
ClusterProbe: An Open, Flexible and Scalable Cluster Monitoring Tool@

Zhengyu Liang , Yundong Sun, and Cho-Li Wang
Department of Computer Science and Information Systems

The University of Hong Kong , Pokfulam Road , Hong Kong
{ zyliang , ydsun, clwang } @csis.hku.hk

@ The research was supported by the Hong Kong RGC Grants HKU
 7032/98E and HKU Equipment Grant 10003.01991001.

Abstract

In this paper, we describe the ClusterProbe, an open,
flexible, scalable, and Java-based cluster monitoring tool.
The tool provides an open environment by developing a
multiple-protocol communication interface that can be
connected to various types of external accesses from the
clients. ClusterProbe is flexible that the monitoring tool
can be easily extended to adapt to the resource changes
by using the Java-RMI mechanism. In addition, the
design of ClusterProbe allows it to scale up to
commodious capacity with its cascading hierarchical
architecture. Several useful services are implemented
based on ClusterProbe, including the visualization of
cluster resource information in various forms and cluster
fault management. The tool has been used to assist the
execution of a cluster-based search engine and a
distributed N-body application. All experiments
demonstrate high efficiency and good performance
improvement.

1. Introduction

Using workstation clusters for distributed computing
has become popular with the emergence of low-cost,
powerful workstations and high-speed networking
facilities [1,7]. Monitoring such a platform is not a trivial
task since typical workstations are designed to work as an
individual system rather than a part of computing cluster
[6]. To maintain the integrity of system and to harness the
full potential of workstation clusters, an efficient tool
which can monitor the critical system activities and
cluster resource utilization is needed. Thus, cluster
administrators can observe the entire cluster with GUI
visualization to manage and maintain the cluster. The
retrieved resource utilization information can be used to
guide the job scheduling for parallel applications [11].

This paper proposes efficient techniques for the
development of a cluster monitoring tool. Three main
design issues are emphasized:

• Open environment: Most existing cluster
monitoring tools do not provide open environment
for application programs. Those tools collect and
display the cluster resource information only for
their integrated GUI modules. Other subsystems or
applications that may need the same data are not
able to share the monitoring information. Some
monitoring tools could be accessed through a
standard mechanism such as SQL, but the fixed
and build-in communication mode is not adequate
to support the complex and rapid changed
applications running on cluster [3]. We aim at
building an open environment that can support
multiple communication protocols. Such an
environment should allow the clients to retrieve the
cluster resource information provided by the
monitoring tool using standard communication
interfaces which are preferred and locally
available.

• Flexibility: The resources of a cluster, including
both hardware and software, evolve rapidly. A
good monitoring tool should be flexible and
extensible to keep up with the resource changes. It
should provide fast and automatic updates of
cluster resource utilities without enormous efforts
in modification. A monitoring tool with fixed
resource configuration needs major modification of
its programs, which is difficult to adapt to new
system configuration.

• Scalability: The monitoring tool should scale in
capacity to manage a cluster composed of a large
number of computers, without consuming lots of
system resources. It should provide the largest
degree of parallelism to facilitate the concurrent
control and monitoring of the underlying cluster
resources. The monitoring tool should exploit the
parallelism of the execution of monitoring task,
providing group control and inspection, and
reducing overheads in coordinating monitoring
agents and server.

We have designed and implemented an open, flexible
and scalable monitoring tool, called ClusterProbe to
monitor large clusters of workstations. To create an open
environment, ClusterProbe provides multiprotocol
communication interface (MCI) to allow the client
applications to use their preferred or available
communication protocol to link with the monitoring tool.
The MCI can support various communication protocols,
such as RMI/CORBA, HTTP/HTML, TCP, UDP, and
SQL. A communication adaptor provides access to
monitoring tool through a particular communication
protocol. In MCI, we use multiple adaptors to provide
transparent communication services for external access.
In addition, ClusterProbe adopts the pre-formatting
modules to offer the resource information to client in an
user-preferred format, e.g. raw data, compact data,
security packets or customized objects.

To make ClusterProbe flexible and extensible, we
have chosen to gather and transmit data using Java-RMI
mechanism. With RMI (Remote Method Invocation),
method codes can be transmitted from the server to any
cluster node dynamically. This capability makes
ClusterProbe extensible because new resource could be
monitored by automatically downloading monitoring
codes from server to the cluster node which adds new
resource without affecting the execution of existing tasks.
In addition, with registration mechanism in RMI, nodes
can freely join or disjoin the cluster on the fly.

ClusterProbe sets up a cascading hierarchy of

monitoring domains to improve its scalability, which is
the ability to handle large-scale monitoring task. The
hierarchy allows us to retrieve and process data in
parallel, restrict nodes to interesting sets of the resources,
and cut down the communication to higher level domains.

In the following sections, the overview of
ClusterProbe architecture is given in Section 2. We
introduce multiprotocol communication interface and pre-
formatting modules in Section 3. We discuss Java-RMI
mechanism in Section 4. The cascading hierarchy is
discussed in Section 5. We present our implementation in
Section 6 and describe our experimental results in Section
7. Related works are discussed and compared in Section
8. Finally, we summarize our conclusions and future
works in Section 9.

2. Overview of ClusterProbe architecture

ClusterProbe consists of three main components: (1)
The monitoring server (2) The monitoring proxy (3) The
agent. Figure 1 shows the overview of the ClusterProbe
architecture built in a cluster.

The monitoring server, which resides on one powerful
node of the cluster, is responsible for handling the
requests from clients and forwarding the monitoring
results to the clients that are of interest. A client
application could be a parallel task that requests the
cluster resource utilization data from the ClusterProbe,
for applying its load balancing strategies. Or it could be

Monitoring Server

Node Node

Batch Job Domain

Application

Node

Node

Parallel Job Domain

Proxy

Application

Node

Node

Job Domain

SMP Domain

Node
Application

Node

Web Browser

Agent Adaptor/ Adaptor Peer RMI Communicator

Figure 1. Overview of ClusterProbe.

Internet

Proxy Proxy Proxy

RMI

TCP
HTTP LAN

just the cluster administrator who wants to view the
cluster status through the Internet. All clients
communicate with monitoring server through a
communication adaptor. Communication adaptors that
support various types of communication protocols are
available in ClusterProbe.

A monitoring proxy is responsible for managing a
subset of the cluster nodes in the same domain,
containing a set of nodes based on resource type or job
allocation policy. For examples, in Figure 1, a batch job
domain can be formed, if dedicated execution
environment of parallel applications is needed. Nodes
with different hardware configuration or software
installation may also construct a domain, as long as they
are requested by the applications. The design of the
monitoring proxy is also for the scalability of the
monitoring tool itself. It is simply a partitioning
mechanism to ease the management of monitoring tool.
Thus, the monitoring tool can be used to monitor a large
cluster. A monitoring proxy accepts the requests from
upper domain, processes and forwards the data to upper
proxy.

The agent executes as a daemon on all the nodes that
comprise the cluster, downloads the monitoring sessions
from the server or proxy of its domain, collects and
reports local resource status. All agents communicate
with their monitoring proxy using RMI.

3. Multiprotocol Communication Interface

The monitoring server is the only entrance for clients
to access the monitoring tool. The server handles requests
from all clients, distributes monitoring sessions to
corresponding nodes and delivers the monitoring data to
clients that make the requests. The building components
of monitoring server are shown in Figure 2.

The first issue we address is to provide an open
environment for sharing monitoring information with
various types of clients in the cluster. To solve this
problem, we develop a multiprotocol communication
interface (MCI) that supports various communication
protocols.

 In MCI, an adaptor provides access to monitoring
server through a particular communication protocol. It
opens an external access channel for clients that use this
particular protocol to retrieve resource information from
monitoring server. The adaptor converts the querying
request to standard monitoring instructions and wraps the
monitoring data with associated protocol.

The client decides the type of access to an adaptor.
There are two types of access, namely direct access and
peer access. Direct access allows the client to connect the
adaptor without additional software. But the peer access
requires the client to install an additional peer library. The
library acts as a surrogate for the adaptor so that the client
can access the server transparently. For examples, Web

browser using the HTTP protocol or an application using
BSD socket protocol can access an adaptor directly. Both
cases are direct accesses. On the other hand, most Java
clients access an adaptor through an adaptor peer. For
examples, Java clients may use RMI or HTTP protocol to
communicate with each other’s. In this case, it is a peer
access.

We have defined a set of application program interface
called Cluster Monitoring API (CMAPI), which
standardize the functions of adaptors. Thus, an adaptor is
a class that implements the interfaces defined in CMAPI.
With classes loading technology in Java, an adaptor can
be plugged in without restarting the monitoring server.

Clients may access monitoring tool for obtaining all
kinds of cluster information. To enhance the usability of
data and to reduce the loading of clients, we have
developed the pre-formatting modules to wrap the raw
data with user-preferred formats. The data can be sent
with raw data format or formatted package that is
processed by two or more modules.

In ClusterProbe, the pre-formatting modules include a
number of reusable and generic function components for
common formats, including filters for compact format,
cryptographers for security format and chart/graph
generators for chart/graph format.

4. Light-Weight Monitoring Agent

Java Remote Method Invocation (RMI) [9] is Java’s
remote procedure call (RPC) mechanism. RMI is a
distributed object technology that lets you add Java
functionality throughout the system in an incremental, yet
seamless way. Because of this feature, RMI can move

Adaptor
(TCP)

Adaptor
(HTTP)

Adaptor
(SQL)

Adaptor
(RMI)

Computing Task

Adaptor Peer
(TCP)

Multiprotocol Communication Interface (MCI)

CMAPI (Cluster Monitoring API)

Pre-formatting
Modules

Core Monitoring
Layer

Monitoring Server

Classes
Library

Monitoring RMI Communicator

Java Application

Adaptor Peer
(RMI)

Web Browser

(HTTP)

Figure 2. Architecture of monitoring server.

methods (class implementations) from server to agent
dynamically.

In ClusterProbe, an agent is a daemon that running on
a monitored node to collect and report the resource
configuration and system-related statistics, according to
the monitoring instructions specified by the server. The
agents can process the monitoring data and react to
resource changes, rather than just sending information to
server or proxy. For example, one agent allows low-level
events to be handled locally without alarm reporting.

We define an interface that describes the way to
retrieve the resource data from underlying operation
system. The agents can download the implementation of
the interface from the server when new resources are
created. They can monitor new resources as soon as the
implementations became available. Updated
implementation can also be delivered to the agents
through the same mechanism. This allows the monitoring
of resources to be implemented and started at any time.
The monitoring session, which is a thread that executes
the codes defined in the downloaded implementation of
the interface, will therefore be executed on the agents.
This approach provides faster upgrade without installing
any new software on agents. It gives us the maximal
flexibility and extensibility, since adding and changing
resources only need write one new Java class and install it
once on the monitoring server.

The building components of an agent include RMI
communicator and Monitoring Bus. The RMI
communicator handles communication between agent and
server. The Monitoring Bus controls the monitor sessions
and calls the appropriate session to perform the requested
operations.

Because monitoring codes can be downloaded from
server and inserted to agent dynamically, the agent is
simple and light-weight. Furthermore, starting the
monitoring agent is the only operation for adding a new
node to the cluster. The agent will lookup the server and
registers to server by itself.

5. Cascading Hierarchy

A cluster system should be able to scale up or scale
down according to application need or customer’s
affordability. Thus, scalability should also be considered
while designing the cluster monitoring tool. That is, the
monitoring tool should be able to scale to monitor a large
cluster without scarifying its efficiency.

We have designed a cascading hierarchy of
monitoring domains to improve the scalability. The
cluster nodes are partitioned dynamically into disjoined
groups named as domain, according to the requested
monitoring services. Figure 3 shows the design of the
hierarchy of monitoring domains. One monitor proxy is
set up in each domain (except the top domain) and
provides following functions:

1) Register or unregister to the parent proxy in the
upper level.

2) Receive the monitoring instructions from
parent proxy and distribute the monitoring
session to agents under its control or its child
proxies.

3) Merge/sort the monitoring data within its
domain and forward it to its parent proxy.

4) Handle the fault events or forward them to
parent proxy.

A monitoring proxy is responsible for managing the
nodes or proxies located in the domain where the proxy is
residing. The parent proxy can access this domain
through the proxy without knowing the details of nodes in
this domain.

Owing to these functions, the hierarchy provides many
benefits. For examples, the agents can download the
monitoring sessions from the proxy in their own domain,
instead of the single monitor server. This hierarchy also
allows specialization of nodes. We can group the nodes
equipped with interesting resources into the same domain,
so that the monitoring operation can be simpler.
Unnecessary monitoring data won't be collected to save
the execution time and system resources. In addition, the
monitoring operation codes implemented by the client

Domain A

M
S

M
S

M
S

M
S

Cascading
Module

Client

Monitor Server

A

M
S

Agent

Top Domain
(Whole Cluster)

MS = Monitoring Session

Client Client Client

D A P T O R

M
S

M
S

M
S

M
S

Proxy

Cascading
Module

M
S

M
S

M
S

M
S

M
S

Proxy

M
S

M
S

Agent

Cascading
Module

M
S

M
S

M
S

M
S

M
S

Proxy

M
S

M
S

Agent

M
S

M
S

Agent

M
S

M
S

Agent

M
S

M
S

M
S

Agent

Domain A-a

Domain B

Figure 3. The hierarchy of monitoring domain.

applications could be more portable. For example, all
SMP nodes can be assigned in the same domain. When
new SMP nodes join the cluster this allows client
applications which need the resource information of SMP
nodes to use the same monitoring operation codes since
the monitoring server could transform the operation codes
to the monitoring instructions communicating with SMP
domain’s proxy which can delegate all the nodes below it.

Furthermore, this hierarchy can reduce the
communication to high level domain. By merging and
filtering the data, the proxy can decrease the size of the
packets. As the amount of data gathered increases and the
size of the cluster grows, the reduction of communication
becomes more significant.

6. Implementation

ClusterProbe has been implemented on a cluster of
PCs running Linux 2.1.90 or 2.2.1, including 22 WinChip
PCs, 4 Dell PowerEdge 4-way SMP servers, 8 Dualon
(Dual Celeron) SMP PCs and 10 Pentium II PCs,
interconnected by ATM, Gigabit Ethernet and Fast
Ethernet switches.

The monitoring server is the core of the ClusterProbe.
It is located in one of the PowerEdge SMP server with 1
GB memory, running Linux 2.2.1. The monitoring server
adopts multiprotocol communication interface and it
provides various types of communication adaptors to the
client applications. The adaptor will transform the request
from original protocol to monitoring instruction defined
in CMAPI and convert the monitoring data with
associated protocol. All adaptors should be defined as
identical structure so that they can be accessed without
knowing the details. So far, we have implemented the
adaptors for RMI, HTTP and BSD Socket (TCP). The
following is the brief definition of the universal interface
for adaptor:

import java.lang.*;
public interface Adaptor implements Runnable {
 protected Message readMsg ();
 public Instruction transform (Message req);
 public Message buildMessage(MonData data);
 protected void sendMsg(Message msg);
 void run(); //keep listening the requests
}

Before sending the data to clients, the monitoring
server can wrap the data with the pre-formatting modules.
Three kinds of modules are supported in ClusterProbe:

• Filter module: The module can be used to filter the
reduplicated or stale data and batch the related data.

• Security module: Using Java Cryptography
Extension (JCE) packages, the module can
authenticate data by encryption.

• Chart/Graph module: The output of this module is
a customized object that can be displayed as a chart
or a graph, such as sheet, strip chart, pie chart, LED
sign etc.

The monitoring proxy could be considered as a special
agent that can manage the agents or other proxies within
its domain. Four major monitor proxies are configured at
this moment. One proxy is used to monitor our
benchmark tests on Directed Point communication
subsystem [12] in the WinChip cluster. Two are used to
support load balancing decision in a Cluster-based search
engine built in the 4 Dell PowerEdge servers and the Java
Thread Migration project (JESSICA) [13] on the 8
Dualon Cluster. One is employed to manage a 10 Pentium
II PCs cluster for developing parallel N-Body algorithm
[15]. Selected experimental results will be discussed in
Section 7.

The agent resides on each node of the cluster. It will
collect resource information and system-related statistics.
All agents are communicated through RMI. RMI allows
us to download methods from server automatically. The
agent code can be written as simple as below:

import java.rmi.*;
public interface Agent extends Remote {
 void monitor (Session session)
 throws RemoteException;
}
public interface Session extends Seriablizable {
 void run();
}

Note that the resources consumed by the agent is light.
The size of agent code could be as small as 300Kbytes,
depending on the number of sessions they support.

7. Experimental Results

In this section, we briefly discuss four applications that
were built ion top of the ClusterProbe.

7.1. Web-based Cluster Management Tool

We have designed and implemented a Web-based
cluster management tool to monitor and manage the
cluster resources. The management tool interacts with
ClusterProbe to obtain various kinds of cluster resource
information.

 With ClusterProbe, the cluster can be managed with
minimum human intervention. New resources can be
easily and immediately integrated and software upgrades
become trivial. With HTTP adaptor and pre-formatting
modules, ClusterProbe can offer customized chart/graph
applets to the Web browser. Administrators could select
the monitored resource, range, refresh time and display

type. The security module is used to authenticate all users
when they access the monitoring tool through the
Internet. Figure 4 and 5 show two snapshots of our web-
based management system by using StripChart and
PieChart pre-formatting modules, respectively. In Figure
4, each chart shows a node’s average system load for the
past 5, 10, and 15 minutes in different colors. The history
records are viewed in the same chart for comparison.
While in Figure 5, each pie chart shows a node’s
percentages of used memory, free memory, and system
buffer, cached and shared memory space in different
colors. The charts will be updated periodically.

Figure 4. Snapshot of strip charts for workload.

Figure 5. Snapshot of pie charts for memory.

7.2. Scalable WWW Search Engine (SWSE)

SWSE is a simple cluster-based full-text WWW
searching engine. The goal of SWSE is to achieve high
throughput and short response time for serving queries,
by using the collective computing power and storage
capacity of the cluster. We have installed the SWSE
system on a domain composed of 4 Dell PowerEdge 4-
way SMP servers, interconnected by an IBM 8275-416
Fast Ethernet Switch, and running a background
application that generates intensive computation but non-
uniform load distribution on the cluster nodes. SWSE
collects the CPU utilization and disk IO speed
information via HTTP adaptor of ClusterProbe and
chooses node with the lightest workload to conduct
search.

Figure 6. Performance results of SWSE system

We compare two sets of execution time data for
serving various numbers of queries in a batch in Figure 6.
One set of data is collected by using the round robin
algorithm without accessing ClusterProbe. Another one is
through the assist of ClusterProbe. With the assist of
ClusterProbe, we can achieve 5-20% performance
improvement.

7.3. DOO N-Body

The DOO N-Body test was performed in a
Distributed Object-Oriented (DOO) system for solving N-
Body problem on cluster [15]. The system allows a group
of distributed objects on multiple hosts to work
cooperatively in computation. By using the RMI adaptor
peer, the system can inquire ClusterProbe the information
about host configuration and current status such as
workload and CPU utilization. Referring to the data
provided by ClusterProbe, the DOO system could
dynamically configure the computing environment so as
to be adaptive to the computing requirements of an

Exectution Time of SWSE System

0

10000

20000

30000

40000

50000

0 10000 20000 30000 40000 50000
No. of Matched Records

T
ot

al
 E

xe
c.

 T
im

e
(m

s)

Without ClusterProbe With ClusterProbe

application, as well as the available resources in the
cluster.

Fig. 7 compares the performance of the two algorithms
for solving N-body problem of particle simulations in the
DOO system running in a dedicated environment with 10
Pentium II PCs. The first algorithm assigns tasks to a
fixed set of cluster nodes. The second algorithm
dynamically selects light-loaded machines according to
the node information provided by ClusterProbe. Overall,
the ClusterProbe can improve the execution time around
5-20%.

Figure 7. Performance results of particle
simulation on the DOO system

7.4. Fault Management

To keep high availability, cluster system requires
facilities to detect, locate, isolate, and recover from
failure. We use ClusterProbe to detect node failure by
matching the state of resources with the abnormal
conditions, identify when and where failure occurs, and
notify the corresponding event handlers to isolate or
recover from failure.

We have implemented the global event facility in
ClusterProbe to assist in locating failure, defining and
handling events. Java provides local events, in which an
AWT component informs other components that
something interesting has happened. In our case, we want
to send and receive event objects over the cluster between
distributed agents. For each node in our cluster, it
receives fault messages in the form of event objects from
one or many agents, and it sends fault messages to other
agents.

Global event structuring mechanism is identical to the
local event model of Java, except that instead of source
reference within a single Java Virtual Machine, a global
name for the event is used. Furthermore, because the
nodes involving in one global event are distributed,
multicast can be used for efficient RMI communication,
instead of Java’s original point-to-point casting.

There are several advantages to use global event.
When an event happens, it not only affects the local
resources that cause the event, but also affects the remote
resources, concurrently or orderly. So the first advantage
of using global event is the possibility of integrating the
distributed event handlers running on each node.
Furthermore, we can use global events to locate the real
problem. For instance, a proxy receives several events in
the same time and all the events report networking
problems, then the proxy checks the event sources and
finds that all of the sources of the events are connected to
a same switch, so the networking problem may be caused
by the switch.

8. Related Works

Java Dynamic Management Kit (JDMK) is the first
Java-based solution for building and distributing
intelligence into network device [10]. It is a multiple
agent development tool to integrated web-based,
push/pull technologies as well as support for multiple
management protocol such as SNMP, HTTP and RMI.
Both JDMK and ClusterProbe follow similar approaches
by implementing MCI in the distributed system.
However, in JDMK each node acts as an individual
information source, the access to the node must be
explicit, while ClusterProbe aggregates the information
through the monitoring server. Besides, for a universal
management toolkit, JDMK does not specifically address
the issues such as pre-formatting modules and global
event management.

GARDMON is a Java-based monitoring tool for non-
dedicated cluster computing system [4]. It follows client-
server methodology and provides transparent access to all
monitored nodes from a monitoring server. GARDMON
can monitor the entire cluster activities through a single
point of control by using the gardmon-server. However,
GARDMON could not been accessed by parallel
applications or subsystems except for the gardmon-client.
The same situation could be found in K-CAP [16],
DOGMA [8] and PARMON [5].

Both Node Status Reporter (NSR) [14] and the Cluster
Administration using Relational Databases (CARD) [2]
both provide a standard mechanism for cluster status
access. But this makes it difficult for applications to use
the monitoring tools since they are forced to use the only
protocol provided by the tools. Besides, with the pre-
formatting modules ClusterProbe can provide more
helpful, powerful, perspective and secure resources
information about the cluster.

9. Conclusions and Future Works

We have presented a Java-based cluster-monitoring
tool that seizes the advantages of open, flexibility and
extensibility. We showed the idea of using multiprotocol

Speedup of particle simulation
on the DOO system

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Processors

S
pe

ed
up

Without ClusterProbe With ClusterProbe

communication interface for building open environment
with adaptive communication protocols. Pre-formatting
modules have been very useful in wrapping the resource
information with appropriate formats. The RMI
mechanism and cascading architecture are proven to be
helpful for flexible resource access and monitoring.
Several examples are also given to show the effectiveness
of the tool.

We will develop more adaptors and pre-formatting
modules for ClusterProbe so as to enable more
applications to share the resource information. The global
event mechanism will also be extended to handle more
complex failure.

References

[1] T. Anderson, D. Culler, and D. Patterson. A case for Now.
IEEE Micro, February 1995, pp. 54-64.

[2] Eric Anderson and Dave Patterson. Extensible, Scalable
Monitoring for Cluster of Computers. The Proceedings of
the 11th Systems Administration Conference (LISA’97), Oct.
1997.

[3] Joel Apisdorf, Kevin Thompson, and Rick Wilder.
OC3MON: Flexible, Affordable, High Performance
Statistics Collection. Proceedings of the 10th Systems
Administration Conference (LISA’96), 1996, pp. 97-112.

[4] Rajkumar Buyya, B. T. Koshy and R. Mudlapur.
GARDMON: A Java-based Montioring Tool for Gardens
Non-dedicated Cluster Computing System. The
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99),
June 1999, pp. 2774-2780.

[5] Rajkumar Buyya, K. Mohan and B. Gopal. PARMON: A
Comprehensive Cluster Monitoring System. The Australian
Users Group for UNIX and OpenSystems Conference and
Exhibition, AUUG’98 – Open Systems: The Common
Thread, 1998.

[6] Rajkumar Buyya. Single System Image: Need,
Approaches, and Supporting HPC systems. Proceedings of
the Fourth International Conference on Parallel and
Distributed Processing, Technique and Applications
(PDPTA’97), CSREA Publishers, 1997.

[7] K. Hwang and Z. Xu. Scalable Parallel Computing:
Technology, Architecture, Programming. A graduated
textbook, WCB/McGraw-Hill, New York, Feb 1998.

[8] G. Judd, M. Clement and Q. Snell. DOGMA: Distributed
Object Group Management Architecture, System
Overview. http://ccc.cs.byu.edu/DOGMA/System.html.

[9] Javasoft. Java Remote Method Invocation – Distributd
Computing for Java. http://java.sun.com/marketing/collat
eral/javarmi.html.

[10] Javasoft. Java Dynamic Management Kit: A WhitePaper.
http://www.sun.com/software/java-dynamic/wp-jdmk/inde
x.html.

[11] J. A. Kaplan, M. L. Nelson. A Comparison of Queueing,
Cluster and Distributed Compuing Systems. Technical
Report, RNS-94-006, NASA Ames Research Center, 1994.

[12] C. M. Lee, A. Tam, and C.L. Wang. Directed Point: An
Efficient Communication Subsystem for Cluster
Computing. Proceedings of the 10th IASTED International
Conference on Parallel and Distributed Computing and
Systems, Las Vegas, October 1998, pp. 662-675.

[13] Matchy J. M. Ma, Cho-Li Wang, Francis C. M. Lau,
Zhiwei Xu. JESSICA: Java-Enabled Single System Image
Computing Architecture. The International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’99), June 1999, pp. 2781-2787.

[14] C. Roder, T. Ludwig and A. Bode. Flexible Status
Measurement in Heterogeneous Environment. The
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’98),
June 1998.

[15] Yudong Sun, ZhengYu Liang and Cho-Li Wang. A
distributed Object-Oriented Method for Particle
Simulations on Cluster. High Performance Computing and
Networking (HPCN) Europe 1999, Apr 1999, pp. 245-253.

[16] Putchong Uthayopas et al. Interactive Management
of Workstation Cluster Using WorldWide Web,
Cluster Computing Conference (CCC’97), 1997.

