
Minimizing Internal Speedup for Performance
Guaranteed Optical Packet Switches

Bin Wu and Kwan L. Yeung
Dept. of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam, Hong Kong

E-mail: {binwu, kyeung}@eee.hku.hk

Abstract—Providing QoS guarantee for Internet services is very
important. It evokes the issue that packet switches should provide
guaranteed performance (i.e. 100% throughput with bounded
worst-case delay). Optical switching technology is widely
considered as an excellent solution for packet switches in future
networks. However, to achieve guaranteed performance in
optical packet switches, an internal speedup is required due to
the existence of reconfiguration overhead. How to reduce the
internal speedup is the main concern for making these switches
practical. In this paper, we first derive the internal speedup S as a
function of the number of switch configurations NS and the
reconfiguration overhead δ, or S=f(NS,δ). We show that the
recently proposed ADJUST algorithm is flawed. Based on the
internal speedup function we derived, a new algorithm
(ADAPTIVE), with time complexity of O((λ-1)N2logN), is
proposed to minimize S.

Keywords- Optical packet switch, guaranteed scheduling,
reconfiguration overhead, speedup.

I. INTRODUCTION
The idea of using optical switching technologies (such as

MEMS mirror [1], thermal bubble [2] and waveguide [3]) in
the design of packet switches/routers is widely accepted since
the recent progress of these technologies brings about
scalability, high rate, huge capacity and low power
consumption features on economical bases. However,
reconfiguring these optical packet switches requires relatively
large time period (i.e. reconfiguration overhead) because some
operations involved, such as mechanical settling and
synchronization, are quite time-consuming.

Some optical switch architectures are introduced [4][5] to
provide guaranteed performance (i.e. 100% throughput with
bounded worst-case delay) while taking the reconfiguration
overhead (denoted by δ) into account. In these architectures, an
internal switch fabric speedup S is necessary to compensate for
both the reconfiguration overhead δ and the inefficiency of the
scheduling algorithm. We can express S=SminSexact, where Smin
is required to compensate for the inefficient scheduling, and
Sexact is required to compensate for δ.

Two algorithms, DOUBLE [4] and ADJUST [5], are
recently proposed to schedule traffic in an N×N optical switch.
DOUBLE uses (at most) 2N configurations and generates a
maximum total reconfiguration overhead of 2δN. The resulting

Sexact is given by T/(T-2δN), where T is the traffic accumulating
time (Please refer to the next section for details). To
compensate for the inefficient scheduling, Smin=2 is necessary.
Thus the overall internal speedup required by DOUBLE is
S=SminSexact=2T/(T-2δN). ADJUST uses a regulating factor λ
(which is a function of δ) to self-adjust the algorithm under
different system parameters. ADJUST claims a better
performance than DOUBLE. However, we believe that
ADJUST algorithm is flawed.

In this paper, we first formulate the internal speedup S as a
function of the number of switch configurations NS required
and the reconfiguration overhead δ. We then prove that the
recently proposed ADJUST algorithm is problematic. Based on
the internal speedup function derived, we propose a new
ADAPTIVE algorithm which gives a solution to minimize
internal speedup for optical packet switches.

II. ARCHITECTURE
Fig. 1 shows a general architecture of optical packet

switches. 1 An internal speedup S is applied to the switch core
in order to compensate for δ and guarantee the scheduling
performance of the switch.

The architecture works by periodically accumulating
incoming traffic over a duration of T time slots to form an N×N
cumulative traffic matrix C(T) and applying time slot
assignment (TSA) method to determine a set of NS
configurations to deliver the collected packets. Fig. 2 shows the
scheduling procedure in four stages. In the first stage, incoming
packets are accumulated in the input buffers over T time slots
to construct C(T). Its entry cij denotes the number of packets

1 We only consider unicast optical packet switches in this paper.

This research is supported by the Research Grant Council Earmarked
Grant 7032/01E, Hong Kong.

Scheduler

crossbar switch

input buffer 1

input buffer 2

Input buffer N

output buffer 1

output buffer 2

output buffer N

N

input

Internal speedup

Optical packet switch core

N

output

Fig. 1. Optical packet switch architecture

Unicast

Globecom 2004 1742 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

received at input i whose destination is output j. Assume that
each time slot can accommodate one packet and all the row
sums/column sums of C(T) are not larger than T.

The switch fabric takes H time slots (Fig. 2 assumes H=T
for simplicity) in the second stage to generate NS configurations
P1, …, PNS. Rows and columns of Pn, n∈{1, …, NS} represent
input and output ports of the switch respectively. Pn has at most
a single “1” element in each row and column, indicating
connection of the two corresponding ports, and other entries are
all zeros.

Then the switch is configured and reconfigured in the third
stage according to these configurations. When two ports are
connected, one packet can be delivered to the corresponding
output buffer in each slot. An internal speedup S is required to
ensure that this stage occupies only T time slots and all the
packets in C(T) are transmitted during this stage. As a result,
the length of unit slot time in this stage is shortened because of
deploying internal speedup. In order to distinguish slots in this
stage with time slots outside, we use a definition of “A-domain
slots” to denote the slots produced by the scheduling algorithm
(i.e. slots after internal speedup is applied). Each configuration
Pn will hold for φn A-domain slots for packet transmission.
The set of configurations Pn, n∈{1, …, NS} should cover
C(T).2 Let TS be the total number of A-domain slots generated
by the scheduling algorithm. We have TS = ∑NS

n=1φn .

Finally in the fourth stage packets are sent onto the output
lines from the output buffers.

From Fig. 2, it is clear that the traffic delay is bounded to
2T+H time slots. Because δNS time slots have to be assigned to
reconfigure the switch for NS times and thus only T-δNS time
slots left for transmitting C(T) in the third stage, a speedup
Sexact= T/(T-δNS) is necessary to compensate for δ.3 Since the
scheduling algorithm usually produces some empty slots
(except EXACT algorithm which produces NS=N2-2N+2
configurations with Smin=1 [4][6]), a minimum speedup given
by Smin=TS/T is required to compensate for the inefficient
scheduling. The overall internal speedup S is thus given by

2 Let p(n)

ij and cij represent the element (i,j) of Pn and C(T) respectively. An
N×N traffic matrix C(T) is covered by a set of switch configurations P1, …,
PNS, each weighted by a non-negative integer φ1, …, φNS, if and only if
∑NS

n=1φn p(n)
ij≥ cij for any i,j∈{1, …, N}.

3 Assume that T>Tmin=δNS. All the parameters (T, H, and δ) are counted in
time slots. However, TS is counted in A-domain slots.

S

S

S
exact NT

TS
NT

TSSS
δδ −

=
−

== minmin
. (1)

III. CHARACTERISTICS OVER THE WHOLE SMIN VERSUS NS
DESIGN SPACE

We decompose the cumulative traffic matrix C(T) into a
coarse matrix A and a fine matrix R such that

RATC +
+

=
kN

T)(, 







+

=
)/(kNT

c
a ij

ij
, ATCR

kN
T
+

−=)(,

where k is an integer in the range of N2-4N+2>k>-N, and aij, cij
and rij represent the element (i,j) of A, C(T) and R respectively.
We first assume that T is a multiple of N+k. Since for any i, j∈
{1, …, N}, we have

Tc
N

i
ij ≤∑

=1
 and Tc

N

j
ij ≤∑

=1
,

there must be cij≤T. Thus

kNaij +≤ and
kN

Trij +
< ,

and the maximum row sum or column sum of A is bounded by
N+k. In fact,

∑ +≤







+

≤
















+

∑
≤∑ 








+

=
=

=

=

N

i

N

i
ijN

i

ij
ij kN

kNT
T

kNT

c

kNT
c

a
1

1

1)/()/()/(
.

Construct the corresponding bipartite multigraph GA from
matrix A. Because the maximum degree of GA is N+k, GA can
be edge-colored in N+k colors [7][8]. Each subset of edges
corresponding to a specific color can be mapped back to form a
switch configuration. As a result, the coarse matrix A can be
covered by N+k configurations with each weighted by 1. The
fine matrix R does not need to be explicitly computed because
all its elements are guaranteed to be less than T/(N+k). Thus
any N non-overlapping perfect matchings,4 each weighted by
T/(N+k), can be used to cover it.

Consequently, any cumulative traffic matrix C(T) can be
covered by NS=(N+k)+N=2N+k switch configurations, each
weighted by T/(N+k). Smin of this schedule is

kN
NN

kN
TkN

kN
T

TT
TS S

+
+=





+
++

+
== 1)(1

min . (2)

Substituting k in (2) by k=NS-2N yields

NN
NS

S −
+=1min , for NNNN S >>+− 222 . (3)

If T is not a multiple of N+k (general case), we can use
 )/(kNT + to replace T/(N+k). This would increase Smin by at
most (2N+k)/T. When T>>N and T>>k, this term can be
ignored. For simplicity, we only consider this situation in the

4 Pn, n∈{1, …, NS} is called a perfect matching if it has N “1” elements. i.e.

in the corresponding bipartite multigraph of Pn, each vertex is incident on
exactly one edge.

Switch reconfiguration period
Traffic sending period

T 2T 3T 4T
Packet delay=2T+H=3T

St
ag

e

Fig. 2. Optical packet switch scheduling stages

Time 1
2
3
4

Globecom 2004 1743 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

following discussion. Equation (3) is for N2-2N+2>NS>N. In
fact, when NS=N, we can use MIN algorithm [4] to schedule
C(T). When NS=N2-2N+2, we can apply EXACT algorithm
[4][6] so that Smin=1 can be achieved.

Fig. 3 illustrates Smin in (3). From (1) and (3), the overall
internal speedup S is given by









−

+
−

=
−

=
NN

N
NT

TS
NT

TS
SSS

1min δδ
.

If we take T and N as predefined system constants and study
the relationship of S versus NS and δ, S can be formulated as a
function of NS and δ as follows:

))((
1),(

NNNT
TN

NN
N

NT
TNfS

SS

S

SS
S −−

=







−

+
−

==
δδ

δ . (4)

IV. PROBLEMS IN ADJUST ALGORITHM
An “OSS (Optical Switch Scheduling) problem” is

formulated in [5] with the goal of minimizing a covering cost,
which is defined as

δφ S

N

i
i N

S

+∑=
=1

cost . (5)

Based on this idea, an ADJUST algorithm is proposed, with

NN
TNS 





 += 1δ and TNδNT δ2cost ++= . (6)

According to [5], the overall internal speedup is given by

T
N

T
N

T
S δδ 21cost ++== . (7)

However, the above equation (7) is flawed. Note that TS is
the total number of A-domain slots (i.e. slots produced by the
scheduling algorithm), or

∑=
=

SN

i
iST

1
φ .

The number of A-domain slots TS is counted after speedup S is
applied, and NSδ is counted before speedup S is applied. In
these two different domains, unit time slot lengths are different.
Consequently, minimizing the sum of these two values as in (5)

does not mean that the actual total transmission time and the
overall internal speedup S can be minimized. Thus, we
conclude that the OSS problem defined in [5] is flawed, and the
results produced by ADJUST algorithm are not accurate.

In fact, in order to find a self-adaptive algorithm to
minimize the overall internal speedup S for systems with
different values of δ, we can solve the following equation

0=
∂
∂

SN
S , (8)

where S=f(NS,δ) is derived in (4). From (4) and (8), we have

NTNN S λ
δ

== where
N
T

δ
λ = . (9)

The above NS is less than the number of configurations required
by ADJUST in (6). In fact, this is the basic theory for
ADAPTIVE algorithm to be discussed in Section V.

Let SADAPT, SADJUST and SDOUBLE represent the overall
internal speedup S for ADAPTIVE, ADJUST and DOUBLE.
From (4) and (9), we have

)1)(())((
),(ADAPT −−

=
−−

== == λδλ
λ

δ
δ λλ NT

T
NNNT

TNNfS NN
SS

S
NNS SS

.

The internal speedup defined in (7) for ADJUST is obviously
incorrect. According to (1) and the algorithm description in [5],
we correct the internal speedup for ADJUST as follows:

NNTT
NTT

NT

TT

NTNT
TS NN

SS

N

i
i

NN
S

S
S

S

S δδ
δ

δ
λ

δ

φ

δ λλ
−−

+
=

−

+
=

−

∑
=

−
= +=

=
+=)1(

1
)1(ADJUST

.

It is easy to prove by calculation that SADAPT<SADJUST is always
true. At the same time, note that

NT
TS

NT
TS SNN

S
S δδ 2

2
2,2minDOUBLE min −

=
−

= ==

is the internal speedup for DOUBLE algorithm. Because

NNTT S δδ ≥=> min and 11 <=
T
Nδ

λ
,

we have

012)(
2

1DOUBLEADAPT ≥





 −=⇔≤

λ
λFSS (10)

78.2
36.0
10132)(32DOUBLEADJUST =≥⇔≥+−=⇔≤ λ

λλ
λFSS (11)

F1(λ) and F2(λ) are plotted in Fig. 4. Comparing S of the three
algorithms is mathematically equivalent to comparing F1(λ)
and F2(λ) with 0. From (10) we conclude that SADAPT is always
smaller than SDOUBLE except when λ=2 (δ=T/(4N)) for equality.
From (11), we can see that SADJUST is not always smaller than
SDOUBLE as it was claimed in [5]. In fact, SADJUST is smaller than
SDOUBLE only when λ>2.78.

Finally, it is necessary to point out that Fig. 8 as well as
some related discussion in [5] is impossible to be correct. The

S m
in

NN
NS

S −
+= 1min

NS

N

EXACT(Smin=1)

Fig. 3. Illustration of Smin for N≤30.

Globecom 2004 1744 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

first reason is that there must be T>Tmin=δNS≥δN for any
performance guaranteed algorithm. So it is impossible for δ to
be larger than T/N (and thus δ/T should always be less than
1/N). Secondly, for ADJUST algorithm, it is obvious that

NNN
TNN S 21)1(>





 +=+= δλ .

Thus it is impossible for ADJUST to use less configurations
than DOUBLE for arbitrary traffic matrix C(T).

V. ADAPTIVE ALGORITHM
Given T, N and δ, according to (9), internal speedup S is

minimized when

δ
λ TNNN S == .

ADAPTIVE algorithm

Step 1. Calculate the coarse matrix A. Calculate the regulating
factor λ and the number of configurations NS as follows:

N
T

δ
λ = and  NN S λ= ,

Define an N×N matrix A such that









−

=
)/(NNT

c
a

S

ij
ij

.

Step 2. Color A. Construct the bipartite multigraph GA from A.
Find a minimal edge-coloring [7][8] of GA to get at most NS-N
colors. Set n ← 1.

Step 3. Schedule the coarse matrix A. For a specific color in
the edge-coloring of GA, construct a switch configuration Pn
from the edges assigned to that color. Set

 )/(NNT Sn −=φ

and n ←n +1. Repeat Step 3 for each of the colors in GA.

Step 4. Schedule the fine matrix. Find any N non-overlapping
perfect matchings Pn , n∈{NS-N+1, …, NS} and set

 )/(NNT Sn −=φ .

Based upon the above analysis, an ADAPTIVE algorithm is
given above. This algorithm takes both δ and scheduling
inefficiency into account. The algorithm is self-adaptive to
different δ, T and N values. It can generate a suitable number
of configurations to minimize the overall internal speedup.

Note that in our previous discussion in Section III, we use
NS=(N+k)+N=2N+k switch configurations to cover C(T). i.e.
NS-N=N+k. Thus, ADAPTIVE is the same as the problem we
discussed in Section III. From (4), (8), (9) and our previous
discussion, it is easy to see that ADAPTIVE algorithm is
correct. The algorithm’s running time is dominated by edge-
coloring of (NS–N)×N=(λ–1)N2 edges and thus the time
complexity is O((λ-1)N2logN). Table I summarizes DOUBLE,
ADJUST, and ADAPTIVE algorithms. Fig. 5 shows an
example execution of these algorithms. The all-1-matrices in

)(λF

Fig. 4. Comparing S values of the three algorithms is
mathematically equivalent to comparing F1(λ) and F2(λ) with 0.

2

1 12)(






 −=
λ

λF

11312)(
3

2 +






−






=
λλ

λF

λ
1

TABLE I
COMPARISON OF DOUBLE, ADJUST AND ADAPTIVE

Algorithms NS S Time

complexity
DOUBLE 2N

NT
TS

δ2
2

DOUBLE −
=

 O(N2logN)

ADJUST N)1(+λ
 NNTT

NTTS
δδ

δ
−−

+=ADJUST

 O(λN2logN)

ADAPTIVE  Nλ
)1)((ADAPT −−

=
λδλ

λ
NT
TS

O((λ-1)N2logN)

5.1,4,36,4,

111267
91287
112101
60720

)(=====


















= N
TTNTC δλδ

a) ADJUST algorithm

+


















+


















+





























≤


















+


















=

0010
0001
0100
1000

0001
1000
0100
0010

1000
0100
0010
0001

6

5001
3021
1041
0012

1211
1211
0210
1013

6)(TC



















+





























+


















+


















1111
1111
1111
1111

6

0100
0000
0000
0000

0000
0100
0000
0001

0100
0010
0000
0001

15,60,10,10)1(*

*
*** −=

−
====+=

S

S
SSS NT

TSTNNN
δ

λ

b) DOUBLE algorithm



















+





























+



















+





























≤



















+



















=

1111
1111
1111
1111

9

0100
0000
0000
0000

0000
1000
0100
0001

1000
0100
0010
0001

9

2367
0387
1311
6072

1100
1100
0110
0002

9)(TC

DOUBLE*

*

2
218875.7,63,7,82 S

NT
T

NT
T

STNNN
S

S
SSS =

−
=<=

−
=====

δδ

c) ADAPTIVE algorithm



















+


















≤


















+


















=

1111
1111
1111
1111

18

0000
0000
0000
0001

18

111267
91287
112101
6072

0000
0000
0000
0001

18)(TC

  ADAPT*

*

)1)((
9625.5,90,5,6 S

NT
T

NT
TSTNNN

S

S
SSS =

−−
=<=

−
=====

λδλ
λ

δ
λ

Fig. 5. Example execution of ADJUST, DOUBLE and ADAPTIVE

Globecom 2004 1745 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

the example represent the fine part schedule for each algorithm.
It can be covered by N=4 non-overlapping perfect matchings
with corresponding weights. Let NS represent the maximum
number of configurations required by each algorithm. NS

*, TS
*

and S* are used to denote the actual number of configurations
required, the total number of A-domain slots produced and the
actual internal speedup required for the particular C(T) in each
algorithm. However, for arbitrary traffic in a performance
guaranteed system, the worst-case internal speedup SADJUST,
SDOUBLE and SADAPT have to be applied, and at the same time the
worst-case traffic delay has to be designed according to NS
(T>Tmin=δNS) instead of NS

*.

It is obvious that ADJUST is disabled for the instance listed
in Fig. 5. The reason is that ADJUST generates too many
configurations and they are impossible to be accommodated in
T time slots in the third stage (T<δNS). Consequently ADJUST
can not generate a performance guaranteed schedule for this
situation. However, for the same instance, DOUBLE and
ADAPTIVE work perfectly well. In fact, the same fault will
never happen on ADAPTIVE because

  TTTNTTNNN S =×<×≤











==)(δ

δ
δλδδ .

The example in Fig. 5 also indicates that ADAPTIVE
outperforms DOUBLE because SADAPT<SDOUBLE. For λ<2 (i.e.
T<4δN), ADAPTIVE needs less NS than DOUBLE and thus a
smaller traffic delay can be achieved.

VI. DISCUSSION
In the internal speedup function S=f(NS,δ) in (4), we assume

that T and N are predefined system constants. But obviously it
is not a necessary condition. In fact, if we want to study how
the values of T and N affect S, the internal speedup function in
(4) can also be considered as a function of T and N. The
S=f(NS,δ) function presented in this paper gives an upper bound
for overall internal speedup S. However, it is possible that there
exists another polynomial time algorithm which can achieve a
lower bound than the one we presented. We leave this problem
as an open question for future study.

ADJUST mixes up the notions of A-domain slots and time
slots outside (the third stage) in the architecture discussed in
Section II. Consequently, the OSS problem defined in [5] is
flawed and results based on it are not accurate. In some cases
when DOUBLE and ADAPTIVE work well, ADJUST may be
inapplicable. On the other hand, DOUBLE ignores the
reciprocity of δ and scheduling inefficiency towards the goal of
minimizing S. ADAPTIVE takes both effects (δ and scheduling
inefficiency) into account. Based on minimizing the internal
speedup function S=f(NS,δ), ADAPTIVE achieves a better
result than DOUBLE and ADJUST. The new algorithm can be
applied to optical circuit switches and any other non-zero-
overhead switches as well. For example, the SS/TDMA
scheduling problem [9][10] is the same as the scheduling
problem considered in this paper. Our results can be easily
applied to those similar problems and systems.

Finally, this paper is for performance guaranteed
scheduling and average case performance analysis is not

included. In addition, it does not consider scheduling with
arbitrary asynchronous reconfigurations, in which some
connections remain static and continue to transmit packets
while other connections are reconfigured. Scheduling a switch
with arbitrary reconfigurations can be formulated as an open
shop problem and some related discussion can be found in [4].

VII. CONCLUSION
Using optical technologies in the design of packet

switches/routers is very attractive because of many of its
benefits. In order to meet QoS requirements for Internet
services, optical packet switches need to provide performance
guaranteed switching. Thus, an internal speedup is required to
compensate for the reconfiguration overhead and the inefficient
scheduling of the algorithm. How to minimize the overall
internal speedup is a key issue for making these optical packet
switches practical.

We proved that the ADJUST algorithm proposed in [5] is
not accurate. Based on the internal speedup function S=f(NS,δ)
derived in this paper, we proposed another new algorithm
(ADAPTIVE) to minimize the internal speedup S. The
algorithm generates an appropriate schedule and dynamically
suits the system parameters δ, T and N for the best scheduling
result. Consequently, the effects of reconfiguration overhead δ
and scheduling inefficiency are well balanced by generating a
suitable number of configurations NS to achieve a minimized
overall internal speedup S. The new algorithm outperforms
DOUBLE and ADJUST since it requires a smaller S with time
complexity of O((λ-1)N2logN). It provides guaranteed
performance (100% throughput with bounded delay of 2T+H
time slots) for optical packet switches.

REFERENCES
[1] A. Neukermans and R. Ramaswami, “MEMS technology for optical

networking applications”, IEEE Commun. Mag., vol. 39, pp. 62-69, Jan.
2001.

[2] J.E Fouquet et. al, “A compact, scalable cross-connect switch using total
internal reflection due to thermally-generated bubbles”, in IEEE LEOS
Annual Meeting, Orlando, FL, Dec. 1998, pp. 169-170.

[3] O. B. Spahn, C. Sullivan, J. Burkhart, C. Tigges, and E. Garcia “GaAs-
based microelectromechanical waveguide switch”, in Proc. 2000
IEEE/LEOS Intl. Conf. on Optical MEMS, Honolulu, HI, Aug. 2000, pp.
41-42.

[4] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with
configuration overhead”, IEEE/ACM Trans. Networking, vol. 11, no. 5,
pp. 835-847, Oct. 2003.

[5] Xin Li and Hamdi, M., “On scheduling optical packet switches with
reconfiguration delay”, Selected Areas in Communications, IEEE
Journal on , vol. 21, issue 7, pp. 1156-1164, Sept. 2003.

[6] T. Inukai, “An efficient SS/TDMA time slot assignment algorithm”,
IEEE Trans. Commun, vol. COM-27, no. 10, pp. 1449-1455, 1979.

[7] R. Cole and J. Hopcroft, “On edge coloring bipartite graphs”, SIAM
Journal on Computing, vol. 11, pp. 540-546, Aug. 1982.

[8] R. Diestel, Graph Theory, 2nd ed. New York: Spring-Verlag, 2000.
[9] Y. Ito, Y. Urano, T. Muratani, and M. Yamaguchi, “Analysis of a switch

matrix for an SS/TDMA system”, Proc. of the IEEE, vol. 65, no. 3, pp.
411-419, 1977.

[10] S. Gopal and C. K. Wong, “Minimizing the number of switchings in an
SS/TDMA system”, IEEE Trans. Commun, vol. 33, pp. 497-501, Jun.
1985.

Globecom 2004 1746 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

