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ABSTRACT 

We propose to apply the concept of irrelevant variability 
normalization to the general problem of learning structure 
f r o m  data. Because of the problems of a diversified train- 
ing data set and/or possible acoustic mismatches between 
training and testing conditions, the structure learned from 
the training data by using a maximum likelihood training 
method will not necessarily generalize well on mismatched 
tasks. We apply the above concept to the structural learn- 
ing problem of phonetic decision-tree based hidden Markov 
model (HMM) state tying. We present a new method that 
integrates a linear-transformation based normalization mech- 
anism into the decision-tree construction process to make 
the learned structure have a better modeling capability and 
generalizability. The viability and efficacy of the proposed 
method are confirmed in a series of experiments for contin- 
uous speech recognition of Mandarin Chinese. 

1. INTRODUCTION 

Currently, in building an HMM-based automatic speech 
recognition (ASR) system, a common practice is 

0 to collect a large amount of speech data in the target 
application domain  for the case of building a task- 
dependent (TDEP) system, or in several possible ap- 
plication domains for the case of task-independent 
(TIND) system; then 

0 to determine empirically and/or learn in a partially 
automatic way the structure of the HMMs for the 
adopted basic speech units from the collected training 
speech data; and 

0 finally with the so learned structure, to estimate the 
HMM parameters from training data. 

Here structure refers to the model topology, parameter shar- 
ing schemes, the complexity of models, etc. Under the cur- 
rently adopted statistical ASR framework, the training data 
have to be representative enough to achieve the required 
generalizability thus supporting somehow the performance 
robustness. In many real applications, this will lead to a 
training set with diversified variabilities which might be 
caused by different speakers, speaking styles, accents, di- 
alects, transducers, transmission channels, environments, 
etc. People noticed that the common practice of maximum 
likelihood (ML) training of HMMs on this pooled training 
data set will usually result in a set of diffused models which 
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might not work optimally for any particular testing condi- 
tions, even on the same task. 

There are many ways to obtain a set of sharp and thus 
hopefully more discriminative models. One way is to adopt 
the discriminative training with the hope of maximizing the 
separation between models of speech units so that the ro- 
bustness of a recognizer can be improved. Another way 
is to embed some normalization mechanisms of the iwele- 
vant  variabilities into the conventional ML HMM training 
to  make better use of the diversified training data with the 
hope of obtaining a set of sharper and more appropriate 
generic speech models. These generic models are expected 
to  work reasonably well only for those speech data similar to 
the generic training speech data, but not for others. The so- 
called speaker adaptive training (SAT) originally proposed 
by the BBN researchers is such an example [l]. The ef- 
ficacy of the above two strategies is highly dependent on 
the nature and size of the training data as well as the task 
itself. It is now well-known that the performance of an 
ASR system often degrades drastically whenever there exist 
some acoustic mismatches between the training and test- 
ing conditions. So, another strategy, namely, developing 
efficient feature/model compensation and adaptation tech- 
niques, has been one of the most active research areas to 
address the above problems [8]. For example, if the ap- 
plication scenario allows, by using the above set of generic 
models as seed models and performing a fast adaptation 
on demand for individual application and/or condition, a 
better performance or robustness can be achieved [l]. 

For applications in which the target vocabulary is either 
not specified a priori  or changing frequently from one task 
to  another, a training procedure aiming at  task-independent 
(TIND) subword modeling becomes necessary. The goal of 
TIND training is to create a set of subword models that is 
capable of handling new tasks without the need of collecting 
new training materials, capable of generating a context rich 
set of subword units and models to handle new vocabular- 
ies and capable of producing a reasonable performance even 
for unseen tasks [7]. Among many issues, unit selection and 
modeling is a very important subject. Research in TIND 
training was pioneered in [4] under the notion of vocabulary 
learning. Instead of fixing a set of context-dependent (CD) 
phone models at training time, one can use the context in- 
formation of the target vocabulary and task grammar and 
select a new set of phone models to train for each new task. 
This was shown to produce a good performance by incorpo- 
rating such task-specific context information. Authors in [7] 
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suggest to use the complete sets of right and left CD units 
as the basic phone sets. If required, the triphone model 
can be composed from the existing sets of single-context 
and context-independent (CI) phone models. Good per- 
formance was also obtained on several tasks. In order to 
achieve high performance in large vocabulary speech recog- 
nition, detailed double-context dependent speech units such 
as triphones are usually needed for modeling both intraword 
and interword linguistic phenomena. To flexibly control the 
required model complexity in terms of the total number of 
states for the intended recognition task and the available 
amount of training data, phonetic decision-tree based state- 
tying technique is usually adopted (e.g., [2, 3, 5, 6 ,  101). 
Decision-tree also provides a convenient way for the synthe- 
sis of models for contexts which do not occur in the train- 
ing data. It thus has the potential of being a good TIND 
modeling tool. However, because of the abovementioned 
problems of diversified training data set and the possible 
acoustic mismatch between training and testing conditions, 
the structure learned from the training data by using the 
current ML training method will not necessarily generalize 
well on the mismatched task. 

In this paper, we propose to apply the concept of ir- 
relevant variability normalization to the general problem of 
learning structure from data. As a first step, we choose 
to apply this concept to the structural learning problem 
of phonetic decision-tree based HMM state tying which is 
adopted in many large vocabulary ASR systems. 

2. METHODOLOGY AND ALGORITHM 

In the general problem of modeling and learning, two con- 
cepts are very important: 

0 to model what we intend to model, thus 
to learn what we intend to learn. 

Let's take the phonetic decision-tree based state tying in 
[lo] as an example. In this case, the phonetic decision tree 
is used to recursively partition a set of states into subsets 
by answering some linguistically-motivated questions about 
phonetic (here triphone) context in which each state occurs. 
States reaching the same leaf node are judged to be similar 
and thus tied. So, the variability caused by co-articulation 
in different contexts is the primary source we intend to  
model by using the decision-tree. Other variabilities are 
irrelevant in this regard. However, the approximate ML 
learning of the state-tying in (e.g., [lo] and other decision- 
tree based approaches) lacks a mechanism of normalizing 
the effects of those irrelevant variabilities in decision-tree 
construction. Consequently, if the training data are very di- 
versified, the learned state-tying might reflect insufficiently 
the co-articulation effects, and/or worse, reflect more the 
effects of the other variabilities. This might lead to a poor 
generalization ability. 

Based on the above considerations, we integrate the 
linear-transformation based normalization technique in [l] 
into the decision-tree construction process in [lo] to derive 
a new procedure outlined as follows: 

Step 1: Partition the trainin data set X into R differ- 
ent subsets denoted as {X7r)}r='=,,...,~ with each being 

"homogeneous" according to some criterions. We re- 
fer each set to one "condition". 

Step 2: Train an initial set of untied triphone HMMs with 
a single Gaussian distribution per state as in [lo]. 

Step 3: Using the above untied models as seed model, 
perform a condition-normalized ML training as in [l] 
to obtain 

- A set of generic triphone HMMs denoted as A, 
of which {ps,C,}  denote the mean vector and 
covariance matrix respectively of the Gaussian 
distribution of the untied state s; 

- A set of linear transformations E = {G(')},.=I,...,R 
with G(') = (A('), b(')) being the linear trans- 
formation(s) of the mean vectors { p s }  for r-th 
condition. Note that in the following experi- 
ments, a single linear transformation is used for 
each "condition". It is possible however to use 
multiple linear transformations. The extension 
of the related formulation is straightforward; 

- The necessary condition-normalized statistics 7:"' = 
E, y!')(t) for decision-tree construction, where 
y i T ) ( t )  = Pr(X$') E SIX('), G(')(A)) with Xp' 
being an observation feature vector from train- 
ing set x ( ~ ) .  

Step 4: Construct the decision tree by using the new 
method in which the goodness-of-split evaluation func- 
tion is computed by using the generic HMM param- 
eters and the condition-normalized statistics. 
More specifically, let S denote a set of untied states 
for a node to be split and Q denote a set of binary 
questions about the context. A question q E Q will 
split S into two subsets denoted as Sv(q) and S,,(q) 
based on the outcome of question being "yes" or "no" 
respectively. Then the new goodness-of-split evalua- 
tion function is defined as 

where 

R 

ys = py . 
sES r = l  

Other terms cs, ( q )  , cs, ( q )  9 TS, ( q )  , ys, ( q )  can be tal- 
culated in the same way. Note that ys = y ~ , ( ~ )  + 
ys, ( q ) .  Based on the above-defined goodness-of-split 
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evaluation function m(q, S), a node S* will be chosen 
to split by using a question q* if 

and m(S*,q*), y~*,(~*), y~*,(~.) exceed their associ- 
ated thresholds which are selected empirically. 

After the construction of the above decision-tree, by 
pooling all the training data together, we can train a tied- 
state HMM system with an increased number of mixture 
components per state as in [lo]. Furthermore, we can also 
train a condition-normalized generic tied-state HMM sys- 
tem as in [l]. Using above different model sets as seed mod- 
els, model adaptation can be performed for new conditions 
and for applications. 

3. EXPERIMENTS 

3.1. Experimental Setup 

To examine the viability and the efficacy of the proposed 
method, a series of experiments for continuous speech recog- 
nition of Putonghua (Mandarin Chinese) are performed. 
The database we used is the HKU96 Putonghua Corpus 
developed in our laboratory [ll]. The HKU96 corpus con- 
sists of a total of 20 native Putonghua speakers, 10 females 
and 10 males, each speaking: (1) all Putonghua syllables 
in all tones at least once, (2) 11 words of 2 to 4 syllables, 
(3) 16 digit strings of 4 to 7 digits, (4) 3 sentences of 7 
rhymed syllables with /a/, /if and /U f endings respectively, 
and (5) hundreds of sentences with verbalized punctuation 
from newspaper text. All speech recording were made in a 
quite room with a single National Cardioid Dynamic Micro- 
phone. Speech was digitized using a Sound Blaster 16 ASP 
A/D card plugged into a 486 PC at 16-bit accuracy and 
with a sampling rate of l6KHz. We used 18224 sentences 
(about 23 hours of raw speech) from 18 speakers (9 females 
and 9 males) for training; 200 sentences from 2 speakers 
(1 female and 1 male, 100 sentences randomly chosen from 
each speaker) for testing; and the remaining sentences from 
those testing speakers for adaptation. 

Input speech was initially pre-emphasized (1 - 0 . 9 7 ~ ~ ~ )  
and grouped into frames of 25ms with a frame shift of 10ms. 
For each frame, a Hamming window was applied followed 
by the computation of 12 MFCC’s. The 39-dimensional fea- 
ture vector used in this study consists of 12 MFCC’s and 
log-scaled energy normalized by the peak of the individ- 
ual sentence, plus their first and second order derivatives. 
Sentence-based cepstral mean subtraction (CMS) is applied 
for acoustic normalization both in training and testing. 

The adopted context-independent (CI) phone set con- 
sists of 37 phones plus silence. With this phone set def- 
inition, there are 8358 triphones in Putonghua. Among 
them, 5633 triphones are observed in our training data 
set, with only 4796 triphones each appearing at least 3 
times. Each phone is modeled by a left-to-right three- 
emitting-state Gaussian-mixture continuous density HMM 
(CDHMM) without state skipping. Each state has 3 Gaus- 
sian mixture components with each component having a 
diagonal covariance matrix. A special three-state CDHMM 
is also used for silence modeling. 

The recognition task is the recognition of 410 Putonghua 
base syllables disregarding tones. The recognition network 
enforces silence at the start and end of sentences. As for 
syllable language model, a uniform grammar with a sylla- 
ble perplexity of 410 (i.e., each syllable can be followed by 
any of the 410 base syllables) is used. All the recognition 
experiments are performed with the search engine provided 
by HTK2.1 toolkit. 

3.2. Effects of Normalization in Decision-Tree Con- 
struct ion 

The baseline system is a speaker independent, cross-syllable- 
triphone, decision-tree-based tied-state system and is trained 
by using the HTK2.1 toolkit. 152 linguistic questions are 
used in decision-tree construction and the relevant thresh- 
olds for stopping criterion are adjusted to generate 3450 
tied states. For this system, an averaged syllable accuracy 
of 73.7% over 2 testing speakers is achieved. 

Considering the nature of HKU96 corpus, speaker dif- 
ference is the main source of the irrelevant variabilities in 
decision-tree construction. So, we partition the training set 
into 18 subsets according to speaker identity (condition). 
For each condition, we use one affine transformation for nor- 
malization purpose of the mean vectors of the CDHMMs. 
We build a new decision-tree using the procedure described 
in Section 2. Then, a new recognition system is built which 
achieves a syllable accuracy of 74.8%. In comparison with 
the HTK baseline system, 4.2% error reduction is achieved. 
This is a quite encouraging result, because if we view the 
contextual variability caused by co-articulation as the main 
source we intend to model with the triphones, apart from 
speaker variability, there is no much other irrelevant vari- 
abilities existed in the speech data of HKU96 corpus. The 
benefit of normalization is expected to be bigger in a more 
realistic situation with a ‘diversified training data set. 

3.3. Effects of Structure-Normalization on Adap- 
tive Modeling 

By using the above two sets of models as seed models, we 
performed supervised speaker adaptation on two testing 
speakers by using the so-called batch-mode MLLR adap- 
tation method in [9]. Two regression trees are first built for 
all of the Gaussian mixture components of the above two 
systems by using a divisive Gaussian distribution cluster- 
ing method with a distortion measure being the symmetric 
divergence measure between two Gaussian distributions. In 
adaptation, different number of affine transformations are 
adaptively chosen based on the amount of available adap- 
tation data. Figure 1 (a) shows the performance (syllable 
accuracy in %) comparison averaged over 2 testing speakers 
as a function of number of available adaptation sentences 
among two systems with above two different sets of seed 
models. The performance of new method is consistently 
better than that of HTK system. The benefit of the irrele- 
vant variability normalization in decision-tree construction 
is also confirmed in adaptive modeling. We do have learned 
a better structure! 

As we mentioned before, starting from above two sets 
of seed models, we further perform condition-normalized 
training (CNT) as described in [l], to obtain two sets of 
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new models. Then the above MLLR-based adaptation ex- 
periments are repeated. Figure 1 (b) shows a similar per- 
formance comparison of two systems with two different sets 
of seed models. Once again, normalization in decision-tree 
construction proves to be helpful. The results show that 
the benefits of the normalization in structure learning and 
the normalization in generic model parameters learning can 
be combined to generate a set of the best generic mod- 
els. For example, in the case of 200 adaptation sentences, 
the three systems with different, namely, HTK-based, new 
decision-tree based, and new decision-tree plus CNT based, 
seed models, achieve respectively the syllable accuracies of 
80.4%, 81.4%, and 82.6%. This represents error reductions 
of 5.1% and 11.2% respectively of the later two systems 
from the f i s t  system. 

4. CONCLUSION 

In this paper, we propose a new concept of irrelevant vari- 
ability normalization in learning structure from data. As 
a fist step, we develop the technique to apply such a con- 
cept to the structure learning problem of decision-tree based 
HMM state tying. In a series of preliminary experiments, 
we show the benefits of the new method. The same concept 
can also be applied to other structure learning problem. As 
future works, we will perform experiments on larger scale 
and more diversified corpus. We will examine the effects 
of the proposed method on task-independent training and 
testing scenarios. More intelligent stopping criterion is an- 
other topic of future research. Finally, as a language specific 
issue, we will refine our question set for Putonghua (Man- 
darin Chinese) recognition. 
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