
Evaluating MPI Collective Communication on
the SP2, T3D, and Paragon Multicomputers

Kai Hwang, Choming Wang, and Cho-Li Wang
The University of Hong Kong, Pokfulam, Hong Kong

Abstract

We evaluate the architectural support of collective
communication operations on the IBM SP2, Cray T3D,
and Intel Paragon. The MPI performance data are
obtained f o m the STAP benchmark experiments jointly
performed at the USC and HKU. The T3D demonstrated
clearly the best timing performance in almost all collec-
tive operations. This is attributed to the special hardware
built in the T3D for fast messaging and block data trans-
fer. With hardwired barriers, the T3D performs the bar-
rier synchronization in 3 p s, at least 30 times faster than
the SP2 or Paragon. The startup latency of collective
operations increases either linearly or logarithmically in
three multicomputers.

For short messages, the SP2 outperforms the Para-
gon in the barrier, total exchange, scatter, and gather
operations. Various collective operations with 64 KBytes
per message over 64 nodes of the three machines can be
completed in the time range (5.12 ms, 675 ms). The Para-
gon outperforms the SP2 in almost all collective opera-
tions with long messages. We have derived closed-form
expressions to quantih the collective messaging times and
aggregated bandwidth on all three machines. For total
exchange with 64 nodes, the T3D, Paragon, and SP2
achieved an aggregated bandwidth of 1.745,0.879, and 0.
818 GByteds, respectively. These findings are useh1 to
those who wish to predict the MPP performance or to
optimize parallel applications by trade-offs between
divided computation and collective communication.

Keywords: Collective communications, multicom-
puters, message passing, startup latency, aggregated band-
width.

This.research was supported in part by MIT Lincoln Laboratory and in
part by the University of Hong Kong. The authors can be reached by
Email: kaihwang@cs.hku.hk, choming@diana.usc.edu, clwang@cs.hku.
hk

1: Introduction

Message Passing Interface (MPI) has become a com-
monly accepted communication standard for specifying
message-passing functions in programming multicomput-
ers or clusters of workstations [23]. A collective messag-
ing operation involves a group of software processes,
residing in the same or different nodes, to call the same
collective communication routine, with matching argu-
ments. Typical collective operations are broadcast,
gather, scatter, total exchange, barrier, reduce, scan @re-
f~), etc. These operations provide a common interface for
users to design their application codes.

In the past, benchmark results of MPI were mainly
focused on point-to-point communications. Only limited
amounts of timing data of collective operations were
reported for workstation clusters [26, 291, SP2 [lo, 3 I],
Paragon 1221, Convex SPP 181, and T3D [6] . Some bench-
mark suites [l l , 141 have also report MPI performance
results but lack of comparison among different machines.

In this paper, we evaluate the architectural support of
collective communication operations on three multicom-
puters; namely the IBM SP2 at MHPCC [21], the T3D at
Cray’s Eagan Center [l], and the Intel Paragon at SDSC
[28]. We measured the elapsed collective messaging time,
T(m, p) , with various combinations of the machine size, p,
and the message length, m. The machine size refers the
number of nodes involved in a collective communication
operation. The message size is measured by the number of
bytes per message between a pair of nodes.

The collective messaging time consists of two com-
ponents: the startup latency, To@) and the transmission
delay, D(m, p). The startup latency To is a function of p ,
which captures the software overhead in establishing a
collective operation over p processing nodes. The trans-
mission delay D covers all the time needed for the mes-
sage signals to flow through the hardware network and
memory hierarchy. Therefore, D depends on both the
message length m and the machine sizep. We shall report
the measured values of these terms in subsequent sections.

These two parameters are often used by application
developers to estimate the communication overhead and

0-8186-7764-3/97 $10.00 0 1997 IEEE
106

mailto:choming@diana.usc.edu

to reason about the optimization or parallelization strate-
gies. To determine the ultimate performance of a collec-
tive operation on a given network, the aggregated
bandwidth, R, (p) in MByte/s is defined as the total num-
ber of bytes communicated over all nodes during the data
transmission period of a collective operation, when the
message size approaches the infinity. This metric reflects
the saturated condition or the maximum capability of a
data communication network.

The reminder of the paper is organized as follows:
Section 2 provides the background on MPI collective
operations and their testing conditions on three target
machines. Section 3 formulates the performance model
used. Section 4 shows the latency results and discuss their
performance attributes. Section 5 presents the effects of
message length on the collective performance. Section 6
discusses the effects of machine sizes. Results on collec-
tive messaging timing are presented in Section 7. Derived
in Section 8 are the timing and aggregated bandwidth
expressions obtained. Finally, we summarize the contri-
butions of this work and offer suggestions for further
work to improve MPI collective operations on message-
passing multicomputers.

Operations

2: MPI Operations and Testing Conditions

Function description

Several implementations of MPI are available in the
public domain, such as the CHIMPMPI [2], LAM [24],
mpi++ [17], MPICH [20]. Many MPP venders have mod-
ified from these MPI packages to have their own versions,
optimized with respect to their own machine architecture.
For examples, the CRI/EPCC MPI [6] is available on the
T3D. The MPICH is currently ported on SP-2 and Para-
gon. These MPI implementations offer a rich set of collec-
tive operations as summarized in Table 1. In our
experiments, the data structures used are always made
small enough to fit in each node memory to avoid exten-
sive page faults. The test program is written in standard C
and the MPI primitives. No machine-specific library func-
tions nor any assembly codes are used. The best compiler
option to each given machine is always applied. Unless
otherwise noted, the test programs were compiled with cc
-0. The system resource is used in dedicated mode to
avoid interference from other user processes.

function. The test program is executed repeatedly for
more than 22 times, with timing starting on the third itera-
tion to exclude the warm-up effect. The minimal time, the
maximal time, and the mean time from all processes are
collected. To interpret the results, we focus on the maxi-
mal time, because w e feel it reflects the condition that all
processes involved in the machine have finished the oper-

We measure the wall clock time using MPI-Wtime (

MPI-Barrier

MPI-Alltoall

ation.

processes in the same group.

Blocks until all process have reached this routine.

Sends data from all to all processes.

Table 1. MPI Collective Operations Being Evaluated on Three
Multicomputers

I I I

collection of processes.

I MPI-Scatter I Sends data from one task to all other tasks in a group. 1

In all operations, single-precision (4-Byte) floating-
point numbers are used. In MPI, the data type of the mes-
sage elements is always MPI-FLOAT. In our testing runs,
we always assign only one process to each single node.
The number of nodes (processes) used ranges from 2,4, ...
., to 128 nodes. The message length m varies from 4, 16, .
.., to 64 K Bytes. We were allocated with at most 64 T3D
nodes from the Eagan Center. However, we were able to
use up to 128 nodes from the SP2 in MHPCC and the Par-
agon at SDSC. Therefore, only data points up to 64 nodes
are reported in subsequent sections for the T3D, and up to
128 nodes for the SP2 and Paragon.

One technical difficulty is that the allocated nodes are
often not time synchronized, each having its own clock. In
our experiment, the time delay of a collective communica-
tion operation is measured by the following procedure:

barrier synchronization
the-collective-routine-being-measured
get start-time
for (i=O; i < k; i++)
(

)
get end-time
local-time=(end-time-start-time)/k
communication-time=

maximum reduce(loca1-time)

the-collective-routine-being-measured

It is common that the first several runs of a test pro-
gram take considerably longer time (sometimes 10 times
higher) than the remaining execution runs. This is due to
the warm-up effect, such as loading the routine and data
into memory and cache, and initializing various buffers,
etc. Therefore, results from the first two 1 run are ignored.

Each node process executes a barrier. After the bar-
rier, the collective operation is executed k times by all p
processes involved. The average time of the k executions

107

1,000 -*-sF7.
-.-Paragon
--r--T3d

1 0 0 , O ~ ~

10 000 .

2 4 8 16 32 64 128
(a) B r o a d c a s t p, M achire Size

I
...

..........................&.A */Y

loo,ooo I
10 000

1,000

........................

I
10 -

2 4 8 16 32 64 128
(d) Gather p , Machine Size

100,000

..

1,000

2 4 8 16 32 64 128
(b) Total Exchange p,MachiwSize

1,000 , 1

yCA-.-.-.
.
I

100

10 1.....I
2 4 8 16 32 64 128

(e) Scan p, Machine Size

I 10,000 I-,

2 4 8 16 32 64 128
(c) Scat te r p. MachineSize

2 4 8 16 32 64 128
p, Machine Size (f) Reduce

FIGURE 1. Startup latencies, Tdp), of six MPI collective operations over three multicomputers with 2 to
128 nodes.

10,000

1,000 - z
F

100

[(a) Broadcast MessageLength&te)&

100,000 I I I

..........

100 - I
(d) Oather MessageLength (Byte)

I 1,000,000]Pi

1004 : : : : : I
" % 8 8 f R

" z z g k !
(b) Total Exchange MessageLengthGyte)@

100,000 , , 1
1 0,000

......

: * * * a * &

(e) Scan Message Length (Byte)

I 100.000 I

100,000 , 1

10 000

1,000

FIGURE 2. Collective messaging times,' T(m,32), of six MPI collective operations as a function of the
message length.

108

is calculated on each process. The time for a collective
operation is obtained through a reduction as the maximum
of allp average timing values, one from each process. The
test program is executed five times for each machine size
p , with the value of k fixed at 20. A barrier only synchro-
nizes the processes logically. It does not time-synchronize
the processes. Thus the processes do not necessarily start
to execute thefor loop at the same time.

Aggregated bandwidth (MByteh)

This metric reflects the maximum aggregated com-
munication capability of the network. Using this model,
four performance metrics are summarized in Table 2 for
the evaluation of collective operations, in general.

R, @)

Table 2.Performance Metrics of Collective Communication
Operations

Collective messaging time (ps) 1 q m , p) = T ~ @) + ~ (m , p)

3: Collective Performance Metrics

To quantify the communication time of MPI collec-
tive operations, we present a model which is generalized
from the model by Xu and Hwang [31]. The model con-
siders the overhead from both hardware and software in
collective communications. Through the generalized
model, we hope to reveal both the strength and weakness
of the underlying MPI implementations.

LetAm, p) be the aggregated message length in a col-
lective operation. This equals to the sum of all messages
being transmitted among all pairs of nodes in a collective
communication operation. For example, in a broadcast
operation, m is the length of the message broadcast fi-om
the source node, thus Am, p) = m(p - 1), because p - 1
destinations need to receive the same message. Similarly,
Am, p) = m(p - 1) for the scatter, gather, reduce, and scan
operations. We have Am, p) = mp(p - 1) for a total
exchange.

The collective messaging time, T(m, p) , incurred
with a collective operation is expressed as follows:

1 Transmission delay (ps) I

mated by measuring the collective messaging time for
a zero-byte or a short message, depending on the
acceptability of the empty message definition in the
target machine. This approximation is then used to
obtain D (m , p) = T (m , p) - T o (p) .

4: Startup Latencies and Attributes

T(m, PI = To@) + a m , PI (1)

where To@) denotes the startup latency and D(m, p) the
transmission deIay. Both terms can be obtained by a
curve-fitting method to be described shortly. The term
D(m, p) is computed by:

(2)

where R(m, p) is the aggregated bandwidth in MByteh.
As a matter of fact, the inverse term, l/R(m,p), is the min-
imum time required to pass a single byte in a collective
operation with an aggregated message sizeflm, p).

The R, @) introduced in Section 1 is related to R(m,
p) as follows:

The startup latency, TO@), is a monotonic increasing
function of the machine size, p . The measured latencies of
the three machines are plotted in Fig.1 for six collective
hnctional types. Except the scan operation, the T3D has
demonstrated the lowest startup latency in all collective
operations. The lowest latency of using the T3D is 35 p s
to broadcast a message to two nodes. On the 64-node T3D
configuration, we measured a latency of 150 ps, 1700
p s, 298 p s, 365 p s, 209 p s, and 253 p s for the broad-

f (m, PI
D (m , P) R (m , p)

cast, total exchange, scatter, gather, scan, and reduce

For broadcast operation, the SP2 has slightly higher
fO (3) operations, respectively. R,(p) = lim R (m , p) = lim

m+ob m + mD (m , P)

109

+T3D, long message

+Paragon short message
+T3D, short message x 100,000 - "

g 10,000 .-
E
Y -
9. 1,000
c
h
U

100

i o J J
2 4 8 16 32 64 128

(a) Broadcast p, M xhirw Size

1,000.000

4 100,000

p 10.000

8

5
s, 1,000
e
h

1-

Y

100

10 4 I
2 4 8 16 32 64 128

(b) Total Exchange p, M xhine Size

10,000,000

1,000,000

5 100,000

g 10,000

8
I

.-
E - -
Q 1,000
e
h
Y

100

10 1 I
2 4 8 16 32 64

(c) Scatter p, Machinesize

FIGURE 3. The collective messaging times, T(m,p),
as a function of machine size p for short
messages (m=16 Bytes) and long messages
(m=64 KBytes) for three message-passing
computers.

---I/ 10,000,000

1,000,ooo J I I
p 100,000

'g 1,000

e :: 10,000
b

A 2 100
Y

10 1 I
16 32 64 128 2 4 a

(d) Gather p, MachineSize

I lo,ooo,ooo 1 I
i l,ooo,ooo 1
I ~100.000 1 I 1 : 0 10,000

L .E 1,000
Y -
9. 100
b

16 32 64 128 2 4 8
(e) Scan p, M achine Size

10,000,000

1,000,000

100,000

f 10,000 8
(1 g 1,000 .-
E
Y

100
QI
8 101.1
b. 2 4 8 16 32 64 128

p,MxhineSize (f) Reduce

1,000,000

100,000

10,000

1,000
-
f
g 100 .-
E
I -

10 Q
0 Y Y ..A A I ti

v
h 1

32 p, M xi$& Size
28 4 8 16

2(g) Barrier

110

latency than Paragon (Fig. la). The Paragon has the long-
est latency in total exchange, scatter, gather, and reduce
operations. However, it performs the scan operation with
even shorter latency than the T3D (Fig. le). For collective
operations over a small number of nodes, the SP2 ranks a
second place in latency for the total exchange, scatter,
and gather operations.

Collectively messaging over large number of nodes,
the Paragon has much greater latency than others. To
summarize, we observe that the startup latency increases
linearly with increase in machine size for the gather, scat-
ter, and total exchange operations. The latency increases
logarithmically for the broadcast, scan, reduce, and bar-
rier operations, as larger machine configurations are used.

The startup latency includes the software overhead
caused by executing the kernel subsystem for message
passing. The T3D has a lower latency with special hard-
ware support for fast messaging, lower network latency
(20 ns per hop as opposed to 125 ns for the SP2, and 40 ns
for the Paragon), and the use ofprefetch queue and remote
processor store to hide remote memory access latencies
[l]. Although both SP2 and Paragon have ported the same
MPICH version, the SP2 requires longer latency for lack
of those hardware mechanisms in T3D [30]. The Paragon
demonstrated the longest latency for two reasons: the
longer NX messaging overhead and the routing delays in
the 2-D mesh network [7].

5: Effects of Message Length

In Fig. 2, the total messaging time, T(m, p), is plotted
as a function of the message length, m, for all three sys-
tems withp = 32 nodes. The time increases slowly when
the message length is shorter than 1024 bytes for all three
machines. Increasing the message length beyond 4
KBytes, the transmission delay, D(m, p), becomes the
dominant factor in the collective messaging time. For long
messages, the total messaging time increases almost lin-
early with respect to the increase in message length. The
T3D clearly shows the lowest messaging time in all col-
lective functions, except the Paragon performs the scan
operation with less time (Fig. 2e).

For short messages, the Paragon performs the worst
in total exchange, scatter, and gather operations, because
of excessive latency encountered. However, the Paragon
performs the broadcast, total exchange, scatter, gather
faster than the SP2 for longer messages. The SP2 requires
much longer time in passing long messages than either
T3D or Paragon.

To redude long messages beyond 64 KBytes, the SP2
shows the lowest messaging time (Fig. 20. The ranking
order of T3D, Paragon, and SP2 in total messaging time
have something to do with the reported network band-

widths of 300 MBytesh, 175 MBytesh, and 40 MBytesIs,
respectively. For example, in 64 node total exchange the
SP2 requires 3 17 ms to transmit messages of 64 KE3ytes
each. The total message exchanged is 256 MBytes and the
aggregated bandwidth is 847 MBytesh. Only 33% of the
raw aggregated bandwidth (2.56 Gbytesls = 40 MBytesI
s x 64 nodes) was consumed. On the Paragon and T3D, it
takes much less time to perform the same messaging oper-
ation because of higher network bandwidth provided.

Another reason that the T3D outperforms the others
in handling long messages is the use of the block transfir
engine (BLT) [IS]. This feature significantly reduce the
amount of time to total exchange or gather large amounts
of data among the nodes. It is interesting to observe that
the SP2 is faster than Paragon in handling short messages.
But for longer messages, the Paragon outperforms the SP2
in almost all operations except the reduce operation. This
crossover in the relative performance of the two machines
is attributed to the fact that the Paragon uses a higher
bandwidth network and a dedicated message processor
(860) per node to process long messages more effec-
tively. The long time to process short messages on the
Paragon is mainly due to the longer startup latency experi-
enced.

6: Effects of Machine Size

The relationship between the total messaging time
and machine size is plotted in Fig. 3. The lower three
curves correspond to a short message of 16 Bytes. The top
three curves are for a long message of 64 KBytes. The
time gaps between short and long messages reflects essen-
tially the transmission delays in each functional type.

In this section, we focus on the effects of machine
size on the messaging time. In general, the messaging
time grows linearly or logarithmically with respect to the
growth of the machine size. The curves in Fig. 3 are
obtained by actual measurements of the total messaging
time including the startup latency.

For short messages, these timing curves show a
steady growth pattern and a relative ranking among the
three machines very similar to the latency curves in Fig. 1.
This is because the latency portion of the total communi-
cation time is much higher than the transmission delays
measured for such a short message of 16 Bytes. However,
the total messaging time grows much closer to a linear
finction of the machine size, when long messages are
involved in the collective operations.

For the broadcast operation in Fig. 3a, the Paragon
performs about the same as the T3D for long messages.
But the Paragon performs as worse as the SP2 for short
messages. In the case of total exchange (Fig. 3b), the SP2

111

FlGURE4. Breakdown of timing results in six MPI collective operations over p=32 nodes with m=l
KBytes per message.

1500

'I1 .;;loo0
l o x
m 3 - f p 500 m

0
$ b z

* * *
" N

* * * v v p .

$ E t G Z Z E h ;
(a) B r o a d c a s t

300
250 1

* * *
N N N

v v -

E h ; $ 2 2
(c) S c a t t e r

400 , 1

4000, I

* * * v v -
E ; ; $ E t

(b) T o t a l Exchange

250

A A A
E h ;

* * * v v v
E h ; t f Z

(d) Gather

800 , I

600
'6 $400
m i e "

zs-
ga $200
p b E. 0

* * * v v v
E h ; $ E t

(f) Reduce

FIGURE 5. Aggregated bandwidths in performing different collective MPI operations on three different
machine sizes.

112

demonstrates that it performs better than the Paragon in
short messages. But the SP2 performs equally bad as the
Paragon in handling long messages.

It is interesting to observe the different ranking of the
three machines, as the message length changes from one
extreme to another. The switching in performance ranking
is also sensitive to the machine size. For an example, the
SP2 and Paragon switch in their performance ranking in
the scatter operation (long message curves in Fig. 3d) as
the machine size increases from 4 to 8.

The most dramatic change in machine ranking is
demonstrated in Fig. 3f, where the ordered ranking of
SP2, T3D, and Paragon for long messages is replaced by
the new order of T3D, Paragon, and SP2 for short mes-
sages. From these results in Fig. 3, we conclude that the
total messaging time is more sensitive to the rapid
increase in message length than to the slow change in
machine size.

~~~ 

Operation 

Barrier 

7: Breakdown of Timing Results 

~ 

SP2 T3D Paragon 

123 logp - 90 0.01 1 logp + 3 147 logp - 66 

The relative performance of the six collective func- 
tions are further illustrated in Fig. 4 based on a case study 
of machines with 32 nodes and 1 KE3yte per message. We 
divide the total messaging time into two portions in each 
bar: the darkened bar showing the startup latency and the 
white bar showing the transmission delay. For the same 
collective operation, the performance ranking of the three 
machines is inversely proportional to the height of the 
bars. Obviously, the total exchange demands the longest 
time to complete. 

The T3D shows the lowest startup latency in broad- 
cast, gather, and reduce operations. The latency in Para- 
gon varies dramatically with different collective hc t ions  
performed. For example, in the total exchange and gather 
operations, the Paragon experienced 3857 p s  and 2918 
p s latencies, about 4 to 15 times greater than the SP2 and 
T3D counterparts. 

Gather 

Scatter 
Reduce 

On the other hand, Paragon experienced a compara- 
ble low latency as others in the remaining operations. In 
the case of scan, the Paragon even shows a lower latency. 
Our explanation of this phenomena is attributed to differ- 
ent collective algorithms used. The Paragon used the least 
efficient schemes to implement the total exchange and 
gather operations through the NX messaging subsystem 
in the node kernel. As the message length increases, the 
transmission delays (the white portions of the bars) will 
increase linearly. 

(3.7p+ 128)+(0.022p- 0.011)m ( 5 . 3 ~  + 30) + (0 .0047~ + 0.0084)m (48p + 15) + (0.0081 p + 0.039)m 
( 5 . 8 ~  + 77) + ( 0 . 0 3 9 ~  - 0.12)m (4 .3p+67)+(0.0057p+O.I6)m (18p+78)+(0.0031p+O.O39)m 

(63 logp + 26) + (0.016 logp + 0.071)m (34 logp + 49) + (0.061 lo@ - 0.00035)m (77 logp + 3.6) + (0.16 logp - 0.028)m 

8: Timing and Bandwidth Expressions 

We have measured the messaging times of seven col- 
lective operations. The curve-fitted timing formulas for 
these collective operations are given in Table 3. The tim- 
ing formula, T(m,p), can be used to compute the actual 
execution time of the collective operation. For example, 
the total exchange time on the T3D is expressed by 
(26p+ 8.6) + ( 0 . 0 3 8 ~ - 0 . 1 2 ) m  in ps. Given m = 512 

Bytes andp = 64, the time to perform the total exchange 
is calculated as 2.86 ms using this timing expression. 

These formulas assist us in quantifying the total exe- 
cution time of different optimization strategies in parallel 
program development. To optimize the application code, 
possible combinations of (m, p )  should be tested to 
achieve a shorter execution time or a better efficiency for 
a given problem size. 

The first part of the formula in Table 3 is the startup 
latencies of collective operations for three parallel 
machines. We observe O(1ogp) startup latency in the bar- 
rier, scan, reduce, and broadcast operations. Most algo- 
rithms for implementing collective operations were aimed 
at minimizing the number of messages sent. A treelike 
algorithm is usually employed to deliver the message. In 
EPCCMPI, an unbalanced tree is formed among the par- 
ticipating processes to perform a barrier or a broadcast 
command; while a binary tree is formed to perform 
reduce operation [6].  

Table 3.Timing Expressions for Collective Communications on Three MPPs 

I Broadcast I (55 l o g p  + 30) + (0.014 logp + 0.053)m I (23 logp + 12) + (0.013 logp - 0.0071)m I (52 logp + 15) + (0.019 lo@ - 0.022)m I 

1 scan I (100 logp - 43) + (0.001Op + 0.23)m 1 (28 logp + 41) + (0 .0046~ + 0.12)m 1 (10 logp + 73) + (0 .0033~  + 0.28)m I 
I Total EXchWF 1 (24p + 90) + ( 0 . 0 8 2 ~  - 0.29)m I (26p+8.6)+(0.038p-O.I2)m I (97 p + 82) + (0.073 p - 0.10)m I 

113 



For the gather, scatter, and total exchange opera- 
tions, we observe O b )  latency time, since they are either 
many-to-one, one-to-many, or many-to-many communi- 
cation. In these cases, O b )  stages of data communication 
are required to move the data to its final destinations. 

The second part of the formula in Table 3 is the trans- 
mission delay, D(m,p). The aggregated bandwidth, R, @) 

for various collective operations is derived using the fol- 
lowing formula: 

(4) 

This function indicates the ultimate execution rate of 
a collective operation on a machine, when m becomes sig- 
nificantly long. In Fig. 5 ,  we plot the aggregated band- 
width, Rm @), against the machine size p .  The aggregated 
bandwidth monotonically increases for all collective oper- 
ations. However, their growth rates vary from function to 
function dramatically. The aggregated bandwidth can set 
the limit on the relative performance of machines with 
different sizes. For example, the scatter operation on the 
Paragon results in the highest aggregated bandwidth (Fig. 
5c). Therefore, Paragon is expected to have shorter mes- 
saging time compared with the SP2 and T3D of the same 
size. For 64 nodes, the aggregated bandwidths of total 
exchange for T3D, Paragon, and SP2 are 1.745, 0.879, 
and 0.818 GBytesh, respectively. 

For different collective functions, the ranking of their 
aggregated bandwidths changes from function to function 
dramatically. For example, the bandwidth ranking of the 
broadcast operation is T3D, Paragon, and SP2 in 
descending order. However, the machine ranking is 
changed to a new order, SP2, T3D, and Paragon, for the 
reduce operation. The message here is that one should not 
use the machine ranking for one collective operation to 
predict the relative machine performance of another col- 
lective operation. 

9: Conclusions 

Overall, we rank the T3D the highest in collective 
messaging performance, compared with the SP2 and Para- 
gon. The T3D does uniformly best in all collective func- 
tions, with the only exception of trailing the Paragon in 
performing the scan operation on 16 nodes or more. 

Considering message length, the SP2 outperforms the 
Paragon in any short messages less than I KBytes. The 
Paragon performs better than the SP2 in long messages, 
except the reduce operation. For short messages, the SP2 
and Paragon perform about the same in the broadcast and 
barrier operations. For long messages, the T3D and SP2 

have approximately the same performance in the broad- 
cast, scatter, and reduce operations. 

The T3D is well supported by some special hardware 
features, which helped lowering the startup latency as 
well as the transmission delay of large number of mes- 
sages in a collective communication. The hardwired barri- 
ers are effective to reduce the synchronization time on the 
T3D significantly. 

The Paragon is weak in handling short messages for 
its long latency from NX overhead in collective messag- 
ing passing. This surge in latency is especially true in per- 
forming the total exchange and gather operations on the 
Paragon. The SP2 is weak in handling long messages for 
its limited network bandwidth compared with the other 
two machines. 

The accuracy of our measured timing results could be 
offset slightly by the following six factors: First, the reso- 
lution of the timer affects the accuracy of measurement. 
Second, the interference from other users in the multicom- 
puter environment affects the measurement of the dedi- 
cated applications. Third, the warm-up effect forces us to 
throw away the results from initial runs due to cold caches 
or lack of data locality. Fourth, we experienced the limita- 
tion of a small local memory, such as 16 MBytes per node 
in some of the Paragon nodes. This may lead to excessive 
page faults or disk crushes. Fifth, the runtime node alloca- 
tion affects the implementation of a collective communi- 
cation pattern. Finally, none of the three target machines 
is supported by a truly real-time operating system, our 
measurements must bear some runtime conditions. 

The aggregated bandwidth introduced by Xu and 
Hwang [31] offers a better metric to quantify the data 
transfer rate in a collective message passing operation. 
The asymptotic bandwidth by Hockney [ 131 is only effec- 
tive in characterizing point-to-point communications. We 
did not apply the active messages (Culler, et al. [25]) or 
the MPI-FM (Chien, et al. [ 191) in our benchmark experi- 
ments, because they have not being widely ported on 
those target machines we have tested. We suggest 
extended research be conducted in evaluating the use of 
active messages or fast messages in MPI applications. 

Our results should be useful to those who are devel- 
oping parallel applications on message-passing multicom- 
puters. The collective latency and messaging time 
expressions and reported numerical data can be applied in 
trade-off studies of SPMD or MPMD computations using 
collective message passing. The latency and messaging 
delays can be used to predict MPP performance as 
reported in [32]. These results on communication over- 
head can be also used in the optimization of parallel appli- 
cations on multicomputers as reported in [15, 161. We 
shall report the entire STAP benchmark performance 
results in a separate paper. 

114 



Acknowledgments 

This work was carried out mainly at the University of 
Hong Kong, with part of the results generated at the Uni- 
versity of Southem California. We want to thank Wei- 
Chung Cheng and Shihg-Liang Ou of USC in producing 
some of the timing data. We would like to thank David 
Martinez and Robert Bond at MIT Lincoln Laboratory for 
their sponsorship of this work. We want also to thank the 
computing support groups at HKU and USC for their 
technical assistance in the benchmark experiments. 

References 

[l] D. Adams; “Cray T3D System Architecture Overview 
Manual,” Cray Research, Inc., (http://www.cray.com/PUB- 
LIC/product-info/mpp/CRAY-T3D.html), September 1993. 

[2] R. Alasdair, A. Bruce, J. G. Mills, and A. G. Smith; 
“CHIMP Version 2.0 User Guide,” University of Edin- 
burgh, March 1994. 

[3] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. 
Ho, S. Kipnis, and M. Snir; “CCL: A Portable and Turnable 
Collective Communication Library for Scalable Parallel 
Computers,” IEEE Transactions on Parallel and Distrib- 
uted Systems, 1995,6(2): pp 154- 164. 

[4] J. Bruck, L. de Coster, N. Dewulf, C.-T. Ho and R. Lauw- 
ereins, “On the Design and Implementation of Broadcast 
and Global Combine Operations Using the Postal Model,” 
IEEE Trans. on Parallel and Distributed Systems, Vol. 7, 

[SI G. Burns, R. Daoud, and J. Vaigl; “LAM: An Open Cluster 
Environment for MPI,” Ohio Supercomputer Center, (http:/ 
/www.osc.edu/lam.html), May 1994. 

[6] Kenneth Cameron, Lyndon J. Clarke, A. Gordon Smith; 
“CRIEPCC MPI for CRAY T3D,” 1st European Cray T3D 
Workshop, September 1995. 

[7] Thomas H. Dunigan; “Beta Testing the Intel Paragon MP,” 
Technical Report, ORNLK’M- 12830, Oak Ridge National 
Lab., June 1995. 

[8] Stephen Fleischman and Dan Golan; “MPI Collective 
Communication on the Convex Exemplar SPP-1000,” MPI 
Developers Conference, University of Notre Dame, June 
1995. 

[9] H. Franke, et al.; “MPI-F Programming Environment for 
SPUSP2,” 15th International Conference on Distributed 
Computing Systems, Vancouver British Columbia, CAN- 
ADA, May 1995. 

[ 101 Vasilios Georgitsis, and John S. Sobolewski; “Performance 
of MPL and MPICH on the SP2 System,” MPI Developers 
Cotzference, University of Notre Dame, June 1995. 

[ 1 11 Ian Glendinning; “The GENESIS Distributed-Memory 
Benchmark Suite Release 3.0,” (http://www.hpcc.soton.ac. 
uklRandD/genesis/genesis.html), 1994. 

[12] B. Groop, R. Lusk, T. Skjellum, and N. Doss; “Portable 
MPI Model Implementation,” Argonne National Labora- 
tory, Technical Report, July 1994. 

[13] Roger W. Hockney; “The Communication Challenge for 
MPP: Intel Paragon and Meiko CS-2,” Parallel Computing, 

[14] Roger W. Hockney and M. Berry; “Public International 

NO. 3, March 1996, pp. 256-265. 

1994, Vol. 20, pp. 389-398. 

Benchmarks for Parallel Computers: PARKBENCH Com- 
mittee Report No. 1,” ScientiJic Computing, Vol. 3, No. 2, 
February 1994, pp. 101-146. 

151 K. Hwang and Z. Xu; “Scalable Parallel Computers for 
Real-Time Signal Processing,” IEEE Signal Processing 
Magazine, July 1996, pp. 50-66. 

161 K. Hwang, Z. Xu, and M. Arakawa; “Benchmark Evalua- 
tion of the IBM SP2 for Parallel Signal Processing,” IEEE 
Trans. Parallel and Distributed Systems, May 1996, pp. 

171 Dennis Kafura, Liya Huang; ‘“pi++: A C++ Language 
Binding for MPI,” MPI Developers Conference, University 
of Notre Dame, June 1995. 

[ 181 R. Kent Koeninger, Mark Furtney, and Martin Walker; “A 
Shared Memory MPP from Cray Research,” Digital Tech- 
nicalJourna1, Vol. 6, No 2, 1994. 

[19] Mario Lauria and Andrew Chien; “MPI-FM: A High Per- 
formance MPI for Workstation Clusters,” (http://www- 
csag.cs.uiuc.edu/papers/index.html), March 1996. 

[20] Rusty Lusk, Nathan Doss, Anthony Skjellum, William 
Gropp; “MPICH: A High-Performance Portable Implemen- 
tation of the MPI Standard,” MPI Developers Conference, 
University of Notre Dame, June 1995. 

[21] MHPCC, MHPCC 400-Node SP2 Environment, Maui 
High-Performance Computing Center, Maui, HI, October 
1994. 

[22] Prasenjit Mitra, Robert van de Geijn, David G. Payne, and 
Lance Shuler; “Fast Collective Communication Libraries, 
Please,” Proceeding of the Intel Supercomputing Users’ 
Group Meeting1 995. 

[23] MPI Forum, “MPI: A Message-Passing Interface Stan- 
dard,” International Journal of Supercomputer Applica- 
tions, 1994, 8 (3/4). 

[24] N. Nevin; “The Performance of LAM 6.0 and MPICH 1 .O. 
12 on a Workstation Cluster,” Technical Report, OSC-TR- 
1996-4, Ohio Supercomputer Center, 1996. 

[25] NOW Project; “Efficient and Portable Implementation of 
MPI using Active Messages,” University of California, 
Berkeley, (http://now.cs.berkeley.edu/Fastcomm/mpi. 
html), July 10, 1996. 

[26] Natawut Nupairoj and Lionel M. Ni; “Performance Evalua- 
tion of Some MPI Implementations on Workstation Clus- 
ters,” Proceedings of the 1994 Scalable Parallel Libraries 
Conference, October 1994. 

[27] Natawut Nupairoj and Lionel M. Ni; “Benchmarking of 
Multicast Communication Services,” Technical Report 
MSU-CPS-ACS- 103, Dept. of Computer Science, Michi- 
gan State University, April 1995. 

[28] SDSC, SDSC’s Intel Paragon, San Diego Supercomputer 
Center, (http://www.sdsc.edu/Services/Consultaragon/ 
paragon.html), 1995. 

[29] Anthony Skjellum, Paula Vaughan, Christopher Roberts; 
“UNIFY: Interoperable MPI and PVM Programming in a 
Workstation-Network Environment,” MPI Developers 
Conference, University of Notre Dame, June 1995. 

[30] Graig B. Stunkel, et al.; “The SP2 Communication Sub- 
system,” IBM Technical Report, August 22, 1994. 

[31] Zhiwei Xu, and Kai Hwang; “Modeling Communication 
Overhead: MPI and MPL Performance on the IBM SP2,” 
IEEE Parallel & Distributed Technology, Spring 1996, pp. 

[32] Zhiwei Xu and Kai Hwang; “Early Prediction of MPP Per- 
formance: SP2, T3D, and Paragon Experiences,” Parallel 
Computing, October 1996. 

522-536. 

9-23. 

http://www.cray.com/PUB
http://www.hpcc.soton.ac
http://www
http://now.cs.berkeley.edu/Fastcomm/mpi
http://www.sdsc.edu/Services/Consultaragon

