2004 International Conference on image Processing (ICIP)

A FACTORIZATION-BASED PROJECTIVE RECONSTRUCTION ALGORITﬁM WITH
CIRCULAR MOTION CONSTRAINT

Y Li, WK Tang and Y. S. Hung

Department of Electrical and Electronic Engineering
The University of Hong Kong
Pokfulam Read, Hong Kong
{yanli,wktang,yshung} @eee.hku.hk

ABSTRACT

In this paper, we propose a projective reconstruction algorithm
for a circular motion image sequence. We first formulate the circu-
lar motion constraint in the Euclidean frame, and then deduce its
expression in a projective frame. The circular motion constraint
is gradually enforced during the iterations of a projective recon-
struction. This approach can be used to deal with both constant

and varying intrinsic parameters. Experimental results for syn- -

thetic and real data are presented to illustrate the performance and
improvements of our approach over methods based on general mo-
tion. '

i. INTROICTION

Circular motion image sequence is obtaincd when images are cap-
tured by a camera on a rotating arm or a fixed camera pointing to-
wards an rotating object. Constructing 3D models from these spe-
cial configurations has attracted a lot of attentions [3, 2, 3].To makc
use of the huge 2D point correspondences, Niem and Buschmann

[5] provided a system for constructing 31> models from well-controlled

circular motion (i.e., cameras are calibrated and the exact camera
positions arc measured). Fitzgibbon et al. [2] proposed to reduce
the constraints to unknown constant intrinsic parameters over all
the views. In [2], the reconstruction ambiguity for circular mo-
tion image sequence is discussed. However, the problem of vary-
ing intrinsic parameters for auto-focusing and zooming cameras is
not addressed. Tang and Hung [6] proposed a factorization-based
method by solving a sequence of weighted least-squares {(WLS)
problems to achieve minimization of 2D reprojection error.

In this paper, we propose a factorization-based method for pro-
jective reconstruction for a circular motion image sequence. The
condition of constant intrinsic parameters [2] is relaxed to varying
intrinsic parameters. We will give a formulation of the circular mo-
tion constraint in both the Euclidean and projective frames. During
the iterative process in projective reconstruction, the constraint is
enforced gradually.

The paper is organized as follows. The projective reconstruc-
tion problem is formulated in Sectior 2. Some background on the
factorization-based method for projective reconstruction is given
in Section 3. The theory of circular motion constraint is given in
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Section 4. In Section 5, we formulate the problem of projective re-
construction with circular motion constraint. In Scction 6, the case
of constant intrinsic parameters is shown to be a special case of the
varying parameter problem. The generalized algorithm is given in
Section 7. Experimental results for syntheiic and real data are pre-
sented in Section 8 o illustrate the performance and improvements
of our approach over methods based on general motion. Conglud-
ing remarks are given in Section 9.

Notation: The Hadamard product of two matrices 4 = [ai;]
and B = [bi;] of the same size is denoted

A B= [a,'jb,-j]_

2. PROBLEM FORMULATION

‘Consider multiple cameras with projection matrices P viewing a
set of 3D points X; captured as image points x;; on the image
planes of the cameras as

/\.,'j:’l:-“j = P.,:Xj (1)

where A;; is the projective depth for z;;. For a known circular
motion image sequence, the ¢*" view is rotated around the Z-axis
with a known angle 8; w.r.t. the first view. Assuming that the
projection matrix of the first view in Euclidean frame is /(1 [R1]¢:]
with &, = 0, the problem of projective reconstruction with known
circular motion constraint is formulated as

min E
Py, X —
i

SUbjECt o KH = ﬁiKi[Rlltlle (0,)

2

P.X;
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Tiis — —5 o
TOPIX; T, 1))

where H € R*** is the projective transformation to upgrade the
reconstructed projective frame to the Euclidean frame, (3; is the
scaling factor for the i** camera, and P is the 3¢ row of P;.

3. BACKGROUND

3.1. Factorization-based method for projective reconstruction

In the factorization approach to projective reconstruction, a basic
problem is to estimate the depths Ay for the image points z:; =
lwij vy I]T so that the scaled measurement matrix [A;;2:;] can be
factorized as a rank-4 product PX, where P is the joint projection
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Algorithm 1 Factorization-based method for Projective Recon-
struction in [6]

I. Initialization: if P° and X° are nol provided as initial
guesses, they are initialized by the rank-4 approximation

of { Fl—.xzj} where 37; are set to | and missing entries are

t
filled by the centroids of the visible 2D points for that vicw.
k == 110 start the algorithm.

2. Putk=Lk+ 1.
Fix X*~! and P*~!, evaluate #* by solving

t%ikan(Pk_l, Xk_l,ﬁk).

3. Fix #* and P* 1, evaluate X* by solving
min Fp (P44 X5, 6%).
Xk
4. Fix 4% and X*, evaluate P* by solving
g

£ = min Fp(P*, X* %)
e

5. Repeat slcf)s 2,3 and 4 until £ converges.
6. Output k, P*, 3% and X*.

matrix and X is a shape matrix containing the 3D points. Due
to occlusion some points cannot be seen in all the views. Let us
define the set A as

A= {(i,5) € R¥| Xy is visiblein the i* view .

In [6], the cost function Fp of the factorization-based method is
proposed as

2

1 Uij
Fe(P.X,B)= > 1 vij | — B PiX;
teA|l L YH 1

where Fp(P, X, 3) is the cost function of the factorization-based
method, B = 1{7 and -, is the weighting factor for the 2D
point &i; and usually chosen as max(jui;|, lvi;]}. A sequence
of weighted linear least-squares (WLS) problems is formulated it-
eratively on Fpe(P, X, 3) for solving one of P, X and A as free
parameters while fixing the other two parameters, as given in Al-
gorithm 1.

3.2. Reconstruction Ambiguity

It has been shown in [2] that for a camera with fixed intrinsic pa-
rameters undergoing known circular motion, if the first camera
centre is at'position I = [t O O]T and the camera is rotated around
the Z-axis of the world coordinate system, the projection matrices
P in the Euclidean frame for the i*? view can be written as

Pi=M [I|T|R,(6) @)

where M is a homography including the fixed intrinsic parameters
K and a rotation Rg of the camera about its centre: M = K R,
I is the 3 x 3 identity matrix, and R (6;) is the rotation matrix of

rotating by angle ; about the Z-axis. It is proved in [2] that if a
reconstructed projection matrix P} = P H is determined with a
set of cameras of the form (4), then A can be parameterized as

1 0.0 0
01 0 0
H = 0 0 a O
00 g 1
Hence, P/ can be expanded as
Pl =M [I|T]R:(0:)H. (5)

The result of [2] is also valid for cameras with varying intrinsic pa-
rameters ;. That is for a camera with varying intrinsic parameters
undergoing known circular motion, A is replaced by Af; = KRy
for all cameras in (4). Due to the special form of H, (5) can be
rewritten as

Pl= M, [ | T)|HR. (0:). (6)

4. CIRCULAR MOTION CONSTRAINT FOR
PROJECTIVE RECONSTRUCTION

[t will be helpful in the following sections Lo consider that the ob-
ject is fixed and that the camera rotates about a fixed axis around
the object. The world coordinate system is chosen as in Section
3.2.

For controlled circular motion, we may assume:

1. The camera centres lie on a circle in the motion plane.

2. The rotation angles @; between the " view and the first
view are known. )

Under the above assumptions, we can deduce that in the Euclidean
frame the camera centre O; for the #** view satisfies the following
equation

O: = R (6:)0 @
where (J; is the camera centre of the first view. (7) will be re-
ferred to as the circular motion constraint. Qur purpose is to find
a projective reconstruction method which ensures that the camera
centres satisfy (7) in some Euclidean frame.

It has been shown in Section 3.2 that the projection matrix can
be expressed as (6). For any 3 x 3 non-singular matrix [J, we can
insert DD ™" between K; and Ro[1|T'] without changing the value
of P;. Denote Ro[I[T] as Fo. the projection matrix can be written
as

P = KiDD ' Py HR.(8:) = A:BR.(6;) (8)
where A; = KD isa 3 x 3 non-singular matrix, B = D' P H
is a 3 x 4 matrix which remains unchanged for each camera. If we
constrain -2 to be an upper triangular matrix, A; is also an upper
triangular matrix. The projective ambiguity now exists in the part
of A;B instead of the whole projection matrix. The projection
matrix P can be upgraded to F; in the Euclidean frame as:

Pi=PH '=ABH 'R, (8). (9

Since the camera centre can be calculated as the right null vector
of its projection matrix [1] and A; is a 3 X 3 non-singular matrix,
C; can be calculated as C; = null(BH ™" R.(6;)). Hence, we
have

Ci = RT(8:)Ch. (10)
(10) shows that if we can find a projective reconstruction with the
form (8), we can ensure that the camera centres satisfy the circular
motion constraint in the Euclidean frame.
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5. AFACTORIZATION-BASED PROJECTIVE
RECONSTRUCTION ALGORITHM WITH CIRCULAR
MOTION CONSTRAINT

To enforce the projection matrices to have the form (8), let us in-
troduce the cost function,
Feum (A, B, X, 8) =

2
Wi

1.
Z 1 g

(i,j1EA Yij 1

— B Ai BR.(0:) X;

(11}

where A; is an upper triangular matrix.

5.1. From general motion to circular motion

Given a reconstructed projective frame from Section 3.1, the cam-
era centres can be expressed as: O; = null(Fy), i=1,...,n
Obviously, in the projective frame the camera centres do not sat-
isfy (7) and F; does not have the form of (8). But there cxists a
projective transformation ff; which will transform O; into a frame
where (7) is satisfied. The next theorem shows that under such a
transformation, the projection matrices will have the form (8).

Theorem 1 [fwe can find a 4 x4 non-singular matrix I to trans-

form the projective frame so that the camera centre O} and the
principle plane p?® of the ** camera in the new projective frame
should satisfy the following equations

0} = RI(6:)0
T = pPTR.(0:)
where pi*T is the third row of the it camera matrix P]. Both O

and p3T are scaled so their last entries are equal to one. Then
the projection matrices P| in the new projective frame can be ex-
pressed as

P = PH]' = K;BHR.(0:),
i.e. the projection matrices are in form of (8).

Due to the limit of space, we omit the proof for Thearem 1.

5.2. Decomposition of Projection matrices

-According to Theorem 1, after transformation with the matrix Hq
the new projection matrices P can be written as

P/ =A,BR.(8). (12)

From (12), we have P/RT (0,) = A; B. Since all the row vectors
of the matrix A; B are linear combinations of the three indepen-
dent row vectors of B, if we stack all P{RT (6;) (i=1,....n)
into one 3n x 4 matrix P, the rank of F should still be 3. By
means of Singular Value Decomposition, P can be decomposed as
P =USVT. B can be chosen as B = V3T, where V3 contains
the first three rows of V.

6. ALGORITHM FOR CONSTANT INTRINSIC
PARAMETERS

When the camera intrinsic parameters K; are kept constant over
all the views, it can be considered as a special case of our circular
motion constraint. The above algorithm can be modified slightly
te handie this scenario. The constant intrinsic parameiers can be
treated as A; = I, Vi. In this case there is no need to estimate A;.

Algorithm 2 Generalized Algorithm for Circular Motion
1. Use the results of Algorithm 1 as &k, P*, 3% and X*.
2, Evaluatc B* as in Sec.5.2.
3. Putk=k+1.
4

. Fix 51, B*~!and X*~1, evaluate A¥ by solving

mikn FCM(Af, Bkil, A’k_l, ,(jk‘l),
A

5. Fix Af, 6571 and X*~. evaluate B* by salving

win Foa (A¥, BX, X571, g% 1),
Bk

6. Fix A% B* and X*~!, gvaluate 3% by solving

min Foa (A7, B, X7, g4).
n

7. Fix A%, B* and A%, evaluate X* by solving
£ = mikn Fcu(Af, B*, Xk,ﬁk).
Xk
8. Repeat steps 3-7 until x converges. After €x has con-

verged, enforce A% to be an upper triangular matrix in Step
4 and repeat sieps 3-7 until £, converges again. )

9. Output A%, B*, 8%, X* and P¥ = A¥B*R_(0,).

7. THE GENERALIZED ALGORITHM

The complete generalized algerithm for circular motion constraint
with varying and constant intrinsic parameters is given in Algo-
rithm 2. Since (11} is a quadrilinear (trilinear for the cases of
constant intrinsic parameters) minimization problem in A,, B, X
and 3, (11) is expressed as four different WLS problems where
A, B, X and 8 are evaluated one by one iteratively while keeping
the others unchanged. The superscript £ indicates that the vari-
ables are updated in the k** iteration. The constraint of A; being
upper triangular matrices is enforced after the algorithm converges
with A; being general 3 x 3 non-singular matrices. For the case
of constant intrinsic parameters, Step 4 for estimating A; in the
algorithm can be skipped.

8. EXPERIMENTAL RESULTS

8.1. Synthetic Data

In this simuiation, we compare the tesvlts of our algorithm with the
method given in [6). The test scene consists of 30 points uniformly
distributed within the unit sphere centered at the origin of the world
coordinate system. The synthetic camera moving on the z-y plane

. along a circular path of 7 meter radius captures 8 images. Gaussian

noise with standard deviation ranging from 0.5 pixels to 4.5 pixels
is added to the image points. The image size is about 1000 x 1200
pixels.

To measure the quality of the reconstruction, we calculate the
2D reprojection error and 3D residual of the Euclidean distances
between the reconstructed scene points and their ground truth po-
sitions. The graphs show the median value over 8 trials.

1961



: —— Method in Sec.3.1
1 . wa Qur method .

1

RMS 2D reprojection error/pixel

2 3 4
noise level/pixel

Fig. 1. 2D Reprojection Error
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Fig. 2. 3D Error

8.1.1. Performance on 2D Reprojection Error

Fig. 1 shows the 2D reprojection error of the two algorithms
against different noise levels. 1t is reasonable that the 2D repro-
jection error of our algorithm is slightly larger than the method in
[6}. because the degree of freedom is less.

8.1.2. Performance on 3D Error

A transformation H is computed by an optimization method to
upgrade the reconstructed shape X to the ground truth M so that
M, = H X; has minimal 3D error. In Fig. 2, it can be seen that the
reconstructed scene is closer to the ground truth under the circular
motion constraint.

8.2. Real Data

The projective reconstruction algorithm is tested with a sequence
of images taken by a static camera looking at a model house on a
turntabie. The intrinsic parameters of the camera are fixed while
capturing the images so there is no need to estimate A;. The

Fig. 3. An image for the circular motion image sequence

l Fig. 4. A Reconstructed Scene

turntable is rotated by an angle 10° incrementally for each im-
age. A total of 7 images are taken and one of the images is shown
in Fig. 3. The size of the images is 2000 x 3000 pixels. There
are 33 corresponding points which are matched manually and vis-
ible to all the views. Ourimplementation of Algorithm 2 took 726
iterations to converge which required 273 seconds on a 3.4GHz
PC Pentium-4 with 1GB RAM. The RMS 2D reprojection error
is 1.107 pixels. Fig. 4 shows the recovered the Euclidean struc-
ture and motion. The 3D points are shown and the cameras are
represented by pyramids.

9. CONCLUSION

In this paper, we propose a new projective reconstruction method
for minimizing 2D reprojection error for a circular motion image
sequence. This generalized algorithm can be applied to image se-
quences with varying or constant intrinsic parameters. With the
circular motion constraint, the accuracy of reconstruction can be
improved in terms of 3D error and the reconstructed projective
frame can provide accurate results for the camera calibration meth-
ods relying on epipolar geometry (e.g., [4]).
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