
High Performance Communication Subsystem for Clustering Standard High-
Volume Servers Using Gigabit Ethernet

Wenzhang Zhu, David Lee, Cho-Li Wang
Department of Computer Science and Information Systems

The University of Hong Kong
Pokfulam, Hong Kong

{wzzhu+cmlee+clwang} @csis. hku. hk

Abstract

This paper presents an efJicient communication
subsystem, DP-11, for clustering standard high-volume
(SHV) servers using Gigabit Ethernet. The DP-11 employs
several light-weight messaging mechanisms to achieve
low-latency and high-bandwidth communication. The test
shows an 18.32 us single-trip latency and 72.8 MB/s
bandwidth on a Gigabit Ethernet network for connecting
two Dell PowerEdge 6300 Quad Xeon SMP servers
running Linux. To improve the programmabitity of the
DP-11 communication subsystem, the development of DP-
I1 was based on a concise yet poweijiul abstract
communication model, Directed Point Model, which can
be conveniently used to depict the inter-process
communication pattern of a parallel task in the cluster
environment. In addition, the API of DP-I1 preserves the
syntax and semantics of traditional UNIX U0 operations,
which make it easy to use.

Keywords: Gigabit Ethernet, SMP server, low-latency
communication. cluster

1. Introduction

The recent advances in improved microprocessor
performance and high speed networks are making clusters
an appealing vehicle for cost effective parallel computing
[13. Particularly, the emerging of chipset technology in
supporting symmetric multiprocessing (SMP) servers has
proved successful in making Standard High-Volume
(SHV) servers, such as the 4-way or 8-way x86-based
SMP servers, for high-speed computing. In addition,
Gigabit Ethernet has recently becomes an ideal system
area network (SAN) for SHV clusters because of its

* The research was supported by Hong Kong Research
Grants Council grant 10201701 and HKU CRGC grant
10203009.

reliability, simplicity and lower cost. With the supports of
such high performance interconnection networks, multiple
SHV servers can be connected to form a powerful
supercomputing environment.

In the past, various fast messaging mechanisms for
clusters have been proposed, such as AM [4], FM [5] , U-
Net [6], VMMC [13], and BIP [7]. These mechanisms
have been ported on Fast Ethernet, ATM or Myrinet.
Recently several prototype cluster communication
systems using Gigabit networking have been built. For
example, Berkeley’s Linux VIA [9] is a high-performance
implementation of the Virtual Interface Architecture [141
over Myrinet LanAI 4.x boards and Linux 2.0.x. It can
achieve a round-trip latency of 70 us for small messages,
and 53.1 MB/s bandwidth for large messages. Packet
Engines’ implementation of VIA for Linux, M-VIA [8],
has optimized drivers for Packet Engines’ G-NIC I1
Gigabit Ethernet cards (Hamachi). M-VIA provides a
factor of 2 to 3 latency improvement over the Linux TCP
performance. GigaE PM [3] can achieve 48.3 us round-
trip latency and 56.7 MB/s bandwidth on Essential
Gigabit Ethernet NIC using Pentium I1 400 MHz
processor. GigaE PM I1 [2] has been implemented on
Packet Engines G-NIC I1 for connecting Compaq XP-
1000 workstations, each with 64-bit Alpha 21264
processor running at 500 MHz. The performance results
show a 44.6 us round-trip time for an eight-byte message.
XPlOOO’s four 64-bit CPU data buses, which support a
2.6 GB/s aggregate bandwidth, help GigaE PM I1 achieve
98.2 MB/s bandwidth for message length 1,468 byte.

Even thought these communication systems achieved
good performance results. However, these communication
subsystems are always lack of good programmability as
well as high resource utilization. Indeed, the design of
high-speed networking for clustering SHV servers
demands higher standards than connecting low-end PCs
or workstations for general-purpose parallel computing.
In this paper, we focus on the following design issues of
the communication subsystems for clustering SHV
servers.

0-7695-0589-2/00 $10.00 0 2000 IEEE 184

Low Resource Consumption: The design of
communication subsystems for clustering high-end
servers should minimize the resource usage of the
host machines, including CPU and memory. Some
high-speed networking solutions achieve low latency
by pinning down a large area of memory but with low
utilization. Trading memory space for shorter
communication latency is not proper design when
clustering the SHV.
High Availability Communication Channel:
Any failure in communication may result in
unrecoverable loss. The communication subsystem
should be reliable and support certain level of fault
tolerance since servers are usually serving crucial
tasks. In addition the communication subsystem of the
server cluster should allow server nodes to be added
or removed at any time without stopping its routine
work.
Good Programmability: The inter-process
communication patterns should be easily expressed
based on the abstraction model and coded using the
provided API without long learning period.
Multi-protocol Support: Each server node not only
connects to some other server nodes but also connects
to the external world using standard communication
protocols. The new communication subsystem should
coexist with traditional networking protocols (e.g.
TCP/IP) running on the same network.

For the rest of the paper, we first introduce the
Directed Point communication model in Section 2. Then
we discuss the architecture of DP-I1 communication
subsystems in Section 3. The light-weight messaging
techniques are discussed in Section 4. In Section 5, we
describe the implementation details and the performance
measurement using a 4-phase model. Finally, the
conclusions are given in Section 6.

2. Directed Point Abstraction Model

The communication traffic in a cluster is caused by the
inter-process communication between a group of
cooperating processes, which reside on different nodes to
solve a single task. Various communication patterns are
usually used in algorithm design, such as point-to-point,
pair-wise data exchange, broadcast tree, total-exchange,
etc. A communication abstraction model can be used to
describe the inter-process communication patterns during
the algorithm design stage, as well as a guide to
implement the primitive messaging operations or API for
the underlying communication subsystem.

The Directed Point abstraction provides programmers
with a virtual network topology among a group of
communicating processes. Directed Point abstraction
model is based o n a Directed Point graph (DPG). It
allows users to statically depict the communication

pattern and provide some schemes to dynamically modify
the pattern during the execution time. All inter-process
communication patterns can be described by a directed
graph, with a directed edge connecting two endpoints
representing a uni-directional communication channel
between a source and a destination processes. A formal
definition of DPG is given below:

Let DPG = (N, EP, NID, P, E), where N, EP, NID, P
and E are:

N (Node set): A subset of integer set, representing the
nodes in a cluster.

EP (Endpoint set): A subset of integer set,
representing endpoints of the directed edges.

P (Process set): The power set of EP, each element in
P represents all endpoints created by a
communicating process in a cluster. For example, P,
represents all the endpoints created by process i. A
process in DPG is usually shown as a circle; while
the endpoint is shown as a vertex in the circle.

NZD (Node Identification function): NID is a
function from P to N, representing the node in a
cluster where a process resides. For simplicity, we
write NID(P,) as NID,. The restriction on NID is that
b’P(, PI E P : NID< = NIDI -+ P, n PI = 0. This
property ensures that no two processes in the same
node will share the same endpoints.

E (Edge set): E=(<i,m,j,n> I iEPu and jEPb and
NIDo=m and NIDh=n and a#b where i, j , m, n, a, and
b are all integers, Po and P,, E P) . We use the notation
<i,m> + <j,n> to represent an edge <i,m,j,n> in E,
which is a communication channel for sending
messages from the endpoint i of process a to an
endpoint j of process b .

The proposed model supports not only the point-to-
point communication but also other types of group
operations. For examples, an endpoint can be used as the
root of a broadcast tree or a destination point for a reduce
operation. Below is a simple example to illustrate the
usage of the DP abstraction model.

Given a DPG = (N, EP, NID, P, E), where

=(1 , 2, ... , 256)
N ={ 1,2 ,3 ,4)
EP
P = {P,. P2’ P,)
NID,= 1 , NID,= 1 , NID,=2
P,=(1,2,3), P2=(5,6), P l = { l , 2 ,7 ,8)
E = (<1,1,5,1>, <3,1,6,1>, <2,1,2,2>,<2,1,6,1>)

Figure 1. A Simple Example of DP Graph

185

Figure 1 shows the diagram to represent the DP graph
of the given example. From the function NID, we know
that process 1 and process 2 are executed in node 1. There
are four communication channels between these
processes. For example, the channel <1,1> + <5,1> is
from the endpoint 1 of process 1 to the endpoint 5 of
process 2. The endpoint 2 in P, is used to connect with Pz
and P,.

DP graph provides a snap shot of the process-to-
process communication. The inter-process
communication pattern can evolve by adding a new
endpoint within a process, adding a new edge between
two distinct endpoints in different processes, deleting an
endpoint as well as the edges linked to it, or deleting an
edge between different endpoints. With these operations,
any run-time inter-process communication patterns can be
modeled.

3. DP-ZZ Architecture

Based on the DP abstraction model, we design DP-I1
communication subsystem. DP-I1 consists of three main
layers: (1) API Layer (2) Service Layer (3) Network
Interface Layer. Figure 2 shows an overview of the DP
architecture.

Figure 2. The Architecture of DP-II

The API Layer implements the operations for users to
program their communication codes. To provide better
programmability, DP-I1 API preserves the syntax and
semantics of traditional UNIX U0 interface by
associating each DP endpoint with afile descriptor, which
was generated when a DP endpoint is created. All
messaging operations can only access through the file
descriptor for sending or receiving messages. The
communication endpoint is released by closing the file
descriptor. With the file descriptor, a process can access
the communication system via traditional U 0 system
calls. This kind of interface has been widely used in

traditional UNIX I/O, such as Socket, which can reduce
the burden of learning new API.

The DP-I1 Service Layer realizes the DP abstraction
model and is hardware independent. It is built by different
components to provide services for passing message from
user space to network hardware and to deliver incoming
packets to the buffer of the receiving process.

The DP-I1 Network Interface Layer consists of
network driver modules. Most of the driver modules are
hardware dependent. Each of them is an individual kernel
module that can be loaded to and unloaded from the
system. Multiple network interfaces can be loaded at the
same time. Currently, network driver modules supported
in DP-I1 include Digital DEC 21140A Fast Ethernet,
Hamachi Gigabit Ethernet, and FORE PCA-200E ATM.
We have also developed DP SHMEM module to support
intra-node communication through shared memory.
Modular design makes DP-I1 implementation need not
recompile the whole kernel source tree while adding new
drivers.

4. Light- Weight Messaging Techniques

DP-I1 is designed with the goals to achieve low
communication latency and high bandwidth as well as
minimizing the resource usage. We propose various
techniques, namely, directed message, token buffer pool,
and light-weight messaging call. They reduce protocol
processing overheads, network buffer management
overhead and process-kernel space transition overhead.

In DP-11, we use Hamachi Gigabit Ethernet NIC as
the network interface. The Hamachi Gigabit Ethernet NIC
uses a typical descriptor-based bus-master architecture
[1 13. Two statically allocated fixed-size descriptor rings,
namely, the transmit and receive descriptor rings.

Figure 3 shows the messaging flow with respect to
different components in DP-I1 using such descriptor based
network interface controller. The transmission unit of DP-
I1 is called Directed Message (DM). DM packet consists
of a header and a data portion called container. The
header is constructed at DP service layer. It consists of
three fields: target NID, target DPID, and the length of the
container. The simplicity of DM packet only requires very
small of packet processing time comparing to other
complex protocols. The NART (Network Address
Resolution Table) is used for the header construction in
the transmission.

Buffer management affects the communication
performance. On the receive side, we maintain a token
buffer pool (TBP). It is a fixed-size physical memory area
dedicated to a single communication endpoint. It is
allocated when the communication endpoint is opened
and freed when the endpoint is closed. The unit of storage
in TBP is called token buffer. It is a variable-length
storage unit for storing the incoming DM packet to reduce
the memory usage as compared to the fixed length buffer

186

User Space

-

Kernel Space

t

\

Figure 3. The Messaging Flow in DP-It

used in other implementations. Each token buffer has a
control header, called token. It is a data structure
containing the length and linkage information to next
chained token buffer.

The TBP is directly accessible by kernel and user
processes. Thus, incoming message can be directly used
by user program. When the packet arrives, interrupt signal
is triggered by the network interface. The interrupt
handler calls MDR (Message Dispatcher Routine) to
examine the header of packet, locate the buffer at TBP to
store the incoming message based on the information
stored in DP-11, and copy the incoming message to TBP.
Since TBP is accessible by both kernel and user
processes, no extra memory copy is needed to bring
message up to the user space.

DP-I1 allocates one TBP whenever a new DP
endpoint is opened. It requires no common dedicated
system buffers for storing incoming messages. Thus, the
memory resource in a server can be efficiently utilized.
The amount of memory needed depends on the number of
endpoints created in the applications.

To reduce the overheads while crossing kernel and
user space, both send and receive operations in DP-I1 are
using light-weight messaging culls (LMC). LMC provides
fast switch from user space to kernel space. It is
implemented using Intel x86 cull gate. The use of LMC
can eliminate the cost of possible process rescheduling,
context switching, and bottom-half operations after return
from a system call.

5. Performance Analysis

DP-I1 has been implemented to connect four Dell
PowerEdge 6300 SMP servers, using Packet Engines' G-
NIC I1 Gigabit Ethernet adapters. Each server consists of
four Pentium I11 Xeon processors sharing 1 GB memory
and 18 GB hard disk. Each processor consists of 5 12 KB
L2 cache and operates at 500 MHz. All servers are
installed with Linux 2.2.5 Kernel. Two G-NIC I1 Gigabit
Ethernet adapters are used in each server to connect to the
PowerRail 2200 Gigabit Ethernet Switch for the purpose
of fault tolerance. Each server also has one Fast Ethernet

connection to the campus LAN for external access. The
PowerRail2200 switch can achieve backplane capacity 22
Gbps.

5.1. Latency and Bandwidth Tests

We evaluated the performance of the single-trip
latency of the communication system for various message
sizes. In all benchmark routines, source and destination
buffers were page-aligned for steady performance. The
benchmark routines used hardware time-stamp counters in
the Intel processor, with resolution within 100 ns, to time
the operations. The round-trip latency test measured the
ping-pong time of two communicating processes and
repeated two hundreds iterations. The first and last 10%
(in terms of execution time) were neglected. Only the
middle 80% of the timings was used to calculate the
average. Single-trip latency is defined as the average
round-trip time divided by 2.

The bandwidth test measured the time to transmit 4
MBytes data from one process to another process, plus the
time for the receive process to send back a 4-bytes
acknowledgement. The time measured was then
subtracted by a single-trip latency time for a 4-byte
message. Thus, the bandwidth was calculated as the
number of bytes transferred in the test divided by the
calculated time.

Figure 4 shows the latency results. The DP-I1 can
achieve single-trip latency 18.35 us for send 1-byte
message with back-to-back Gigabit Ethernet connection.
The switch causes at lease extra 21 us delay while
performs in a store-and-forward mode for data
transmission.

Figure 5 shows the bandwidth results of TCPAP and
DP-I1 with back-to-back connection. The DP-I1 can
achieve sustained bandwidth 72.8 MB/s at message size
1504 bytes; while TCPAP can only achieve 36 MB/s.

5.2. Performance Breakdowns

To help understand the performance results, we
examine the communication cost of a single-trip data

187

transfer using a 4-phase model. The 4-phase model
consists of the following parameters:

1 : The length of the message.
Lt : The single-trip communication latency.
Tstartup : The start-up time of a send operation. It

includes the time for the API wrapper, the time to
switch from user-space to kernel space and the time to
prepare the frame header.

Tsend The time spent in DP-I1 VO operations (IOR) on
the sender's side to copy the user space buffer to the
NIC's DMA buffer and set up its descriptor for the
NIC.

Tnet : The network delay and the OS overhead. The
network delays include the time to copy the data from
host memory to the NIC on the sender's side and from
the NIC to the host memory on the receiver's side.
Generally, different parts in the network delay time
may overlap. The OS overhead includes the execution
time of interrupt handler in the OS kernel.

TdeliveV : The message delivery time. It is the time to
deliver an incoming message to the destination
memory at receiving process, which is mainly the
execution time of Message Dispatch Routines.

Thus, to transmit a message of size 1, the single-trip
latency time can be expressed by the following equation:

L,(O = TrhrIup + T*,(I) + TJO + Tdellvery(~)

Figure 6 shows the latency breakdown on sending 1
byte message. Performance breakdowns on various x86-
based PCs connected by 32-bit PCI Fast Ethernet NICs
were reported for the purpose of comparison. For all
testing cases, DP-I1 shows small overheads in handling
the communication protocol and the delay occurred in
starting up the PCI bus and NIC. On Gigabit Ethernet, the
TsmUp, Tund, Tne,, and Tel,vev time for transmitting 1 byte
message are 0.44, 0.7, 16.82, and 0.36 us respectively. All
machines achieved nearly the same performance at the
network delay (Tne,). The G-NIC I1 network interface
didn't cause long delay in its more complex hardware.
The K6-2 shows the largest delay in T,,, which could be
caused by its special Socket-7 motherboard architecture.
For startup, send, and deliver phases, faster CPU can
always achieve shorter latency for handling the
communication protocol. The K6-2 featured by its larger
L1 cache and IMB on-board L2 cache can handle
protocol execution faster than other INTEL x86-based
PCs on Fast Ethernet. Overall, the faster 500 MHz
Pentium 111 Xeon processor, efficient PCI bus design, and
faster system bus on the PowerEdge help in achieving
much smaller overheads in startup, send and delivery
phases.

- DP-11, back to back on Gigabit Ethernet
+ DP-11, through switch on Gigabit Ethemet
* TCP/IP Latency

7 200
150

2 50

> 2 100

- -
-I o ~ " ' " " ' ' ' l 1

4 256 512 768 1024 1280 1500
Message (Bytes) I

Figure 4. Single-trip Latency Performance

1 480 992 I504

Message size(Byte)

Figure 5. Bandwidth Performance

OPentium 11-233

Startup Send Net Delivery

0 v e " d S

Figure 6. Single-trip Latency Breakdown on
Sending 1 -byte Message

60

40

20

Simtup Send Nef DCIWCW

Figure 7. Single-trip Latency Breakdown on
Sending 1504-byte Message

188

Figure 7 shows the latency breakdown on sending
standard Ethernet packet of payload 1504 bytes. With the
support of the 64-bit PCI bus and the efficient INTEL
82450NX chipset [121 in the PowerEdge server, T.,, was
significantly reduced as compared with the rest of PCs
connected by Fast Ethernet since data can be moved
between memory and Hamachi NIC on a wider PCI bus.
The measured Tsmup, Tu.nd, T,,,. and T&,,vcry time for
transmitting 1500 byte message are 0.44, 5.23, 69.96, and
12.21 us respectively. Tslanup, Tsmd, and Tdellvery involve host
node processor. All together they contribute 20.3 % total
messaging time for sending 1504 bytes. Major delay was
still contributed by the host PCI and the Hamachi NIC. In
the 64-bit 33 MHz PCI server, the speed of PCI bus with
its overhead seems slower than the full-duplex Gigabit
Ethernet line rate.

6. Conclusions

In this paper, we present a high-performance
communication subsystem DP-I1 on Gigabit Ethernet
based on the Directed Point Model. We emphasize both
on high-performance communication as well as good
programmability. With the performance breakdowns, we
have shown that the DP-I1 has greatly reduced the
software overheads. Our light-weight messaging
mechanisms can reduce the CPU involvement while
performing data communication on the SHV server.
However, while Gigabit network media is able to transfer
data in low latency and high bandwidth, the network
delay (T,,,) still contributes major portion of the
communication time in sending both short and long
message. We conclude that the current bottleneck in
Gigabit Ethernet networking is the interface between CPU
and NIC. The move from a 100 MHz PC system bus to a
higher clock rate bus, as well as the move from a 64-bit
33 MHz PCI bus to a 64-bit 66 MHz PCI interface could
greatly improve the communication performance in the
future.

References

Mark Baker, "Cluster Computing White Paper",
http://www.dcs.port.ac.uW-mab/tfcc/WhitePaper/WhitePa
per.htm
Shinji Sumimoto, Atsushi Hori, Hiroshi Tezuka, Hiroshi
Harada, Toshiyuki Takahashi and Yutaka Ishikawa,
"GigaE PM 11: Design of High Performance
Communication Library using Gigabit Ethemet", http://
pdswww.rwcp.or.jp/db/paper-J/1999/swopp99/sumi/
sumi . h tml
Shinji Sumimoto, Hiroshi Tezuka, Atsuhi Hori, Hiroshi
Harada, Toshiyuki Takahashi, and Yutaka Ishikawa, "The
Design and Evaluation of High Performance
Communication using a Gigabit Ethemet", International
Conference on Supercomputing '99, June 1999, pp. 243-
250.

T. Von Eicken, D. E. Culler, S. C. Goldstein and K.E.
Schauser, "Active Messages: a Mechanism for Integrated
Communication and Computation". The lqh Annual
International Symposium on Computer Architecture, Gold
Coast, Qld., Australia, May 1992, pp.256-266.
S. Pakin, V. Karamcheti, A. A. Chien. "Fast Messages:
Efficient, Portable Communication for Workstation
Clusters and MPPs", IEEE Concurrency, vo1.5, (no.2),
April-June 1997, pp.60-72.
T. von Eicken, Anindya Basu, Vineet Buch and Wemer
Vogels, "U-Net: A User-level Network Interface of
Parallel and Distributed Computing", Proc. of rhe I f h
ACM Symposium of Operating Systems Principles, vol. 29,
(no.5), Dec. 1995, pp. 40-53.
L. Prylli and B. Tourancheau. "BIP: a New Protocol
Designed for High Performance Networking on Myrinet",
Workshop PC-NOW, IPPS/SPDP98, Orlando, USA, 1998.
M-VIA: A High Performance Modular VIA for Linux,
National Energy Research Supercomputer Center at
Lawrence Livermore National Laboratory,
http://www.nersc.gov/research/FI'G/via/
P. Buonadonna, A. Geweke, D. Culler, "An
Implementation and Analysis of the Virtual Interface
Architecture", Proc. of Supercomputing '98, Orlando,
Florida, November 1998.
Alan Heirich, David Garcia, Michael Knowles & Robert
Horst, "ServerNet-11: a Reliable Interconnect for Scalable
High Performance Cluster Computing", Compaq
Computer Corporation, Tandem Division,
http://www.servernet.com/flat/public/brfs_wps/snetii/sneti
i.pdf

[l l] Donald Becker, "A Packet Engines GNIC-I1 Gigabit
Ethemet Driver for Linux", http://
beowulf.gsfc.nasa.gov/linux/drivers/yellowfin. html

[I21 Intel ADC450NX Pentium 11 Xeon Processor Server
Dynameasure/Massaging Performance Report, version
1 .O, Server Performance Lab., INTEL Corporation, June
1998.

[I31 E. Felten, R. Alpert, A. Bilas, M. Blumrich, D. Clark, S.
Damianakis, C. Dubnicki, L. Ifode, and K. Li, "Early
Experience with Message-passing on the Shrimp
Multicomputer", Proc. of the 23rd Annual Symposium on
Computer Architecture, 1996.

[141 "Virtual Interface Architecture Specification V I .O ' , ",
Compaq, Intel and Microsoji Corporations, Dec. 16, 1997,
http://www.viarch.org/

[I51 Raymond Wong and Cho-Li Wang. "Push-Pull
Messaging: A High-Performance Communication
Mechanism for Commodity SMP Clusters", Proc. of
International Conference on Parallel Processing,
Fukushima, Japan, September 1999, pp. 12-19.

[I61 Anthony Tam and Cho-Li Wang, "Realistic
Communication Model for Parallel Computing on
Cluster," the First International Workshop on Cluster
Computing, August 1 I , 1999, pp. 92-101.

189

http://www.dcs.port.ac.uW-mab/tfcc/WhitePaper/WhitePa
http://www.nersc.gov/research/FI'G/via
http://www.servernet.com/flat/public/brfs_wps/snetii/sneti
http://www.viarch.org

