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Abstract

We present a new probabilistic classifier, called SOM-PNN
classifier, for volume data classification and visualization. The
new classifier produces probabilistic classification with Bayesian
confidence measure which is highly desirable in volume rendering.
Based on the SOM map trained with a large training data set, our
SOM-PNN classifier performs the probabilistic classification
using the PNN algorithm. This combined use of SOM and PNN
overcomes the shortcomings of the parametric methods, the non-
parametric methods, and the SOM method. The proposed SOM-
PNN classifier has been used to segment the CT sloth data and the
20 human MRI brain volumes resulting in much more informative
3D rendering with more details and less artifacts than other
methods. Numerical comparisons demonstrate that the SOM-PNN
classifier is a fast, accurate and probabilistic classifier for volume
rendering.

CR Categories and Subject Descriptors: 14.6 [Image
Processing and Computer Vision]: Segmentation - Pixel
Classification; 1.5.1 [Pattern Recognition]: Models - Neural Nets.
Additional Keywords: medical image segmentation, multiscale,
wavelet transform, SOM, PNN, SOM-PNN classifier, 3D volume
rendering

1 INTRODUCTION

Segmentation, or classification, is defined as dividing a data set
into components with distinctive characteristics. Many methods
have been developed for CT or MR images segmentation,
including statistical segmentation [15], model-based methods [7],
snzke methods [8] and the neural network approaches [6,13].
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However, few of these classifiers produce probabilistic
classification, which is highly desirable in volume rendering [4].

Traditionally, mixture models are often used for data
segmentation in volume rendering [2,4]. In these models, voxels
are modeled as compositions of one or more materials. Different
material aftributes, such as the light intensity and transparency,
are determined by the percentages of constituent materials. Thus
in this setting probabilistic classifiers are more desirable than all-
or-none methods in reducing artifacts in rendering. Classification
is given in terms of the percentage of each material from the
original data.

For each voxel in the volume data represented by a d
dimensional feature vector x € R?, the percentage of material #
in this voxel is determined by the posterior probability
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where p(x]k)is the class conditional probability density of

material k of the voxel x and K is the total number of classes [4].
In practice, there are many ways to estimate the probability
density functions, such as parametric methods, non-parametric
methods and semi-parametric methods [1]. The parametric
approach assumes a specific form of the density function, usually
the normal distribution, with a number of parameters to be
optimized by fitting the model to the data set. Maximum
likelihood (ML) method is usually used to find the optimal values
of the parameters. For an image pixel represented by d
dimensional feature vector x € R?, the normally distributed
density function is
1
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with parameters { A, x} , where g is the d dimensional mean

vector and ¥ is the dxd covariance matrix. The parameters are
estimated as
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givenadataset X = {xl,xz,m,xN} .

Though ML method is straightforward and easy to implement,
the particular form of the density functions chosen might be
incapable of providing a precise representation of the true density.
In contrast, non-parametric estimation does not assume a
particular functional form, but allows the density function to be
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determined entirely by the data [14]. Such methods typically
suffer from the drawbacks of requiring all the data points to be
stored and the slow speed of evaluating a new data point. In the
semi-parametric method, a mixture distribution is used to estimate
the demsity function. In the mixture distribution, the density
function is again formed from a linear combination of basis
functions, whereas the number of basis functions is a parameter of
the model itself and can be varied independently from the size of
the data set. A general class of functional forms is also allowed as
in the non-parametric method. The Expectation-Maximization
(EM) method is an example of the semi-parametric method [1].
However, for each class, in addition to estimating a set of
parameters iteratively, the number of the basis functions has to be
determined in advance. This raises another problem which has to
be solved experimentally.

In this paper, we propose a hybrid classifier, the SOM-PNN
classifier in which the density function is estimated simply by the
combination of the self-organizing map (SOM) [9] and the
probabilistic neural network (PNN) [11,12]. The SOM map is
trained with a training set first. The PNN algorithm is then carried
out based on the SOM map trained. In addition to the general
form of density functions achieved, the number of the kernel
functions used in PNN is independent of the training set and
much fewer than the number of data points. This makes the
estimation of the probability density functions much easier and
faster.

Feature vectors play an important role in statistical pattern
recognition. According to the scale-space theory [5], Gaussian
and all its partial derivatives form a complete operator family of
an image. We adopt this idea and form our feature vector in the
proposed SOM-PNN classifier using the multiscale technique
based on the wavelet transform [3], as described by Mallat [10].

We apply our method to sloth CT data and MRI human brain
volume data classification. The probabilistically classified
volumes are rendered with the direct volume rendering technique
[16}. In both cases, higher quality rendered images and better
numerical results have been achieved with the SOM-PNN
classifier than with other methods.

The remainder of this paper is organized as follows. Section 2
gives the background of multiscale image structure and wavelet
transform. Section 3 presents the PNN, SOM algorithms and our
new SOM-PNN classifier. Experimentation results and
conclusions are given in Sections 4 and 5 respectively.

2 MULTISCALE IMAGE FEATURE
VECTOR EXTRACTION USING WAVELET
TRANSFORM

1t has been shown that the only operator family satisfying the
natural front-end vision constraints of linearity, shift variance,
rotation variance, and scale invariance is the Gaussian and all its
partial derivatives [5]. This operator family provides a complete
representation of image structure. For two-dimensional images,
the five irreducible invariants of up to second order derivatives
can be represented using tensor notations

{LLLLLLL LL} G)

il
where L is the image intensity, LL; the squared norm of the
gradient, and Z, the Laplacian of the image. It has been shown
that the segmentation of intensity images can be done using only
the zero and first derivatives of the Gaussian, while the second
order derivatives are useful when dealing with textured images [6].
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The numerical calculation of these elements can be performed
with the type of wavelet transform described by Mallat [10] when
the Gaussian is used as the smoothing function in the wavelet
transform. For each pixel in the image, our feature vector is then
formed by 9 components: the original intensity value, the
smoothed intensity value and the gradient magnitude of the
smoothed images from scale 1 to scale 4 by following this idea.
Let
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be the dilation of the smoothing function &(x,y) at scale s. The

two wavelet functions are
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The dilations of the wavelet functions at scale s are
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The wavelet transform of the image, f(x,y), at scale s has two
components
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Hence, for each pixel in the image, its smoothed intensity value
and the gradient magnitude of the image smoothed at each scale
are obtained directly from the discrete wavelet transform.
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3 PNN, SOM ALGORITHMS AND THE NEW
SOM-PNN CLASSIFIER

3.1 The PNN Algorithm

The probabilistic neural network, or PNN, js originated from
Parzen’s probability density estimator [11,12]. For a given data
set X= {xl,xq,-" Xy }, the Parzen density function estimator is

N =

n=1
where x, € R?, Gis the kernel function and "o the scale factor.
The kemel function often takes the Gaussian type

(12)




G(x)= . Based on the conditional probability
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density function estimated using (12), a given sample x will be
classified as class i if p{(x]7) > p(x]j) forall classes j+#i.

Different values of scale factor o lead to different
classification performances. We follow the ideas in [11,12] to find
the optimal o . First, the performance score of the PNN classifier
withagiven o is determined by the cross-validation method. In
the process of cross-validation, each training sample is temporally
removed from the training set and used as the test sample. The
remaining training data is then used in the PNN classifier to
classify this test sample. If the sample is correctly classified, the
performance score is increased by 1. Repeat this procedure for all
the training samples go give the final score. Finally, a one
dimensional heuristically search is performed to find the optimal
o with the largest performance score.

3.2 The SOM Algorithm

The standard Kohonen map [9] is a useful tool for clustering,
topologically organizing and subspace mapping. In most cases,
the topology of the SOM is a two dimensional lattice of neurons,
each of which is associated with a reference vector connected to

aninput. Let x € R? be the input data vector and 7, € R” be the
reference vector of map node . The input data vector is compared
with all the 72, in a metric, such as the Euclidean distance. The

node with its reference vector yielding the minimum distance to x
is selected as the winner node, signified by subscript c, ie.,

fe—m | =min{lx—m[}, =12, M 13)
where M is the total number of nodes.

During the learning process, the reference vector associated
with each node is updated with the same input x(#) in the
following way

m (t+1) =m () +h, OxE)—m,@)] (14)
where ¢ is the discrete-time coordinate and A, (f) is the

neighborhood kemel. The neighborhood kernel here adopts the
Gaussian type

-1
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where the width of the kernel o&(f) and the leaming rate a(r)
are monotonically decreasing functions of time, and 7, is the two
dimensional coordinates of node i in the lattice.

3.3 The Hybrid SOM-PNN Cléssifier

The traditional PNN algorithm described above uses all the
samples in the training set to estimate the probability density
functions and perform classification. In image segmentation, a
training set ofien comprises a large number of samples, and the
evaluation of 2 new sample is very slow for such a large training
set. On the other hand, data in the training set is not noise free and
if the traditional PNN algorithm is used alone, the classification
may be affected by the noise.

We propose a SOM-PNN classifier to overcome the difficulties
of the traditional PNN algorithm. In the SOM-PNN classifier,
reference vectors from each class of the trained SOM map, instead
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of the original training samples of a large size, are used to
estimate the probability density function. Suppose that the trained
SOM map has N, nodes for material with label & and the

corresponding reference vectors are mf,i=12 .. N,,the
probability density function of material & is then estimated by
Y feml

—_— 20*
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Having obtained the estimated probability density of each
material, the probabilistic classification are obtained using
formula (1).

Our hybrid approach as described in this section has the
following advantages. First, through the use of SOM, the PNN
algorithm is released of the burden of having to process a large
size training set. Second, since the trained SOM map serves as a
good representative of the training samples, its use makes the
PNN classifier more robust in the presence of noise data in the
original training set. Furthermore, the probabilistic classification,
which is highly desirable for visualization but cannot be obtained
with SOM alone, is achieved naturally in PNN. Finally, the
combination of SOM and PNN determines the number of basis
functions in the model automatically and simplifies the process of
probability density estimation, as compared with the EM method
[1]. The procedures of our algorithm are shown in Fig. 1.

Step 1: SOM training

SOM map

mM»l SOM and LVQ training |——— >

Step 2: PNN classification

SOM map obtained in step 1
probabilistic
new sample PNN classification
‘ > algorithm

Fig. 1. Diagram of SOM-PNN classifier.

4 EXPERIMENT RESULTS

The proposed SOM-PNN classifier has been built for classifying
both CT sloth volume data and MRI human brain volume data.
For different kinds of volume data, we apply different strategies in
choosing the feature vectors to achieve the best segmentations.
Compared to the brain volumes, the CT sloth data is less
complicated anatomically. The intensity contrast of image pixels
in CT sloth data is also higher than that in MR brain volumes.
Moreover, the phenomena of intensity inhomogeneities in CT data
are much less apparent than in MR data. To achieve fast and
accurate segmentations, for each pixel, we use only the original
intensity value and its gradient magnitude at scale 1 to form the
feature vector. Adding more components into the feature vector in
this case would not improve the performance of the classifier, and
would make the algorithm less efficient. However, for the
segmentation of more complicated MR brain data to be addressed
in the second subsection, we will have to use the complete 9
components feature vector for each pixel as described in Section 2
to get better results.




4.1 Sloth CT Volume Classification

The dimensions of the CT sloth data are 128x128x128 with each
voxel having 256 gray levels. The task is to segment each voxel in
the data set as a composition of four classes: air, fat, soft tissue,
and bone.

First, 23643 pixels of different classes were hand-picked from
24 evenly spaced slices in the volume data. According to their
intensity levels, these pixels were labeled manually. All these
23643 feature vectors together with their labels form the training
set. The SOM with dimensions of 7x11 is set up and trained as
described in Section 3.2. By the cross-validation method (see
Section 3.1), the optimal scale factor o is determined to be 0.45.
Then the SOM-PNN classifier is applied to each slice of the CT
volume.

For comperison, the ML classifier and the PNN algorithm were
implemented with the same training set. The SOM map obtained
shove was also used to classify the CT volume as a separate
classifier. Fig. 2 (a) is one original slice image. Its classifications
with these four classifiers are shown as Fig. 2 (b) to Fig. 2 (e). In
these images, 4 increasing gray levels are assigned to air, fat, soft
tissue, and bone pixels. For the probabilistic classifiers, the gray
level of a pixel in the classified images is the averaged value of
four materials with classified probabilities.

@ ©

Fig. 2. The original slice image (a) and the
classifications with the SOM-PNN (b), ML (c),
PNN (d) and SOM (e) classifier respectively.

To test the performance of different classifiers, two test sets are
selected. Test set 1 consists of 930 soft tissue pixels which are
located near to the bone in Fig. 2 (). Test set 2 consists of 696
bone pixels in the same image without special consideration. The
two sets were used to test the classifiers’ ability to distinguish the
surrounding areas of the bone and the bone itself. For pixel », let

the classified probabilities be P, = {P,,P,, -, P} and the

manually lsbeled probabilities be P, = {P,, P+, P}, the
correct classification rate of the test set is defined as

P =1-=

ecrrect AT >

an
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where e=ZZ(P,,j —P,,j) /2 (18)
n=1 j=1
where X is the number of materials to be classified and N the

number of voxels in the test set. Table 1 lists the results.

Table 1 Correct rate of the data sets with

different classifiers
SOM-PNN ML PNN SOM
training set 97.97 97.89 97.85 98.52
test set 1 83.99 66.44 78.56 83.65
test set 2 74.17 74.81 73.36 55.17

Comparing Fig. 2 (c) with Fig. 2 (a), we might conclude that
the ML method over-segmented the bone pixels in the image. This
agrees with the low correct rate of test set 1 and high correct rate
of test set 2 with the ML method in Table 1. It can also been seen
from Fig. 2 (e) that bone pixels with low intensity level are not
correctly classified with the SOM classifier which accords with
the very low correct rate of test set 2 with the SOM classifier. For
the three data sets, the SOM-PNN classifier outperforms the PNN
classifier due to the clustering ability of SOM.

All the 128 slice images are classified by the above classifiers.
The classified images are stacked together to yield a 3D
probabilistic classification. On an SGI Indigo2 Maximum
IMPACT workstation with 195Mhz R10000 CPU and 192Mb
memory, the time used to perform the classification of the whole
3D CT sloth data using the SOM-PNN, ML, PNN and SOM
classifiers are 241s, 178s, 48524s and 159s, respectively. The
SOM-PNN classifier is about 200 times faster than the PNN
classifier. The significant improvement in efficiency makes the
proposed SOM-PNN classifier a favorable choice in time-critical
applications, where non-parametric methods would be too slow to
be used. Moreover, the time that PNN classifier takes varies with
different training sets, while the time used by the SOM-PNN
classifier is almost the same. The training time of the SOM used
in the SOM-PNN classifier is 734s while that of the PNN with the
full training set is more than 20 hours on the same machine.

A direct volume rendering method based on 3D texture
mapping [16] is used to render the classified data. The rendered
images of the volumes classified with the SOM-PNN, ML, PNN
and SOM classifiers are shown in Fig. 3, 4, 5 and 6, respectively.
In Fig. 4, the front cartilage of the sloth chest is clear and the back
ribs are shown to be connected to the spine. But the quality of the
image is severely affected by the bone noise. In contrast, the
SOM-PNN classifier achieves similar classification of the bone
with much less noise as shown in Fig. 3. In Fig. 5, where PNN
alone is used, the image quality is also badly affected by the noise
due to the noise sample in the training set. Finally, in Fig. 6, the
front cartilage disappears entirely and the back ribs are shown to
be disconnected to the spine with the SOM classifier.

The above results show that the proposed SOM-PNN classifier
works very well in the CT sloth data classification. Numerically it
produces nearly the highest overall correct rate for different test
sets. The efficiency improvement is also significant. From visual
inspections, the SOM-PNN classifier segments the volume data
with least noise. Compared to the SOM classifier used in the
literature, the segmentation produced using the SOM-PNN
classifier reveals anatomically more meaningful structures.




4.2 Human Brain Classification

We also applied the SOM-PNN classifier to human brain data
segmentation. The brain volumes are the 20 normal brain volume
data sets provided by the Internet Brain Segmentation Repository
(IBSR)‘ [17]. The dimensions of these coronal three-dimensional
Tl-weighted spoiled gradient echo MRI data range from
256x256%51 to 256>256x61. All the volumes have been
positicnally normalized by imposing a standard three-dimensional
brain coordinate system. Manual segmentation is also available
from the same source [17], which is obtained with semi-
automgated segmentzation algorithms.

These brain volumes are to be segmented into three classes:
Cerebral Spinal Fluid (CSF), gray matter (GM) and white matter
(WD, For case 112_2, to apply our method, 16763 brain pixels
of these three classas from slice 35 and slice 36 of the volume are
sclected as the training set. To precisely segment the complicated
brain structures in the low intensity contrast images, multiscale
festure vectors with the complete 9 components described in
Section 2 are extracted using the wavelet transform. The SOM
map with dimensions of 13x11 is then established and trained as
described in Section 4.1. The correct rate of the training set is
90.87%. The optimal scale factor o found using the cross-
validation method is 0.13. Then the SOM-PNN classifier is
applied to each scan of the whole data set to yield a 3D
sepmentation. A threshold value of 20 is set to separate air pixels
from train pixels. Each pixel with the intensity value greater than
20 is classified into the probabilistic composition of CSF, gray
matter and white matter with the SOM-PNN classifier. As in
Section 4.1, the ML, PNN and SOM classifiers were implemented
with the sclected training set and used to segment the same
volume. In each segmentation, no post-processing is performed.
Fig. 7 (a) is an original brain scan (slice 21), Fig. 7 (b) is the
manuzl segmentetion. The segmentations using the SOM-PNN,
ML, PNN and SOM classifiers of the same brain scan are
presented as Fig. 7 (c) to Fig. 7 (f). The gray levels of air, CSF,
gray matter and white matter are assigned in an increasing order.
As before, the color of each final pixel is the average of the 3
classes’ colors weighted with the classified percentages.

From Fig. 7, it can be seen that the SOM-PNN classifier
achieves better segmentation compared to the manual
segmentztion. As shown in Fig. 7 (e), the PNN algorithm using
the original training set results a segmentation similar to the one
obtzined with the SOM-PNN classifier. In Fig. 7 (d), the ML
classifier produces good segmentation in the upper part of the
brain but CSF artifacts are produced in the bottom boundary of
the train. Moreover, due to the existence of intra-scan
inhomogeneities of the brain pixel intensity, the white matter in
the lower part of the brain is under-segmented compared with the
SOM-PNN classified segmentation. As seen in Fig. 7 (f), the
white matter in the lower part of the brain is largely lost due to
non-probebilistic characteristic of the SOM classifier. Although
the problems with inter- and intra-scan inhomogeneities are not
dealt with in this paper, the proposed SOM-PNN classifier yields
reasorzhle segmentation despite these artifacts.

Classified slices are stacked together to yield a 3D

! The 20 normal MR brain data sets and their manual
segmentations were provided by the Center for
Morphometric Analysis at Massachusetts General Hospital
and are available at http://neuro-
www.mgh.harvard.edu/cma/ibsr.
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segmentation. The time used to segment this volume with the
SOM-PNN, SOM, ML and PNN classifier is 158s, 134s, 63s and
14470s respectively. Again significant improvement of efficiency
is achieved with the SOM-PNN classifier compared with the
original PNN algorithm. The classified volumes are rendered with
texture mapping hardware. In Fig. 8, the five rendered volumes
are clipped coronally with the same viewpoint and clipping depth.
In these images, the colors assigned to gray matter, white matter
and CSF are red, white and green respectively. From visual
inspection, the SOM-PNN classifier, the PNN classifier and the
ML classifier yield similar segmentations of gray matter and white
matter in the upper part of the brain. The ML classifier over-
segments the CSF which leads to the noise in the boundary area of
the brain. In the lower part of the brain, due to the existence of
intensity inhomogeneities, most of the white matter is lost in the
SOM segmentation. For the other 3 methods, i.e., the ML, PNN,
and SOM-PNN, the segmentations obtained with the SOM-PNN
classifier are closest to the manual segmentation.

(©
Fig. 7. The original brain scan (a), its manual
segmentation (b), the segmentations with the
SOM-PNN (c), ML (d), PNN (e) and SOM (f) classifier
respectively.

®

For different segmentations, in addition to the visual inspection,
numerical metrics are needed to compare them quantitatively. In
the literature, there are two metrics often used to compare the
similarity between segmentations. One is the overlap metric [17]
and the other is the percentage of difference [15]. For a given




voxel class assignment, the overlap metric between two
segmentations is defined as the number of voxels that have this
class assignment in both segmentations divided by the number of
voxels where either of the two segmentations has this class
assignment [17]. This metric approaches 1.0 for results that are
very similar and is near (0.0 when they share no similarly classified
voxels. The percentage of difference between two segmentations
is defined as the ratio between the number of differently labeled
pixels within the region of interest (ROI) and the total number of
pixels within the ROI [15]. The percentage of difference measures
the similarity between two segmentations in the ROI globally
while the overlap measures each classes separately. Although
these two metrics yield a reasonable comparison between two
segmentzations, they are not appropriate for comparing
probabilistic segmentations because pixel counting does not
accommodate probabilities associated with probabilistically
classified voxels. However, since in the literature, many
segmentztions are only compared with manual segmentation, in
particular the overlap meiric in the case of the 20 MR brain
volumes, we will also use this metric to compare our results.

To evaluate a probabilistic segmentation with the overlap
metric, the probabilistic results must first be converted into non-
probabilistic ones. To this end, probabilistically classified voxels
are labeled as the class with the largest probability. As with the
case 112_2, the other 19 MR brain volumes are classified and
tested in the same way. The overlap values of CSF, gray matter
and white matter are averaged over these 20 normal cases. Table 2
is the results and the comparison with other methods reported in
IBSR {17]. The gray matter overlap metric of different methods
for the 20 MR brain volumes is shown in Fig. 9. In Fig. 9, the
sequence of the 20 brain volumes is roughly arranged by their
difficulty to be segmented. Some volumes that were acquired
recently with more sophisticated MR machines have better data
qualities and are listed at the end of the sequence.

Table 2 Averaged overlap of 20 normal brain volumes
between automatic segmentations and the manual

segmentation
methods CSF GM WM
adaptive MAP™ 0.069 0.564 0.567
biased MAP" 0.071 0.558 0.562
fuzzy c-means 0.048 0.473 0.567
MAP” 0.071 0.550 0.554
maximum- 0.062 0.535 0.551
Tikelihood
tree-structure 0.049 0.477 0.571
k-means
SOM 0.419 0.790 0.682
SOM-PNN 0.389 0.742 0.673
ML 0.130 0.605 0.658
manuzl** N/A 0.876 0.832

*MAP means Maximum Aposteriori Probability
** 4 brains averaged over 2 experts

From Table 2 and Fig. 9, it can be seen that the SOM and
SOM-PNN classifiers achieve higher overlap with the manual
segmentation than the other seven methods. For gray matter, the
SOM and SOM-PNN classifier are at least 13% higher than other
methods. The most significant improvement is the CSF
segmentation. The CSF overlap of all methods in IBSR, with

respect to the manual segmentation, is below 0.1. The CSF
overlap of our implementation of ML is only 0.13. However, the
CSF overlap of the SOM-PNN classifier with manual
segmentation and that of the SOM classifiers have achieved 0.389
and 0.419 respectively. Besides, as seen in Fig. 9, the performance
of the SOM and SOM-PNN classifier varies much less
significantly than other methods, thus consistent classification has
been achieved for these 20 normal MR brain volumes. It is not
surprising that the SOM classifier yields befter numerical results
than the SOM-PNN classifier with the overlap metric because
truncation on the probabilistic classification offsets the accuracy
of the SOM-PNN classifier.

Since there is a considerable loss of classified information
when converiing probabilistic segmentation into a noa-
probabilistic segmentation, to get a more reasonable comparison
between the SOM-PNN classifier and the SOM classifier, we now
propose a generalized difference ratio metric. For pixel », let the

probabilities of segmentation 4 be P = {P}, P ---, P2} and

nl3

that of segmentation B be P°={P: P2... P2}, the

al>

generalized difference ratio between 4 and B is defined as

1 & (Br-p2)
re = > —"2 2 100% (19)
a=1 f=1 2

where ¥ is the total number of voxels in the ROI and X is the
number of materials to be segmented. Here the ROI is the brain
volume without air and X = 3. In the non-probabilistic case, the
generalized difference ratio is reduced to the percentage of
difference between two segmentation used in [15].

The difference ratios of automatic segmentations and the
manual segmentation for the 20 normal brain volumes are listed in
Table 3. Three automatic segmentations, SOM-PNN, SOM, and
ML, are compared altogether.

Table 3 Difference ratio of the 20 normal brain volumes
between automatic segmentation
and manual segmentation (%)

brain case | SOM-PNN SOM ML

58 21.55 22.69 19.63
4 8 18.54 19.85 23.46
24 19.01 19.68 29.67
6 10 16.39 21.75 29.49
15 3 17.94 19.62 21.98
16 3 14.98 16.22 21.50
17 3 13.91 16.25 19.36
8 4 13.46 15.54 19.44
78 13.82 14.52 22.23
110 3 10.59 12.77 15.83
111 2 11.78 13.56 18.73
112 2 10.52 12,22 15.89
100 23 10.62 11.34 16.88
202 3 9.84 11.04 11.79
191 3 9.62 12.27 15.74
12 3 8.81 9.74 14.07
13 3 9.08 10.97 14.18
124 10.41 13.15 17.58
205 3 9.63 10.00 13.89
11 3 10.02 10.82 15.03
average 13.03 14.70 18.82




From Table 3, it can be seen that the averaged difference ratio
of the SOM-PNN classifier is 1.67% lower than that of the SOM
classifier. Compared with ML method, the SOM-PNN classifier
has a 5.8% lower difference ratio. Moreover, this result is quite
promising because in [15], the averaged difference ratio is about
20%, though different data sets are used.

The experiment results in this subsection reveal the superiority
of the SOM-PNN classifier to other automatic classifiers
mentioned above. From 2D and 3D inspection, it produces the
closest images to the manual segmentation. Numerically, the
SOM-PNN classifier produces much better results than the
traditional statistical classifiers with the overlap metric. According
to the generalized difference ratio metric, it is also befter than the
SOM classifier. Compared with the traditional PNN algorithm,
the SOM-PNN classifier achieves significant improvement in
efficiency and the classification accuracy is also improved.

5 CONCLUSIONS

We have proposed a new probabilistic classifier, the SOM-PNN
classifier, for medical data classification and volume rendering.
The new classifier is a semi-parametric density estimator and
produces probabilistic classification with the Bayesian confidence
measure. The volumes segmented using the SOM-PNN classifier
reveal anatomically more meaningful structures than non-
probabilistic segmentation. Numerically, the SOM-PNN classifier
is more accurate than other automatic segmentation methods in
both the sloth and the brain cases. The SOM-PNN classifier is
also a fast classifier. Based on the noise-free representative
teference vectors provided by SOM, the SOM-PNN classifier
segments the sloth CT data 200 times faster than the original PNN
algorithm.

Essentially, the SOM-PNN classifier is an intensity based
classifier and will lose its power when the inter- and intra-scan
intensity inhomogeneities present severe problems. However, with
the modern MR scanners, this problem has been minimized as
indicated by the low difference ratios for the last several cases in
the 20 normal brain data sets. In another aspect, the SOM-PNN
classifier needs the semi-automatic segmentation of several brain
scans and the pre-fraining of the SOM map as preprocessing steps.
By our experience, segmentation of 2 or 3 scans does not present
as a big burden, and the pre-training of the SOM in the SOM-
PNN classifier can be done in a matter of minutes.

The problem of quantitatively evaluating probabilistically
segmentation is raised in this paper. The metrics currently used in
literature are suitable for non-probabilistic segmentation and are
not appropriate for evaluating the quality of segmentation for
volume rendering. For example, although the SOM classifier also
produces high overlaps with manual segmentation, the volumes
segmented with the SOM classifier lose more details than
probzbilistically segmented volumes. In this paper, a generalized
difference retio is proposed in order to conduct reasonable
comparison among probabilistic classifiers without sacrificing the
probabilistic property.
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Fig. 4. Rendered images of the sloth CT volume
with ML segmentation.

Fig. 6. Rendered images of the sloth CT volume
with SOM segmentation.

Fig. 3. Rendered images of the sloth CT volume
with SOM-PNN segmentation.

Fig. 5. Rendered images of the sloth CT volume
with PNN segmentation.

Fig. 8. Coronally clipped views of the MRI brain case 112_2 with manual segmentation,
SOM-PNN, ML, PNN and SOM segmentations respectively.
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Fig. 9 Gray matter overlap befween automatic methods with manual segmentation
for the 20 normal MR brain volumes
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