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Abstract—Optical packet switching is one of the most
promising technologies for carrving IP traffic over WDM optical
networks. For optical packet switch (OPS) design, due to the
reconfiguration overhead in the switch fabric, packet delay and
speedup are two key factors to be considered. Existing scheduling
algorithms, DOUBLE [4) and ADAPTIVE [5], make effective
tradeoff between these two factors. In this paper, we show that the
performance of both DOUBLE and ADAPTIVE, as well as their
underlying OPS switch architecture, can be further optimized.
Qur proposed solutions are shown to effectively reduce both
speedup and packet delay at the same time without incurring any
extra cost.

Index Terms—Optical packet switch (OPS), performance
guaranteed scheduling, reconfiguration overhead, speedup.

[ INTRODUCTION

Optical packet switching has been widely recognized as onc
of the most promising technologies for future optical Internet.
At the same time, recent progress on optical switching
technologies, such as MEMS mirror [1], thermal bubble [2] and
waveguide [3], provide a solid groundwork for optical packet
switch (OPS) implementation, whereas WDM (wavelength
division multiplexing) offers an excellent transmission
pladorm for carrying IP traffic. Consequently, OPS, the
technology that can bring about many advantages, attracts morg
intensive attentions than ever. _

However, one major implementation hurdle of OPS is the
reconfiguration overhead. That is, OPS needs relatively large
time period to change its cross-connection state. Two factors
are mainly responsible for this result. First, OPS needs much
longer time to set up the physical state for new connections
compared with its electronic counterpart. Generally, the time
spent on physical state setup can range from 10ns to several
milliseconds depending on the optical switching technology
adopted [4]. Second, system resynchronization also introduces
considerable overhead. Since OPS usually makes use of
passive crossbar switch fabric (which does not process signals),
the transmitter and receiver devices must be resynchronized
every time the switch fabric is reconfigured. Furthermore, the
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central scheduler has to synchronize all the ports as well as the
crossbar, so that they can switch at the same time. Due to the
latent variations in signal arriving times, the clock and its phase
have to be aligned, and extra clock margins have to be
considered in order to avoid data loss. All the above operations
need time to be completed before switching, collectively
resulting in a large swilch reconfiguration overhead.

Consequently, four penalties appear in OPS: 1) incoming
packets have to be buffered in either optical or eiectrical
domain, waiting for the switch reconfiguration; 2) traffic is
inevitably delayed; 3) scheduling algorithm is necessary; and 4)
an internal speedup is required in order to achieve performance
guaranteed switching (i.e. 100% throughput with bounded
packet delay). Thus, how to reduce the internat speedup and the
packet delay is the main concern.

Unfortunately, speedup and packet delay interact with each
other in such a way that one goes down and the other one goes
up [5]. Intuitively, minimizing the number of switch
configurations required ¢an minimize the packet delay, because
each reconfiguration is associated with an overhead. However,
this idea makes the scheduling algorithm to generate many
empty slots, causing scheduling inefficiency and resulting in a
large speedup requirement [4-6). Therefore, some efficient
algorithms, namely DOUBLE [4] and ADAPTIVE [5], are
recently proposed to trade speedup for packet delay or vice
versa.

In this paper, we aim at optimizing the design of DOUBLE
[4] and ADAPTIVE [3], as well as their underlying OPS switch
architecture. Our work is shown to improve aimost all the
aspects of the two existing algorithms. Tt reduces speedup,
packet delay and the scheduling algorithms’ computational
complexity at the same time without incurring any extra cost.

The remaining part of this paper is organized as follows. In
Section II, we review the existing OPS switch architecture
[4-7]. In Section III, we bricfly summanze the two existing
scheduling algorithms, DOUBLE and ADAPTIVE. Then
Sections 1V and V optimize these two algorithms and their
underlying OPS switch architecture respectively. Finally the
paper is concluded in Section VI '

II. Ex1sTING OpPs SWITCH ARCHITECTURE

The existing OPS switch architecture consists of the OPS
switch fabric (Fig. 1) and the comresponding scheduling
procedure/pipeline (Fig. 2). Incoming packets are periodically
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Fig. 1. An NXAN unicast OPS switch fabric.

accumulated and TSA (time slot assignment) method is applied
to determine a set of Ng configurations to detiver the collected
packets. The scheduling procedure/pipeline in Fig. 2 is divided
into four stages. In Stage 1, incoming packets are accumulated
in the input VOQ buffers over T time slots (o construct the V=N
traffic matrix C(T). Its entry ¢; denotes the number of packets
received at input / and destined to output ;. The switch fabric
takes H time slots in Stage 2 to generate Ng configurations
Py. ..., Py, to cover C(7)." Assume that the switch is a unicast
crossbar, Rows and columns of P,. nE{1, ..., Ng} represent
input and output ports of the switch respectively. The V=N
matrix P, has at most a single “1” in each line (row o1 column),
indicating connection of the two comesponding ports. Other
entries are all zeros. P, is called a perfect matching if it has N
“1” elements. Then in Stage 3 the switch is reconfigured
according to these N configurations. We assume that each
switch reconfiguration needs & (regular) time slots, during
which no packet can be transmitted across the switch. An
overall internal speedup S is applied fo ensure that this stage
occupies only 7 time slots. After the speedup is applied, the unit
stot time for packet transmission in Stage 3 is compressed/
shortened by the speedup, and cach P, holds for ¢,
compressed slots for packet transmission. Finally in Stage 4
packets are sent onto output lines from output OQ buffers.

From the tagged packet in Fig. 2, we can see that the packet
delay is bounded to 274/ time slots. Assume 7>JNs and all the
line sums of C(T) are not larger than 7. Since 4N (regular) time
slots must be used to reconfigure the switch for N times and
thus only 7-dNs slots left for transmitting C(T) in Stage 3, a
speedup factor Seconfizure=7/(1—EN5) 15 necessary to compensate
solely for 8. At the same time. the scheduling algorithm may
produce some empty slots. Thus another speedup factor Secnequs
is required to compensate for the inefficient scheduling. The
overall speedup S is then given by [4-5]

78,
S= SrewnﬁgmeSschedule = T_Sc—glﬂe 0 (1)
5
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Fig. 2. Four-stage optical packet switch scheduling pipeline.

III. DOUBLE AND ADAPTIVE ALGORITHMS

DOUBLE and ADAPTIVE are concisely surnmarized in this
section. Details can be found in [4-5].

Divide the traffic matrix C(T} into a coarse matrix A and a
fine matrix R as follows:

T A+R,a,..={m-—ci" J (2)
N,-N CTHNG - N)

where a; denotes the element (/) of A. N; represents the
number of configurations required to cover €(7) and 1s in the
range of N*-2N+2>Ng>N? Because the maximum line sum of
C(T) is assumed to be not more than 7, the maximuim ling sum
of A is at most Ny-N. Thus the corresponding bipartite
multigraph of A can be edge-colored in Ny colors [7-9].
These Ny N colors can be mapped back to form Ng-N
corresponding switch configurations P, n€{1, ..., NeN} to
cover A. The fine matrix R does not need to be explicitly
computed because all its elements are guaranteed to be less than

TI(Ns—N). Therefore any N configurations (from Pusyea to Pps)

that coflectively tepresent ¢very enmtry of C(7) and each

weighted by T/(Ns-N), can be used to cover the fine matrix R.

Consequently, C(7) can be covered by (Ns—N)+N=Ns switch

configurations, each equally weighted by ¢,=T/NyN).” It

means that the algorithin uses Ngx @, =NexT/(NgN)

compressed slots to transmit (at most) T packets for each input
port. Asa result, S, .qu. in (1) is given by

Sschedu.le:iNS[ r ]: N =1+ il . (3)

T Ny—-N| Ny=-N Ng—N
DOUBLE [4] is a special case of our above discussion. It

uses Ng=2N configurations to cover C(T) (N configurations to
cover the coarse matrix 4 and the other N configurations to
cover the fine matrix R), each weighted by &,=7/N. It achieves
Sicheaue=2. ADAPTIVE [5] considers more general cases.
Based on (1) and (3), it finds out the best Vs value to minimize
the overall speedup S'in (1), where

C(T) =

N#%N traffic matrix C(T) is covered bv a set of switch configurations Py, ..., Pys, 2 N =N"-2N+2 stands for EXACT algorithm [4, 10] and Ny=N stands for
each weighted by a non-negative integer @y, ..., $xs ifand only f ¥%,2 ¢,  MIN [4] and &-SCALE [6] algorithms.

Py ey for any ig € {1, ..., N}. *If T/(NsNY is not an integer, use its ceiling integer as the substitute.
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V. OPTIMIZATION ON OP$ SCHEDULING ALGORITHMS

The performance of both DOUBLE [4] and ADAPTIVE {5}
can be optimized. While sharing the same basic idea, the
mechanisms discussed below apply to both algorithms with
only minor modifications. For simplicity, we only take
DOUBLE (which is the simpler case, ie. N&=2N) as the
example for discussion. Then we give the correspending results
for ADAPTIVE at the end of this section.

A. Optimization on DOUBLE

We start from the following Lemma 1, which is basically the
same as Lemma 2 in [7] (pp. 1159) and a proof can be found
there.

Lemma I Any NxN matrix M with maximum line sum Lg
can be covered by using Lg configuration matrices.

In DOUBLE, there are only two possible cases for the coarse
matrix A: 1) all of its lines sum to an integer less than A, 2)
some of its lings sum to N. In case 1), all of the line sums of 4
are at most A—1. Thus, A canbe covered bv V-1 configurations
according to Lemma 1; In case 2), some of the line sums of 4
equal to V. As a result, the corresponding lines of C(T) do not
have residues in the fine matrix R because the maximum line
sum of C(T) is T (refer to formula (2) and note that Ng=2N for
DOUBLE). So, in the fine matrix R, the corresponding rows or
columns should be all zeros. We can refer to Fig. 3 for an
example, In Fig. 3, T=16 and N=4, For the example execution
of DOUBLE, the corresponding 4 and R matrices are

4 6 00 0000
_0120R_0022
0 2 0 1| 00 3 1|
61 0 2 0031

We can see that the first row, the first and the second columns
of R arc all zeros. This is because the corresponding lines in A
sum to N=4. Since the coarse matrix 4 is multiplied by an
integer 7/N=4 in C(T)’s decomposition and the maximum line
sum of C(T) is 7=16, there are no residues in these
corresponding lines of R. However, in the fine part schedule of
DOUBLE, N configurations (that collectively represent every
entry of an Nx/N matrix) are used to cover the fine matrix R, For
the above example, an all-1 matrix (equals to the sum of the N
perfect matchings Ps-Pg) weighted by 7/N=4 is used to cover R.
Obviously, for those lines of A whose line sums equal to N,
slois are worthiessly wasted by DOUBLE’s fine part schedule.
In fact, we can make use of these wasted slots to reduce Ns.

Lemma 2. The maximum number of configurations (N)
required in DOUBLE can be reduced by one (i.e. N&=2N-1) by
making use of the wasted slots in the fine part schedule.

Proof: If the maximum line sum of A is less than &, then A4
can be covered by at most N-1 configurations. Otherwise if
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Fig. 3. An example of DOUBLE and its optimized counterpart.

some lines in A sum to N, the corresponding lines in the fine
matrix R should be all zeros, and the corresponding slots are
wasted by DOUBLE’s fine part schedule. To counteract this,
we can “shift” some traffic from 4 to K before scheduling is
carried out. This can be achieved by reducing any one of the
positive elements in each of those lines of A (with sum to ) by
1, making the maximum line sum of the new coarse matrix to
N-1instead of V. This treatment will not cause any problem in
terms of covering C(T), becausc all the weights of the 2V
configurations in DOUBLE are equally set to ¢,=7/V and the
deducted values in 4 can be compensated by the fine part
schedule (by making use of the wasted slots, where the fine part
schedule keeps the same as DOUBLE). Thus, according to
Lemma 1, the new coarse matrix (4 after deduction) can be
covered by N-1 configurations. Taking the other N
configurations to cover R into consideration, C{T) as a whole
canbe covered by Ng=(N-1)+NM=2N-1 configurations with cach
weighted by T/N.
#
Lemma 3: S;neque (the speedup factor to compensate for the
scheduling inefficiency) is reduced to 2-1/¥ under the new
method, resulting in a reduced overall speedup of

[2 - L]T
-\ NJ
T T-Q2N-D16
Proof: As a consequence of Lemma 2, the resulting schedule
consists of Ny=2N-1 configurations with each weighted by T/N

under the new method. Thus, the OPS switch transmits T
packets for each input port in (2N-1)x(7/N) compressed slots.

)



Consequently, Siopeaue=(2N-1)*(T/NYT=2-1/N. According t©
(1), the overall speedup S is reduced to
1
2-—T
S= TSschedlﬂe — [ A'r] .
T-&N, T-(Q2N-D3

#

Lenma 4. The computational complexity of the algorithm is
reduced from O(A*logN) to O(N(N-1)logV).

Proof. Gernerally, the edge-coloring algorithm has a time
complexity of O(Flogl’) [8], where E is the number of edges
and I is the number of vertices in the bipartite multigraph. For
DOUBLE, E=O(N") and V=O(N). For the new method,
E=O(N(N-1)) and I'=0(N). Consequently, the computational
complexity of the algorithm is reduced from O(N°logh) to
O(N(N-DlogN).

#

Theorem [: The optimized DOUBLE algorithm can cover
C(T) using N&=2N-1 configurations, each weighted by 7/N,
with S.eane=2-1/¥. The computational complexity of the
optimized algorithm is also reduced to O(NV(N-1)log).

Usually, reducing Ny means that the packet delay 27+/ can
also be reduced. At the same time, making the algorithm
execution simpler is helpful for achieving a smaller /.

B. Optimization on ADAFTIVE

Foilowing the same argument as above, ADAPTIVE [5] can
also be optimized. The detailed derivations are omitted and the
result is given below.

Theorem 2: The optimized ADAPTIVE algorithm can cover
C(T) using | An [-1 configurations (where 4 is defined in (4)).
each weighted by [T#AN|-N)]. The following overall
internal speedup is sufficient to schedule C(T) in 7 time slots:

(AN -D)T
= . (6)
[T — (AN ~DSfAN - N)

V. OPTIMIZATION ON OPS SWITCH ARCHITECTURE

From our previous discussion in Section III, we know that
the & configurations (perfect matchings) used to cover the fine
matrix R can be chosen freely as long as they can cover every
entry of an &x¥ matrix. This is true for both DOUBLE and
ADAPTIVE. In fact, these N perfect matchings do not need to
be explicitly computed. That is, they can be predetermined
offline. This situation further implies that, in Fig. 2, the OPS
switch fabric does not need to wait the whole A time slots for
algorithm execution before it enters Stage 3. If we can arrange
these N predetermined perfect matchings to be configured at
the beginning of Stage 3, then swiiching (Stage 3) and
algorithm execution (Stage 2) can work in paratlel and thus
time can be saved. (Note that Fig. 2 only shows that Stages 2&3
work in series) Consequently, for DOUBLE [4] and
ADAPTIVE [5], these two stages can partially overlap 1o
reduce the total packet delay. The key point is that, ¥ out of the

0-7803-8924-7/05/$20.00 (c)2005 IEEE.

:-1-— TJ{H ——‘g—T] (traffic accumulation titne excluded) s————f
1 &

1

re~=——=ui{ for algorithm execution ——
'

L ]

__.3_
]

N predetermined i NN coarse part 0
—]
1

A

configurations é configurations
’
’,

-

-, . X
Packet transmission suspends, waiting for algorithm execution

Fig. 4. The time overlap between algorithm execution (Stage 2) and
traffic sending {Stage 3) for H>TN/Ns. In this case. traffic sending
suspends after the N predetermined configurations complete, waiting for
the scheduling algorithm to compute the remaining Ny coarse par
configurations.

N configurations can be predetermined for transmitting at the
beginning of Stage 3, so that even if the scheduler is still
calculating for the other NyN configurations, packet
transmission at the beginning of Stage 3 can be carried out in
parallel.

Since the time duration of Stage 3 (in Fig. 2) is 7 and it
consists of Ny times of reconfigurations, the N predetermined
perfect matchings will last for 7A/Ns (regular) time slots. Let D
and 7, represent the total packet delay and the time overlap
between Stages 2&3. We have

D=T(raffic accumulation)+H(algorithm execution)
+T(traffic sending)-Toltime overlap between
algorithm execution and traffic sending)

g

H—iT = max O,H—iT .
N, Ny

Equation (7) indicates that if we use a scheduler fast enough for
OPS switch implementation, such that H<TN/N; then the
packet delay D can be as small as 27 time slots.

Fig. 4 shows the time overlap between algorithm execution
and traffic sending periods. in which the A& predetermined
perfect matchings are acrwally arranged at the beginning of
Stage 2. That is, the OPS switch will use these N perfect
matchings in paralle]l with algorithm execution as soon as it
finishes traffic accumulation (Stage 1).* For H>TN/Ns, because
the algorithm’s running time is relatively long, the Ns-N coarse
part configurations are not yet available right after the first ¥
predetermined configurations complete. So, the packet
transmission suspends uniil the algorithm execution is finished
and the remaining Ny-N configurations are gencrated. This
procedure is different from what is shown in Fig. 2, but it does
not affect the conclusion that the accumulated traffic can be
scheduled and transmitted in 7+[H-TN/Ng}" time slots.

Without loss of generality, we assume H>TN/Ng (the worst

=2T+[H-—’¥_T] : 7

where

* In fact, this is the simplest way to implement our pipeline idea. Note that in
the new architecture, the definition of Stage 3 (wraffic sending) is different from
that in Fig. 2, whereas other stages are the same.
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case) in our subsequent discussion. For simplicity, we still use
(3) to calcutate Ssohequie although it has already been optimized
in Section I'V.

From (3) we have

N 8 -1
AT - Sgledlﬂe . (8)
s schedule
From (7) and (8), we get
D=2T+|:H—ir } = Sease ¥y gy ©)
A g schedule

The above equation (9) shows the relationship between S,chedue
and D under the optimized OPS switch architecture. It is
important to note that (7) and (9) are still subject to the
constraint 7>8Ns, as discussed in Section II. Our optimization
on the OPS switch architecture makes use of the time overlap
between Stages 2&3 (in Fig. 2), but this does not change the
constraint, which indicates that 7 must be large enough to
accommodate all the N configurations.

If we take DOUBLE [4] as an example, from (9) we can sec
that the packet delay is reduced to D=157+H because
Secheane=2. 1f we assume H=T for this case, we can see that the
new OPS switch architecture cuts down the packet delay by
[QT+H)-Q ST+ QT+H)=0.5T2T+H) =16.67%.

Generally, because Sipeae 1 (€xcept EXACT algorithm [4,
10] which uses N=N"-2N+2 configurations to achieve
Secheante=1), the packet delay formulated in (9) is always less
than that of the architecture shown in Figs. 1&2 (which is
2T+H). Obviously, this is because our proposed architecture
makes use of the time overlap between algorithm execution and
traffic sending. For general cases, the amount of time saved
depends on the particular situation. To make this point clearer,
Sschedute 10 (3) 1s plotted in Fig. 5. From the figure, we can see
that a larger Sihedue cOrresponds to a smaller Ns. According to
our previous discussion, a smaller Ny means that a greater
portion of the T (regular) slots in Stage 3 of Fig. 2 (the old
architecture) is occupied by the N predetermined perfect
matchings. (Formula (8) also reflects the ratio.) This further
indicates that the overlapped time period in Fig. 4 is longer and
thus the new architecture can provide a greater saving in packet
delay. On the contrary, a smaller S,.,.q,4. corresponds to a larger
Ns and less saving.

Finally, it is necessary to point out that our optimization on
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OPS switch architecture is for DOUBLE [4] and ADAPTIVE
[5]. Tt is infeasible for other algorithms such as MIN [4],
a'-SCALE [6] and EXACT [4][10].

V1. CoNCLUSION

Optical packet switches {OPS) bring about scalability, high
line rate, huge capacity and low power consumption features to
communication neiworks on an economical base. It is very
attractive for carrving IP traffic over WDM optical networks.

Due to the inherent reconfiguration overhead in OPS
switches, speedup and packet delay are two key issues in terms
of OPS implementation. Existing scheduling algorithms
(DOUBLE [4] and ADAPTIVE [3]) make effective tradeoff
between these two factors. In this paper, we optimized these
two algorithms to use less switch configurations and lower
speedup for performance guaranteed switching. The resulting
algorithms’ computational complexity and the packet delay are
also reduced. Based on the characteristics of these two
algorithms, we also modified the existing OPS switch
architecture. The new switch architecture was shown to reduce
the packet delay significantly. In addition, all the above
performance gains are achieved without incurring any extra
cost.
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