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ABSTRACT 

In this papcr, wc propose a projective rccotistruction algorithm 
for a circular motion image scqucncc. We first formulate the circu- 
lar motion constmint in the Euclidcan frame, and thcn deduce i ts  
expmsion in a projective frame. The circular motion constmint 
is  gradually enforced during the ilerntions o f  a projectivr rccoti- 
struction. This approich can be uscd to deal with both constant 
and varying intrinsic parameters. Expcriniental results for syn- 
thetic and rcal data are presented to illustrate the performance and 
improvcments orour approach ovcr methods based on general mo- 
tion. 

1. INTRODUCTION 

Circular motion image sequence i s  obtaincd when images are cap- 
tured by a camera on a rotating arm or a fixed camera pointing to- 
wards an rotating object. Constructing 3D models from these spe- 
cial configurations has attracted a lot of attentions [5,2, 3l.To make 
use o f  the huce 2D ooint corresmndences. Niem and Buscbmann 

Section 4. In Section 5. we folmulate the problem of projeclivc rc- 
construction with circular motioii constraint. In  Scction 6. the case 
of constaiit intrinsic parameters i s  shown to be a spccial case ofthc 
varying parameter problem. The gcncralized algorithm is given in 
Section 7. Experimcntal results for synthetic and real data are p m  
sented in Section 8 lo illustrate the performance and improvements 
of our approach over methods based on general motion. Conclud- 
ing remarks are givcn in Section 9. 

Norution: The Hadamard product o f  two matrices A = [a,?] 
and B = [b,] ofthc same size i s  drnotcd 

A B = [a i jbi j ] .  

2. PROBLEM FORMULATION 

Consider multiple cameras with projection matrices Pc viewing a 
set o f  3D points Xj captured as image points on the image 
planes o f  the cameras as 

~. 
[5] provided a system for constructing 3D models from well-controlled Az7x.j = P%X, (1) 
circular motion~(i.e., cameras are calibrated and the exact camera 
positions arc measured). Fitzgibbon et al. [2] proposed to reduce 
the constraints to unknown constant intrinsic parameters over all 
the views. I n  [2], the reconstruction ambiguity for circular mo- 
tion image sequence i s  discussed. However, the problem of vary- 
ing intrinsic panmeters for auto-focusing and zooming cameras i s  
not addressed. Tang and Hung [6] proposed a factorization-based 
method by solving a sequence of weighted least-squares (WLS) 
problems to achieve minimization of 2D reprojection error. 

In this paper, we propose a factorization-based method for pro- 
jective reconstrytion for a circular motion image sequence. The 
condition o f  constant intrinsic parameters [Z] i s  relaxed to varying 
intrinsic parameters. We wi l l  give a formulation o f  the circular mo- 
tion constraint in both the Euclidean and projective frames. During 
the iterative process i n  projective reconstruction, the constraint is 
enforced gradually. 

The paper is organized as follows. The projective reconstruc- 
tion problem i s  formulated in Section 2. Some background on the 
factorization-based method for projective reconstruction i s  given 
in Section 3. The theory of circular motion constraint is given in 
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where A,, is the projective depth for x,,. For a known circular 
motion image sequence, the ith view i s  rotated around the Z-axis 
with a known angle 0, w.r.1. the first view. Assuming that the 
projection matrix o f  the first view i n  Euclidean frame i s  K ,  [RI lti] 
with 01 = 0, the problem o f  projective reconstruction with known 
circular motion constraint i s  formulated as 

subject to P,H = o;K;[R$l]R,(B;) 

where H E 324x4 i s  the projective transformation to upgrade the 
reconstructed projective'frame to the Euclidean frame, 0. i s  the 
scaling factor for the i t h  camera, and P: i s  the 3'd row o f  P,. 

3. BACKGROUND 

3.1. Factorization-based method for projective reconstruction 

In the factorization approach to projective reconstruction, a basic 
problem i s  to estimate the depths A;j for the image p i n t s  xij = 
[uu 06, lIT so that the scaled measurcment matrix [X,,zjj] can be 
factorized as a rank-4 product P X ,  where P i s  the joint projection 



Algorithm I Factorization-based method for Prcjective Recon- 
struction in [6] 

I .  Ini&dization: i f  Po and Xo are not provided as initial 
guesses, they arc initializcd by the rank-4 approximation 
of { &zcJ}  whcrc i3p, are set to I and missing entries are 
filled by the centroids of thc visiblc 2D points for that vicw. 
R = 1 to start the algorithm. 

2. Put R = R + 1. 
Fix X - '  and P"-', evaluatc fl' by solving 

niin F p ( P k - ' ,  X"',p'). 
P 

3. Fix fl' and P'-', evaluate X' by solving 

niiriFp(P'- ' ,  X',P'). 
I 

4. Fix [3* and X', evaluate P' by solving 

E: = i i i inFp(P*,X',f l*).  
PD 

' 
5 .  Repcat steps 2, 3 and 4 until E: convergcs. 

6. Output I C ,  Pk,@ and X " .  

matrix and X is a shape matrix containing the 3D points. Due 
to occlusion some points cannot be seen in all the views. Let us 
define the set d a y  

1 d = { ( z , j )  E 33'1 X ,  is visiblein the i th view 

In [6], the cost function Pp of the factorization-based method is 
proposed as 

where Pp(P, X ,  8) is the cost function of the factorization-based 
method, 0.j = and ~ ; j  is the weighting factor for the 2D 
point xij and usually chosen as max(Iuij1, 1vij1). A sequence 
of weighted linear least-squares (WLS) problems is formulated it- 
eratively on Fp(P, X, f l )  for solving one of P, X and X as free 
parameters while fixing the other two parameters, as given in Al- 
gorithm l .  

3.2. Reconstruction Ambiguity 

It has been shown in [2] that for a camera with fixed intrinsic pa- 
rameters undergoing known circular motion, if the first camera 
centre is at'position T = [ t  0 OIT and the camera is rotated around 
the Z-axis of the world coordinate system, the projection matrices 
P, in the Euclidean frame for the i ih  view can be written as 

(4) 

where M is a homography including the fixed intrinsic parameters 
K and a rotation & of the camera about its centre: M = KRo, 
I is the 3 x 3 identity matrix, and R, (8,) is the rotation matrix of 

P, = h.1 [ I  I TI R, (Si) 

rotating by angle 0; about thc Z-axis. I t  is proved in [2] that i f  a 
reconstructed projcction matrix Pi = P;H is dctermincd with a 
set df cameras of the form (4). thcn H can be parameterized as 

1 0 . 0  0 

.-[; ; 8 ;I 
0 0 0 1  

Hence. Pi c m  be expanded as 

Pi = A, l  [ I  I 7'1 R; ( O i )  H .  ( 5 )  

The result of 121 is also valid for cameras with varying intrinsic pa- 
rameters Ki. That is for acamera with varying intrinsic parameters 
undergoing known circular motion. A'/ is rcplaced by A I ,  = ti,Ro 
for a11 cameras i n  (4). Due to the special form of H ,  ( 5 )  can hc 
rcwrittcn as 

Pz' = M, [ l  1 TI HI?., (0,). 

4. CIRCUIAR MOTION CONSTRAINT FOR 
PROJECTIVE RECONSTRUCTION 

It will he helpful in the following sections to consider that the ob- 
jcct is fixed and that the caineril rotates about a fixed axis around 
the object. The world coordinate system is chosen as in Section 
3.2. 

(6) 

For controlled circular motion, we may assume: 
1. The camera centres lie on a circle in the motion plane. 
2. The rotation angles 8, between the ith view and the first 

Under the above assumptions, we can deduce that in the Euclidean 
frame the camera centre 0, for the i th  view satisfies the following 
equation 

where 01 is the camcra centre of the first view. (7) will he re- 
ferred to as the circular motion constraint. Our purpose is to find 
a projective reconstruction method which ensures that the camera 
centres satisfy (7) in some Euclidean frame. 

It has been shown in Section 3.2 that the projection matrix can 
be expressed as (6). For any 3 x 3 non-singular matrix D, we can 
insert DD-' between K ,  and Ro[IIT] without changing the value 
of P%. Denote Ro[IlT] a Po, the projection matrix can be written 
as 

(8) 
where Ai = KiD is a 3 x 3 non-singular matrix, B = D-'PoH 
is a 3 x 4 matrix which remains unchanged for each camera. If we 
constrain .D to be an upper triangular matrix, Ai is also an upper 
triangular matrix. The projective ambiguity now exists in the part 
of AiB instead of the whole projection matrix. The projection 
matrix Pi can be upgraded to P; in the Euclidean frame as: 

(9) 

Since the camera centre can be calculated as the right null vector 
of its projection matrix [I] and A; is a 3 x 3 non-singular matrix, 
Ci can be calculated as C, = nuU(BH-'R,(B,)). Hence, we 
have 

(IO) shows that if we can find a projective reconstruction with the 
form (8). we can ensure that the camera centres satisfy the circular 
motion constraint in the Euclidean frame. 

view are known. 

oi = R:(Bi)O, (7) 

Pi = K,DD-'PoHR,(&) = AiBR,(Bi) 

P, = P,'H-' = A,BH-'R,(&). 

C; = RT(8i)Ci. (10) 

1960 



5. A FACTORIZATION-BASr:I) PROJECTIVE 
RECONSTRUCTION ALGORITHM WITH CIRCULAR 

MOTION CONSTRAINT 

To enforce the projection matrices to have the form (U), let us in- 
troduce the cost function, 

FCA~ (A",  B ,  X, 4) = 

where A, is  an upper triangular matrix 

5.1. From genwd motinn tri circular motion 

Given a reconstmated projective frame frntn Section 3. I, the cain- 
era centres can he expressed os: Oi = mll(P,),  i = 1,. . . , n. 
Obviously. in thc projective frame the raincra centres do not sill- 
isfy (7) 2nd Pi does not have the form of (8). But there cxists a 
projective transformation 111 which wil l transform 0, into a frame 
where (7) i s  satisfied. The next theorem shows that under such a 
transformation, thc projection matrices wil l have the form (U). 

Theorem 1 Ifwe cunji,td a 4 x 4 nm-singular matrix IIc to trarw 
form the projective frame so that the cumem centre 0: and the 
principle plane pi3 ofrlte ith camera in the new pmjecriveframe 
should sorisfy the followbig equariotis 

0: = RT(B,)O; 
p:3T = p ; 3 T ~ , ( ~ i )  

where p>'T is rhe third IOW of the iLh camem marrix 4. Both 0: 
and p:3T are scaled so their last entries are equal to one. Then 
rlze projecrion matrices P: irr the new pmjective frame can be ex- 
pmsed as 

P.! = PiHL' = KiPoHR,(Bi), 
i.e. the projection marrica a n  in form of (8). 

Due lo  the limit of space, we omit the proof for Theorem 1. 

5.2. Dccompusition of Pmjection matrices 

According toTheorem 1, after transformation with the matrix Hi 
the new projection matrices Pi can be written as 

P: = A , B R ,  (6's). (12) 
From (12). we have PiRT (8,) = A, B. Since all the cow vectors 
of the matrix A; B are linear combinations of the three indepen- 
dent row vectors of B, i f  we stack all P:RT (8,) (i = 1,. . . , n) 
into one 3n x 4 matrix P, the rank of P should s t i l l  be 3. By 

Algorithm 2 Generalized Algorithm for Circular Motion 

I. Use the rcsults of Algorithm I as k, Ph,pk and Xi.. 
2. Evaluate Bk as in Sec.5.2. 

3. P u t k = k + l .  

4. Fix O h - ' ,  B"' and X'-', evaluate A: by solving 

mir iFcnr(Af ,  B"', Xk-',pk-'). 
A: 

5. Fix Af,O*- '  and X"'. evilluate Bk hy solving 

i n i n  F~,,,(A~, B ~ , x ~ - ' , ~ ~ - ' ) .  
B i  

6. Fin A f 3  B* and X"', evaluate 0' hy solving 

i n i n  F~~,(A:, B ~ , x ' - ' , ~ ' )  

7. Fix A : ,  61' and pk,  evaluatc XL by solving 

P k  

~k =riiiiiF~n,(Af,B',X',4P"). 
si 

U. Repeat steps 3-7 until bi. converges. After bi. has con- 
verged. enforce A:' to he an u p p r  triangular matrix in Step 
4 and repcat steps 3-7 until bi. converges again. 

9. Output A:',Bk,pk,Xk andP: = A:BkR,(O,). 

7. THE GENERALIZED ALGORITHM 

The complete generalized algorithm for circular motion constraint 
with varying and constant intrinsic parameters i s  given in Algo- 
rithm 2. Since ( I  l )  is a quadrilinear (trilinear for the cases of 
constant intrinsic parameters) minimization problem in A,, B,  X 
and p, (11) is expressed as four different WLS problems where 
A,, B ,  X and 0 are evaluated one by one iteratively while keeping 
the others unchanged. The superscript k indicates that the vari- 
ables are updated in the k'h iteration. The constraint of A i  being 
upper triangular matrices i s  enforced after the algorithm converges 
with A, being general 3 x 3 non-singular matrices. For the case 
of constant intrinsic parameters. Step 4 for estimating A i  in the 
algorithm can be skipped. 

8. EXPERIMENTAL RESULTS 

8.1. Synthetic Data 

1961 
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Fig. 1. 2D Kcprojection Error 

-‘i..i.-...- ... ~ ...... .. 

2 ~ .  ,...... .. .. ., .. . . . 

-1 .. . . 

’ .a, levellpi?el 

Fig. 2. 3D Error 

8.1.1. Performonce on 2D Repmjection Ermr 

Fig. 1 shows the 2D reprojection error of the two algorithms 
against different noise levels. I t  is reasonable that the 2D repro- 
jection error of our algorithm is  slightly larger than the method in 
[61. becausc the degree of freedom is less. 

8.1.2. Performance on 3 0  Ermr 

A transformation H is computed by an optimization melhod to 
upgrade thc reconstructed shape X to the ground truth M so that 
M; = H X j  has minimal 3D error. In Fig. 2, i t  can he seen that the 
reconstructed scene i s  closer to the ground truth under the circular 
motion constraint. 

8.2. Real Data 

The projective reconstruction algorithm is tested with a sequence 
of images taken by a static camera lwk ing  at a model house on a 
turntable. The intrinsic parameters of the camera are fixcd while 
capturing the images so there i s  no need to estimate Ai.  The 

....’., 
.....;.: ...:. : 

Fig. 4. A Reconstructed Scene 

tumtahle is  rotated hy an angle 10‘ incremcntally lor each im- 
age. A total o f 7  imagcs are t&en and one of thc images i s  shown 
in Fig. 3. The size of the images is 2000 x 3000 pixels. There 
are 33 corresponding points which are matched manually and vis- 
ible to a l l  the views. Our implcmentation of Algorithm 2 took 72G 
iterations to converge which required 273 seconds on a 3.4GHz 
PC Pentium-4 with IGB RAM. The RMS 2D rcprojection error 
is 1.107 pixcls. Fig. 4 shows the wavered the Euclidcan struc- 
turc and motion. The 3D points are shown and the cameras are 
reprcscntcd by pyramids. 

9. CONCLUSION 

In this psper, we propose a new projective reconstruction method 
for minimizing 2D reprojection error for a circular motion image 
sequence. This generalized algorithm can be applied to image se- 
quences with varying or constant intrinsic parameters. With the 
circular motion constraint, the accuracy of reconstruction cm be 
improved i n  terms of 3 0  error and the reconstructed projective 
frame can provide accurate results for the camera calibration meth- 
ods relying on epipolar geometry (e.g., [4]). 
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