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Abstract—Providing QoS guarantee for Internet services is very 
important. It evokes the issue that packet switches should provide 
guaranteed performance (i.e. 100% throughput with bounded 
worst-case delay). Optical switching technology is widely 
considered as an excellent solution for packet switches in future 
networks. However, to achieve guaranteed performance in 
optical packet switches, an internal speedup is required due to 
the existence of reconfiguration overhead. How to reduce the 
internal speedup is the main concern for making these switches 
practical. In this paper, we first derive the internal speedup S as a 
function of the number of switch configurations NS and the 
reconfiguration overhead δ, or S=f(NS,δ).  We show that the 
recently proposed ADJUST algorithm is flawed. Based on the 
internal speedup function we derived, a new algorithm 
(ADAPTIVE), with time complexity of O((λ-1)N2logN), is 
proposed to minimize S. 

Keywords- Optical packet switch, guaranteed scheduling, 
reconfiguration overhead, speedup. 

I.  INTRODUCTION 
The idea of using optical switching technologies (such as 

MEMS mirror [1], thermal bubble [2] and waveguide [3]) in 
the design of packet switches/routers is widely accepted since 
the recent progress of these technologies brings about 
scalability, high rate, huge capacity and low power 
consumption features on economical bases. However, 
reconfiguring these optical packet switches requires relatively 
large time period (i.e. reconfiguration overhead) because some 
operations involved, such as mechanical settling and 
synchronization, are quite time-consuming. 

Some optical switch architectures are introduced [4][5] to 
provide guaranteed performance (i.e. 100% throughput with 
bounded worst-case delay) while taking the reconfiguration 
overhead (denoted by δ) into account. In these architectures, an 
internal switch fabric speedup S is necessary to compensate for 
both the reconfiguration overhead δ and the inefficiency of the 
scheduling algorithm. We can express S=SminSexact, where Smin 
is required to compensate for the inefficient scheduling, and 
Sexact is required to compensate for δ. 

Two algorithms, DOUBLE [4] and ADJUST [5], are 
recently proposed to schedule traffic in an N×N optical switch. 
DOUBLE uses (at most) 2N configurations and generates a 
maximum total reconfiguration overhead of 2δN. The resulting 

Sexact is given by T/(T-2δN), where T is the traffic accumulating 
time (Please refer to the next section for details). To 
compensate for the inefficient scheduling, Smin=2 is necessary. 
Thus the overall internal speedup required by DOUBLE is 
S=SminSexact=2T/(T-2δN). ADJUST uses a regulating factor λ 
(which is a function of δ) to self-adjust the algorithm under 
different system parameters. ADJUST claims a better 
performance than DOUBLE. However, we believe that 
ADJUST algorithm is flawed. 

In this paper, we first formulate the internal speedup S as a 
function of the number of switch configurations NS required 
and the reconfiguration overhead δ. We then prove that the 
recently proposed ADJUST algorithm is problematic. Based on 
the internal speedup function derived, we propose a new 
ADAPTIVE algorithm which gives a solution to minimize 
internal speedup for optical packet switches. 

II. ARCHITECTURE 
Fig. 1 shows a general architecture of optical packet 

switches. 1 An internal speedup S is applied to the switch core 
in order to compensate for δ and guarantee the scheduling 
performance of the switch. 

The architecture works by periodically accumulating 
incoming traffic over a duration of T time slots to form an N×N 
cumulative traffic matrix C(T) and applying time slot 
assignment (TSA) method to determine a set of NS 
configurations to deliver the collected packets. Fig. 2 shows the 
scheduling procedure in four stages. In the first stage, incoming 
packets are accumulated in the input buffers over T time slots 
to construct C(T). Its entry cij denotes the number of packets 

                                                           
1 We only consider unicast optical packet switches in this paper. 
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received at input i whose destination is output j. Assume that 
each time slot can accommodate one packet and all the row 
sums/column sums of C(T) are not larger than T. 

The switch fabric takes H time slots (Fig. 2 assumes H=T 
for simplicity) in the second stage to generate NS configurations 
P1, …, PNS. Rows and columns of Pn, n∈{1, …, NS} represent 
input and output ports of the switch respectively. Pn has at most 
a single “1” element in each row and column, indicating 
connection of the two corresponding ports, and other entries are 
all zeros. 

Then the switch is configured and reconfigured in the third 
stage according to these configurations. When two ports are 
connected, one packet can be delivered to the corresponding 
output buffer in each slot. An internal speedup S is required to 
ensure that this stage occupies only T time slots and all the 
packets in C(T) are transmitted during this stage. As a result, 
the length of unit slot time in this stage is shortened because of 
deploying internal speedup. In order to distinguish slots in this 
stage with time slots outside, we use a definition of “A-domain 
slots” to denote the slots produced by the scheduling algorithm 
(i.e. slots after internal speedup is applied). Each configuration 
Pn will hold for φn A-domain slots for packet transmission. 
The set of configurations Pn, n∈{1, …, NS} should cover 
C(T).2 Let TS be the total number of A-domain slots generated 
by the scheduling algorithm. We have TS = ∑NS

n=1φn . 

Finally in the fourth stage packets are sent onto the output 
lines from the output buffers. 

From Fig. 2, it is clear that the traffic delay is bounded to 
2T+H time slots. Because δNS time slots have to be assigned to 
reconfigure the switch for NS times and thus only T-δNS time 
slots left for transmitting C(T) in the third stage, a speedup 
Sexact= T/(T-δNS) is necessary to compensate for δ.3 Since the 
scheduling algorithm usually produces some empty slots 
(except EXACT algorithm which produces NS=N2-2N+2 
configurations with Smin=1 [4][6]), a minimum speedup given 
by Smin=TS/T is required to compensate for the inefficient 
scheduling. The overall internal speedup S is thus given by 

                                                           
2 Let p(n)

ij and cij represent the element (i,j) of Pn and C(T) respectively. An 
N×N traffic matrix C(T) is covered by a set of switch configurations P1, …, 
PNS, each weighted by a non-negative integer φ1, …, φNS, if and only if 
∑NS

n=1φn p(n)
ij≥ cij for any i,j∈{1, …, N}. 

3 Assume that T>Tmin=δNS. All the parameters (T, H, and δ) are counted in 
time slots. However, TS is counted in A-domain slots. 
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III. CHARACTERISTICS OVER THE WHOLE SMIN VERSUS NS 
DESIGN SPACE 

We decompose the cumulative traffic matrix C(T) into a 
coarse matrix A and a fine matrix R such that 
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where k is an integer in the range of N2-4N+2>k>-N, and aij, cij 
and rij represent the element (i,j) of A, C(T) and R respectively.  
We first assume that T is a multiple of N+k. Since for any i, j∈
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Construct the corresponding bipartite multigraph GA from 
matrix A. Because the maximum degree of GA is N+k, GA can 
be edge-colored in N+k colors [7][8]. Each subset of edges 
corresponding to a specific color can be mapped back to form a 
switch configuration. As a result, the coarse matrix A can be 
covered by N+k configurations with each weighted by 1. The 
fine matrix R does not need to be explicitly computed because 
all its elements are guaranteed to be less than T/(N+k). Thus 
any N non-overlapping perfect matchings,4 each weighted by 
T/(N+k), can be used to cover it. 

Consequently, any cumulative traffic matrix C(T) can be 
covered by NS=(N+k)+N=2N+k switch configurations, each 
weighted by T/(N+k). Smin of this schedule is 
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Substituting k in (2) by k=NS-2N yields 

NN
NS

S −
+=1min , for NNNN S >>+− 222 .             (3) 

If T is not a multiple of N+k (general case), we can use 
 )/( kNT +  to replace T/(N+k). This would increase Smin by at 
most (2N+k)/T. When T>>N and T>>k, this term can be 
ignored. For simplicity, we only consider this situation in the 

                                                           
4 Pn, n∈{1, …, NS} is called a perfect matching if it has N “1” elements. i.e. 

in the corresponding bipartite multigraph of Pn, each vertex is incident on 
exactly one edge. 
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following discussion. Equation (3) is for N2-2N+2>NS>N. In 
fact, when NS=N, we can use MIN algorithm [4] to schedule 
C(T). When NS=N2-2N+2, we can apply EXACT algorithm 
[4][6] so that Smin=1 can be achieved. 

Fig. 3 illustrates Smin in (3). From (1) and (3), the overall 
internal speedup S is given by 
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If we take T and N as predefined system constants and study 
the relationship of S versus NS and δ, S can be formulated as a 
function of NS and δ as follows: 
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IV. PROBLEMS IN ADJUST ALGORITHM 
An “OSS (Optical Switch Scheduling) problem” is 

formulated in [5] with the goal of minimizing a covering cost, 
which is defined as 
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Based on this idea, an ADJUST algorithm is proposed, with 
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According to [5], the overall internal speedup is given by 
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However, the above equation (7) is flawed. Note that TS is 
the total number of A-domain slots (i.e. slots produced by the 
scheduling algorithm), or 
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The number of A-domain slots TS is counted after speedup S is 
applied, and NSδ is counted before speedup S is applied. In 
these two different domains, unit time slot lengths are different. 
Consequently, minimizing the sum of these two values as in (5) 

does not mean that the actual total transmission time and the 
overall internal speedup S can be minimized. Thus, we 
conclude that the OSS problem defined in [5] is flawed, and the 
results produced by ADJUST algorithm are not accurate. 

In fact, in order to find a self-adaptive algorithm to 
minimize the overall internal speedup S for systems with 
different values of δ, we can solve the following equation 

0=
∂
∂

SN
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where S=f(NS,δ) is derived in (4). From (4) and (8), we have 

NTNN S λ
δ

==  where 
N
T

δ
λ = .               (9) 

The above NS is less than the number of configurations required 
by ADJUST in (6). In fact, this is the basic theory for 
ADAPTIVE algorithm to be discussed in Section V. 

Let SADAPT, SADJUST and SDOUBLE represent the overall 
internal speedup S for ADAPTIVE, ADJUST and DOUBLE. 
From (4) and (9), we have 
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The internal speedup defined in (7) for ADJUST is obviously 
incorrect. According to (1) and the algorithm description in [5], 
we correct the internal speedup for ADJUST as follows: 
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It is easy to prove by calculation that SADAPT<SADJUST is always 
true. At the same time, note that 
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F1(λ) and F2(λ) are plotted in Fig. 4. Comparing S of the three 
algorithms is mathematically equivalent to comparing F1(λ) 
and F2(λ) with 0. From (10) we conclude that SADAPT is always 
smaller than SDOUBLE except when λ=2 (δ=T/(4N)) for equality. 
From (11), we can see that SADJUST is not always smaller than 
SDOUBLE as it was claimed in [5]. In fact, SADJUST is smaller than 
SDOUBLE only when λ>2.78. 

Finally, it is necessary to point out that Fig. 8 as well as 
some related discussion in [5] is impossible to be correct. The 
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Fig. 3.  Illustration of Smin for N≤30. 
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first reason is that there must be T>Tmin=δNS≥δN for any 
performance guaranteed algorithm. So it is impossible for δ to 
be larger than T/N (and thus δ/T should always be less than 
1/N). Secondly, for ADJUST algorithm, it is obvious that 

NNN
TNN S 21)1( >





 +=+= δλ . 

Thus it is impossible for ADJUST to use less configurations 
than DOUBLE for arbitrary traffic matrix C(T). 

V. ADAPTIVE ALGORITHM 
Given T, N and δ, according to (9), internal speedup S is 

minimized when 

δ
λ TNNN S == . 

ADAPTIVE algorithm 

Step 1. Calculate the coarse matrix A. Calculate the regulating 
factor λ and the number of configurations NS as follows: 
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Step 2. Color A. Construct the bipartite multigraph GA from A. 
Find a minimal edge-coloring [7][8] of GA to get at most NS-N 
colors. Set n ← 1. 

Step 3. Schedule the coarse matrix A. For a specific color in 
the edge-coloring of GA, construct a switch configuration Pn 
from the edges assigned to that color. Set 

 )/( NNT Sn −=φ  

and n ←n +1. Repeat Step 3 for each of the colors in GA. 

Step 4. Schedule the fine matrix. Find any N non-overlapping 
perfect matchings Pn , n∈{NS-N+1, …, NS} and set 

 )/( NNT Sn −=φ . 

Based upon the above analysis, an ADAPTIVE algorithm is 
given above. This algorithm takes both δ and scheduling 
inefficiency into account. The algorithm is self-adaptive to 
different δ, T and N values. It can generate a suitable number 
of configurations to minimize the overall internal speedup. 

Note that in our previous discussion in Section III, we use 
NS=(N+k)+N=2N+k switch configurations to cover C(T). i.e. 
NS-N=N+k. Thus, ADAPTIVE is the same as the problem we 
discussed in Section III. From (4), (8), (9) and our previous 
discussion, it is easy to see that ADAPTIVE algorithm is 
correct. The algorithm’s running time is dominated by edge- 
coloring of (NS–N)×N=(λ–1)N2 edges and thus the time 
complexity is O((λ-1)N2logN). Table I summarizes DOUBLE, 
ADJUST, and ADAPTIVE algorithms. Fig. 5 shows an 
example execution of these algorithms. The all-1-matrices in 
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Algorithms NS S Time 

complexity 
DOUBLE 2N 

NT
TS

δ2
2

DOUBLE −
=

 O(N2logN) 

ADJUST N)1( +λ
 NNTT

NTTS
δδ

δ
−−

+=ADJUST

 O(λN2logN) 

ADAPTIVE  Nλ
 )1)((ADAPT −−

=
λδλ

λ
NT
TS

 
O((λ-1)N2logN) 

 

5.1,4,36,4,

111267
91287
112101
60720

)( =====


















= N
TTNTC δλδ

 

 
a) ADJUST algorithm 

+


















+


















+





























≤


















+


















=

0010
0001
0100
1000

0001
1000
0100
0010

1000
0100
0010
0001

6

5001
3021
1041
0012

1211
1211
0210
1013

6)(TC



















+





























+


















+


















1111
1111
1111
1111

6

0100
0000
0000
0000

0000
0100
0000
0001

0100
0010
0000
0001  

15,60,10,10)1( *

*
*** −=

−
====+=

S

S
SSS NT

TSTNNN
δ

λ  

b) DOUBLE algorithm 



















+





























+



















+





























≤



















+



















=

1111
1111
1111
1111

9

0100
0000
0000
0000

0000
1000
0100
0001

1000
0100
0010
0001

9

2367
0387
1311
6072

1100
1100
0110
0002

9)(TC
 

DOUBLE*

*
***

2
218875.7,63,7,82 S

NT
T

NT
T

STNNN
S

S
SSS =

−
=<=

−
=====

δδ
 

c) ADAPTIVE algorithm 



















+


















≤


















+


















=

1111
1111
1111
1111

18

0000
0000
0000
0001

18

111267
91287
112101
6072

0000
0000
0000
0001

18)(TC
 

  ADAPT*

*
***

)1)((
9625.5,90,5,6 S

NT
T

NT
TSTNNN

S

S
SSS =

−−
=<=

−
=====

λδλ
λ

δ
λ  

 
Fig. 5.  Example execution of ADJUST, DOUBLE and ADAPTIVE 
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the example represent the fine part schedule for each algorithm. 
It can be covered by N=4 non-overlapping perfect matchings 
with corresponding weights. Let NS represent the maximum 
number of configurations required by each algorithm. NS

*, TS
* 

and S* are used to denote the actual number of configurations 
required, the total number of A-domain slots produced and the 
actual internal speedup required for the particular C(T) in each 
algorithm. However, for arbitrary traffic in a performance 
guaranteed system, the worst-case internal speedup SADJUST, 
SDOUBLE and SADAPT have to be applied, and at the same time the 
worst-case traffic delay has to be designed according to NS 
(T>Tmin=δNS) instead of NS

*. 

It is obvious that ADJUST is disabled for the instance listed 
in Fig. 5. The reason is that ADJUST generates too many 
configurations and they are impossible to be accommodated in 
T time slots in the third stage (T<δNS). Consequently ADJUST 
can not generate a performance guaranteed schedule for this 
situation. However, for the same instance, DOUBLE and 
ADAPTIVE work perfectly well. In fact, the same fault will 
never happen on ADAPTIVE because 
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The example in Fig. 5 also indicates that ADAPTIVE 
outperforms DOUBLE because SADAPT<SDOUBLE. For λ<2 (i.e. 
T<4δN), ADAPTIVE needs less NS than DOUBLE and thus a 
smaller traffic delay can be achieved. 

VI. DISCUSSION 
In the internal speedup function S=f(NS,δ) in (4), we assume 

that T and N are predefined system constants. But obviously it 
is not a necessary condition. In fact, if we want to study how 
the values of T and N affect S, the internal speedup function in 
(4) can also be considered as a function of T and N. The 
S=f(NS,δ) function presented in this paper gives an upper bound 
for overall internal speedup S. However, it is possible that there 
exists another polynomial time algorithm which can achieve a 
lower bound than the one we presented. We leave this problem 
as an open question for future study. 

ADJUST mixes up the notions of A-domain slots and time 
slots outside (the third stage) in the architecture discussed in 
Section II. Consequently, the OSS problem defined in [5] is 
flawed and results based on it are not accurate. In some cases 
when DOUBLE and ADAPTIVE work well, ADJUST may be 
inapplicable. On the other hand, DOUBLE ignores the 
reciprocity of δ and scheduling inefficiency towards the goal of 
minimizing S. ADAPTIVE takes both effects (δ and scheduling 
inefficiency) into account. Based on minimizing the internal 
speedup function S=f(NS,δ), ADAPTIVE achieves a better 
result than DOUBLE and ADJUST. The new algorithm can be 
applied to optical circuit switches and any other non-zero-
overhead switches as well. For example, the SS/TDMA 
scheduling problem [9][10] is the same as the scheduling 
problem considered in this paper. Our results can be easily 
applied to those similar problems and systems. 

Finally, this paper is for performance guaranteed 
scheduling and average case performance analysis is not 

included. In addition, it does not consider scheduling with 
arbitrary asynchronous reconfigurations, in which some 
connections remain static and continue to transmit packets 
while other connections are reconfigured. Scheduling a switch 
with arbitrary reconfigurations can be formulated as an open 
shop problem and some related discussion can be found in [4]. 

VII. CONCLUSION 
Using optical technologies in the design of packet 

switches/routers is very attractive because of many of its 
benefits. In order to meet QoS requirements for Internet 
services, optical packet switches need to provide performance 
guaranteed switching. Thus, an internal speedup is required to 
compensate for the reconfiguration overhead and the inefficient 
scheduling of the algorithm. How to minimize the overall 
internal speedup is a key issue for making these optical packet 
switches practical. 

We proved that the ADJUST algorithm proposed in [5] is 
not accurate. Based on the internal speedup function S=f(NS,δ) 
derived in this paper, we proposed another new algorithm 
(ADAPTIVE) to minimize the internal speedup S. The 
algorithm generates an appropriate schedule and dynamically 
suits the system parameters δ, T and N for the best scheduling 
result. Consequently, the effects of reconfiguration overhead δ 
and scheduling inefficiency are well balanced by generating a 
suitable number of configurations NS to achieve a minimized 
overall internal speedup S. The new algorithm outperforms 
DOUBLE and ADJUST since it requires a smaller S with time 
complexity of O((λ-1)N2logN). It provides guaranteed 
performance (100% throughput with bounded delay of 2T+H 
time slots) for optical packet switches. 
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