to 
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where  the term Iµ is included to prevent the matrix from being 
singular and µ  is the regularization parameter.  Following a 
similar simplification for the recursive GN algorithm, one gets the 
following equation for the recursive LM algorithm: 

)()()1( nnn θθθ ∆−=+ ,    (10) 

where ))(())(()))(())((()( 1 nnnnn TT θRθJIθJθJθ ⋅+=∆ −µ .  It can be 
shown easily that )(nθ∆  is the solution of the following LS 
problem 
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By reusing the partial derivatives as in the RGN algorithm, one 
gets the following approximation for  
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Unlike (7), this LS problem cannot be solved by the recursive 
QRD in Table 1 due to the regularization term Iµ  and the use of 
the forgetting factor. A possible method to overcome this difficulty 
is to append successively the row vectors mN Eµ  of the identity 
matrix, instead of the whole matrix, to the previous QR 

decomposition, where 
th-m      

        
]0,...,0,1,....,0[

↑
=mE

, N is the regressor order 

and 1)mod( += Nnm .  More precisely, at each time instant, the 
algorithm in Table 1 is executed once for the vector 

[ ]Tn nen )()( )1( −θ
Tφ  and again for the vector [ ]TmN 0Eµ .  The 

arithmetic complexity is thus increased by a factor of two.  Like 
the QR-RGN algorithm, a stepsize parameter 1)(0 ≤< nµ  can be 
introduced to reduce parameter variation due to additive noises.   

IV. THE P-A-QR RECURSIVE NLS ALGORITHM 
      We now consider the further simplification of the QRD 
algorithm in Table 1 in order to achieve other complexity-
performance tradeoffs.  In particular, we shall solve the LS 
problem using an approximate QR-LS algorithm called p-A-QR-
LS algorithm.  It is a generalization of the approximate QR-LS (A-
QR-LS) algorithms in [4,7], where the upper triangular matrix is 
approximated as a diagonal matrix in order to simplify the QRD 
and the back substitution to yield an arithmetic complexity 
of )(NO . More precisely, the quantities inside the square bracket 

in step 3 of Table 1 are computed from )1(ˆ −∆ niθ  as 

          )1()1( 1, −=− + nrns NNN , 
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                                       1,2,1 −−= NNi ,                (15) 

or  ),1()1(ˆ)1(, −=−∆− nsnnr iiii θ .,...,1 Ni =  (16) 

Given the values of )1( −nsi and )1(, −nr ii , (4) together with )(nφ  

and )()1( ne n−θ , the new data at time n can be viewed as a system of 

linear equations in the variable )(ˆ nθ∆ : 
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where w  is the square root of the forgetting factor. (17) can be 
modified and rewritten in matrix form as: 
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Therefore, (18) can be solved by computing the QRD of )(nΦ , 
which actually works with the following appended matrix:  
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With this special structural approximation of the triangulated 
augmented data matrix (c.f. step 2 in Table 1), the A-QR-LS 
algorithm is able to combine the updating and the back solving 
processes together using the Householder transformation, yielding 
a very efficient algorithm. Liu et al. also proposed a related QR-
LMS algorithm [5]. In [7], Chan and Yang proposed an improved 
transform domain approximate QR-LS (TA-QR-LS) algorithm 
based on the Givens rotations. Moreover, unitary transformation 
such as DCT is employed to improve the convergence speed when 
the input is colored. 
      The proposed p-QR-LS algorithm retains the main diagonal 
and  p-1 nearby off-diagonals of the triangular factor, hence the 
name  p-A-QR-LS algorithm.  We shall show later that the p-A-
QR-LS algorithm with a given positive integer p has a complexity 
of order )(NpO and a performance, which generally improves as p 
increases.  Therefore, it provides a practical tradeoff between 
performance and complexity when p is varied from 1 to N.  The 
matrix )1( −nD in (18) is now modified to )1( −npD as:  
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Motivated by the A-QR-LS algorithm, (18) is now modified to 
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The QRD is then applied to solve for (21) by eliminating all the 

elements of )(nTϕ  sequentially using Givens rotations. The 
procedure is very similar to that used in the TA-QR-LS algorithm 
[7]. However, the back substitution is considerably different from 
that in [7]. The p-TA-QR-LS algorithm so obtained is summarized 
in Table 2. From (8) and Table 2, it can be seen that when p=1, the 
proposed algorithm reduces to the TA-QR-LS algorithm with a 
complexity of )(NO , and when p=N, it reduces to the QR-RLS 
algorithm with a complexity of )( 2NO .  

TABLE II.  SQUARE-ROOT FREE GIVENS ROTATION-BASED P-TA-QR-
LS ALGORITHM 

 
1. Initialization  
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V. SIMULATION RESULTS 
     We now evaluate the performance of the proposed algorithm by 
computer simulation of the following nonlinear system 
identification problem:  

))(()( °⋅= θX ngny T  (22) 

where y(n) and TNnxnxnxn )]1(,),1(),([)( +−−=X  are, 
respectively, the output and input of the system. g(.) is a nonlinear 
function and   

5.0)]exp(1[)( 1 −−+= −cuug  (23) 
(22) is a simple perceptron and it reduces to the conventional linear 
transversal filter when g(.) is the identity function: uug =)( .   The 
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derivative of )(ug , )(' ug , is given by 
2))](exp(1)[exp()(' −−+−⋅= cucucug .  Using the chain rule, one 

gets XθXφ θθθ ⋅=∇= ))()(('|)()( )( nngngn T
n . The order of the 

regressor is set to 9 and the coefficients are randomly generated. 
The power of the additive white Gaussian noise )(nη  is set to be -
40dB. The Mean Square Difference (MSD), defined as the sum of 
the square of the coefficient estimation errors, is used to evaluate 
the convergence behavior of the algorithms. All the results are 
averaged over 100 independent runs. QR-based and p-A-QR-based 
recursive Gauss-Newton (QR-RGN, p-A-QR-RGN) and 
Levenberg-Marquardt (QR-RLM, p-A-QR-RLM) algorithms have 
been tested. The forgetting factor w for all the tested algorithms are 
equally set to 0.99. The regularizing parameter δ in the p-A-QR-
RLM algorithm is fixed at 0.00001. Three experiments were 
conducted. Exp.1: input is a white Gaussian noise (WGN) 
sequence with zero mean and unit variance, no transformation is 
employed. The results shown in Fig. 1 indicate that the two p-A-
QR-based algorithms with different p approach a similar steady 
state error, whereas when p increases, the algorithms with larger p 
have faster initial convergence, which complies well with our 
expectation ; Exp.2: input is a WGN-driven AR process whose 
parameters are fixed at [1 –1.5 1 -0.25] with normalized unit 
power, no transformation employed; From Fig. 2, a similar 
conclusion can be drawn except that the converging speed of those 
algorithms with small p is hindered by the colored input.  Exp. 3: 
input is the same as in Exp.2, and discrete cosine transform (DCT) 
of the input signal is employed. It can be observed that when the 
DCT is included, the results depicted in Fig. 3 show that the 
converging speed of the resulting p-TA-QR-RGN and p-TA-QR-
RLM algorithms with small p are significantly improved. All these 
observations verify the principle and flexibility of the proposed 
algorithms and reveal their potential to be applied to different 
nonlinear applications. 

VI. CONCLUSIONS 
    A family of approximate QR-based algorithms for recursive 
nonlinear least squares (NLS) estimation is presented.  They are 
based on two new QR decomposition-based recursive algorithms 
derived from the classical Gauss-Newton (GN) and Levenberg 

Marquardt (LM) algorithms in nonlinear unconstrained 
optimization or least squares problems.  A p-QR-LS algorithm is 
also proposed to solve the LS problem resulting from the 
linearization of the NLS problem.  It achieves different 
complexity-performance tradeoffs by retaining different number of 
diagonal plus off-diagonals of the triangular factor of the 
augmented data matrix. Simulation results on identifying a 
nonlinear perceptron are provided to illustrate the usefulness of the 
new algorithms.  
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       Fig. 1 MSD vs. time n (white input,                              Fig. 2 MSD vs. time n (colored input,                          Fig. 3 MSD vs. time n (colored input,           
no transformation employed) (a) p-A-QR-RGN           no transformation employed) (a) p-A-QR-RGN          DCT employed), (a) p-TA-QR-RGN algorithm, 
      algorithm,(b) p-A-QR-RLM algorithm.                        algorithm,(b) p-A-QR-RLM algorithm.                            (b) p-TA-QR-RLM algorithm. 
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