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Abstract 
With the existence of many large transaction 

databases, the huge amounts of data,  the high scal- 
ability of distributed systems, and the easy partition 
and distribution of a centralized database, it is im- 
portant to inuestzgate eficient methods for distributed 
mining of association rules. This study discloses some 
interesting relationships between locally large and glob- 
ally large itemsets and proposes an interesting dis- 
tributed association rule mining algorithm, FDM (Fast 
Distributed Mining of association rules), which gener- 
ates a small number of candidate sets and substantially 
reduces the number of messages to be passed at min- 
ing association rules. Our performance study shows 
that FDM has a superior performance over the direct 
application of a typical sequential algorithm. Further 
performance enhancement leads to a few variations of 
the algorithm. 

1 Introduction 
An association rule is a rule which implies certain 

association relationships among a set of objects (such 
as “occur together” or “one implies the other”) in a 
database. Since finding interesting association rules 
in databases may disclose some useful patterns for 
decision support, selective marketing, financial fore- 
cast, medical diagnosis, and many other applications, 
it has attracted a lot of attention in recent data min- 
ing research [5]. Mining association rules may require 
iterative scanning of large transaction or relational 
databases which is quite costly in processing. There- 
fore, efficient mining of association rules in transaction 
and/or relational databases has been studied substan- 
tially [l, 2, 4,  8, 10, 11, 12, 14, 151. 
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Previous studies examined efficient mining of asso- 
ciation rules from many different angles. An influen- 
tial association rule mining algorithm, Apriori [2], has 
been developed for rule mining in large transaction 
databases. A DHP algorithm [lo] is an extension of 
Apriori using a hashing technique. The scope of the 
study has also been extended to efficient mining of se- 
quential patterns [3], generalized association rules [14], 
multiple-level association rules [8], quantitative asso- 
ciation rules [15], etc. Maintenance of discovered asso- 
ciation rules by incremental updating has been studied 
in [4]. Although these studies are on sequential data 
mining techniques, algorithms for parallel mining of 
association rules have been proposed recently [ll, 11. 

We feel that the development of distributed algo- 
rithms for efficient mining of association rules has its 
unique importance, based on the following reasoning. 
(1) Databases or data warehouses [13] may store a 
huge amount of data. Mining association rules in such 
databases may require substantial processing power, 
and distributed system is a possible solution. (2) 
Many large databases are distributed in nature. For 
example, the huge number of transaction records of 
hundreds of Sears department stores are likely to be 
stored at  different sites. This observation motivates 
us to study efficient distributed algorithms for min- 
ing association rules in databases. This study may 
also shed new light on parallel data mining. Further- 
more, a distributed mining algorithm can also be used 
to mine association rules in a single large database 
by partitioning the database among a set of sites and 
processing the task in a distributed manner. The high 
flexibility, scalability, low cost performance ratio, and 
easy connectivity of a distributed system makes it an 
ideal platform for mining association rules. 

In this study, we assume that the database to be 
studied is a transaction database although the method 
can be easily extended to relational databases as well. 
The database consists of a huge number of transac- 
tion records, each with a transaction identifier (TID) 
and a set of data items. Further, we assume that the 
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database is “horizontally” partitioned (i.e., grouped 
by transactions) and allocated to the sites in a dis- 
tributed system which communicate by message pass- 
ing. Based on these assumptions, we examine dis- 
tributed mining of association rules. It has been well 
known that the major cost of mining association rules 
is the computation of the set of large itemsets (i.e., fre- 
quently occurring sets of items, see Section 2.1) in the 
database [2].  Distributed computing of large itemsets 
encounters some new problems. One may compute lo- 
cally large itemsets easily, but a locally large itemset 
may not bc globally large. Since it is very expensive 
to broadcast the whole data set to other sites, one op- 
tion is to broadcast all the counts of all the itemsets, 
no matter locally large or small, to other sites. How- 
ever , a database may contain enormous combinations 
of itemsets, and it will involve passing a huge number 
of messages. 

Based on our observation, there exist some interest- 
ing properties between locally large and globally large 
itemsets. One should maximally take advantages of 
such properties to reduce the number of messages to 
be passed and confine the substantial amount of pro- 
cessing to local sites. As mentioned before, two al- 
gorithms for parallel mining of association rules have 
been proposed. The two proposed algorithms PDM 
and Count Distribution (CD) are designed for share- 
nothing parallel systems [ll, 13. However, they can 
also be adapted to distributed environment. We have 
proposed an efficient distributed data mining algo- 
rithm FDM (Fast Distributed Mining of associatzon 
rules), which has the following distinct feature in com- 
parison with these two proposed parallel mining algo- 
rithms. 

1. The generation of candidate sets is in the same 
spirit of Apriori. However, some interesting rela- 
tionships between locally large sets and globally 
large ones are explored to generate a smaller set of 
candidate sets at each iteration and thus reduce 
the number of messages to be passed. 

2. After the candidate sets have been generated, two 
pruning techniques, local pruning and global prun- 
ing, are developed to prune away some candidate 
sets at each individual sites. 

3. In order to determine whether a candidate set is 
large, our algorithm requires only O(n)  messages 
for support count exchange, where n is the num- 
ber of sites in the network. This is much less than 
a straight adaptation of Apriori, which requires 
O(n2)  messages. 

Notice that several different combinations of the 
local and global prunings can be adopted in FDM. 
We studied three versions of FDM: FDM-LP, FDM- 
LUP, and FDM-LPP (see Section 4), with similar 

framework but different combinations of pruning tech- 
niques. FDM-LP only explores the local prunzng; 
FDM-LUP does both local pruning and the upper- 
bound-prunzng; and FDM-LPP does both local prun- 
ing and the pollang-szte-prunang. 

Extensive experiments have been conducted to 
study the performance of FDM and compare it against 
the Count Distribution algorithm. The study demon- 
strates the efficiency of the distributed mining algo- 
rithm. 

The remaining of the paper is organized as follows. 
The tasks of mining association rules in sequential as 
well as distributed environments are defined in Sec- 
tion 2. In Section 3, techniques for distributed mining 
of association rules and some important results are dis- 
cussed. The algorithms for different versions of FDM 
are presented in Section 4. A performance study is re- 
ported in Section 5. Our discussions and conclusions 
are presented respectively in Sections 6 and 7. 

2 Problem Definition 
2.1 Sequential Algorithm for Mining As- 

sociation Rules 
Let I = { i l , i 2 , .  . .,im} be a set of atems. Let D B  

be a database of transactions, where each transaction 
T consists of a set of items such that T C I .  Given an 
ztemset X C I ,  a transaction T contazns X if and only 
if X T .  An assocaatzon rule is an implication of the 
form X a Y ,  where X C_ I ,  Y 2 I and X n Y = 0. 
The association rule X j Y holds in D B  with confi- 
dence c if the probability of a transaction in D B  which 
contains X also contains Y is e. The association rule 
X Y has support s in D B  if the probability of a 
transaction in D B  contains both X and Y is s. The 
task of mining association rules is to find all the asso- 
ciation rules whose support is larger than a mznamum 
support threshold and whose confidence is larger than 
a mznzmum confidence threshold. 

For an itemset X ,  its support is the percentage of 
transactions in DB which contains X ,  and its support 
count, denoted by X.sup, is the number of transactions 
in D B  containing X .  An itemset X is large (or more 
precisely, frequently occurrzng) if its support is no less 
than the minimum support threshold. An itemset of 
size k is called a k-ztemset. It has been shown that the 
problem of mining association rules can be reduced to 
two subproblems [2]: (1) find all large itemsets for Q 

gaven mznzmum support threshold, and (2) generate the 
association rules from the large atemsets found. Since 
(1) dominates the overall cost of mining association 
rules, the research has been focused on how to develop 
efficient methods to solve the first subproblem [a] .  

An interesting algorithm, Aprzorz [a] ,  has been pro- 
posed for computing large itemsets a t  mining asso- 
ciation rules in a transaction database. There have 
been many studies on mining association rules using 
sequential algorithms in centralized databases (e.g., 
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[lo,  14, 8,  12, 4, 15]), which can be viewed as vari- 
ations or extensions to Apriori. For example, as an 
extension to Apriori, the DHP algorithm [lo] uses a 
direct hashing technique to eliminate some size-2 can- 
didate sets in the Apriori algorithm. 
2.2 Distributed Algorithm for Mining As- 

sociation Rules 
We examine the mining of association rules in a 

distributed environment. Let DB be a database 
with D transactions. Assume that there are n 
sites S1,S2,. . . , Sn in a distributed system and the 
database DB is partitioned over the n sites into 
(DB1, DB2,. . . , DB,}, respectively. 

Let the size of the partitions DBi be Di, for 
i = 1 , .  . . , n. Let X.sup and X.supi be the support 
counts of an itemset X in DB and DBi, respectively. 
X.sup is called the global support count, and X.supi 
the local support count of X at site Si. For a given 
minimum support threshold s ,  X is globally large if 
X.sup 2 s x D; correspondingly, X is locally large at 
site Si, if X.supi 2 s x Di. In the following, L de- 
notes the globally large itemsets in DB, and L(k) the 
globally large k-itemsets in L.  The essential task of 
a distributed association rule mining algorithm is to 
find the globally large itemsets L.  

For comparison, we outline the Count Distribution 
(CD) algorithm as the follows [l]. The algorithm is an 
adaptation of the Apriori algorithm in the distributed 
case. At each iteration, CD generates the candidate 
sets at every site by applying the Apriorigen function 
on the set of large itemsets found at  the previous it- 
eration. Every site then computes the local support 
counts of all these candidate sets and broadcasts them 
to all the other sites. Subsequently, all the sites can 
find the globally large itemsets for that iteration, and 
then proceed to the next iteration. 

3 Techniques for Distributed Data 

3.1 Generation of Candidate Sets 
It is important to observe some interesting proper- 

ties related to large itemsets in distributed environ- 
ments since such properties may substantially reduce 
the number of messages to be passed across network 
at  mining association rules. 

There is an important relationship between large 
itemsets and the sites in a distributed database: every 
globally large itemsets must be locally large at some 
site(s). If an itemset X is both globally large and locally 
large at  a site Si, X is called gl-large at site Si. The 
set of gl-large itemsets at a site will form a basis for 
the site to  generate its own candidate sets. 

Two monotonic properties can be easily observed 
from the locally large and gl-large itemsets. First, if 
an itemset X is locally large at a site Si, then all of 
its subsets are also locally large at site Si. Secondly, 
if an itemset X is gl-large at a site Si, then all of 
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its subsets are also gl-large at  site Si. Notice that a 
similar relationship exists among the large itemsets in 
the centralized case. Following is an important result 
based on which an effective technique for candidate 
sets generation in the distributed case is developed. 

Lemma 1 I f  an itemset X is globally large, there ex- 
ists a site Si, (1 < i < n) ,  such that X and all its 
subsets are gl-large at site Si. 
Proof. If X is not locally large at any site, then 
X.supi < s x Di for all i = 1 , .  . . , n. Therefore, 
X.sup < s x D, and X cannot be globally large. By 
contradiction, X must be locally large at some site Si, 
and hence X is gl-large at Si. Consequently, all the 
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We use GLi to denote the set of gl-large itemsets 
at site Si, and GLi(k) to denote the set of gl-large k- 
itemsets at site Si. It follows from Lemma 1 that if 
X E L ( k ) ,  then there exists a site si, such that all its 
size-(k - 1) subsets are gl-large at site Si, i.e., they 
belong to GLi(k-1). 

In a straightforward adaptation of Apriori, the set 
of candidate sets a t  the k-th iteration, denoted by 
CA(k),  which stands for size-k candidate sets from 
Apriori, would be generated by applying the Apri- 
origen function on L ( k - 1 ) .  That is, 

subsets of X must also be gl-large at Si. 

CA(k) = Apriori-gen(L(k-1)). 

At each site Si, let CGi(k) be the set of candidates 
sets generated by applying Apriorigen on GLi(k-11, 
i.e., 

CGi(k) = Apriori-gen( GL,(k- 1 )), 
where CG stands for candidate sets generated from 
gl-large itemsets. Hence CGi(k) is generated from 
GLi(k-l). Since GLi(k-1) 5 L(k- l ) ,  CGqk) is a sub- 
set of CA(k). In the following, we use CG(k) to denote 
the set Uy="=,Gi(k). 

Theorem 1 For every IC > 1, the set of all large k- 
itemsets L(k) is Q subset of CG(k) = CGi(k), 
where CGi(k) = Apriori-gen( GL,(k- 1)). 
Proof. Let X E L ( k ) .  It follows from Lemma 1 that 
there exists a site Si, (1 5 i < n) ,  such that all the 
size-(k - 1) subsets of X are gl-large at site Si. Hence 
X E CGi(k). Therefore, 

L ( k )  G CG(k) = U CGi(k) = U Apriori-gen(GL,(k-I)). 
n n 

i=l i=l 

U 

Theorem 1 indicates that CG(k), which is a subset 
of CA(k) and could be much smaller than CA(,), can 
be taken as the set of candidate sets for the size-k large 
itemsets. The difference between the two sets, CA(k) 



and CG(k), depends on the distribution of the item- 
sets. This theorem forms a basis for the generation 
of the set of candidate sets in the algorithm FDM. 
First the set of candidate sets CG!i(k) can be gener- 
ated locally at each site Si at the k-th iteration. After 
the exchange of support counts, the gl-large itemsets 
GLqk) in CGi(k) can be found at the end of that itera- 
tion. Based on GL;(k), the candidate sets at Si for the 
(k + 1)-st iteration can then be generated. According 
to the performance study in Section 5, by using this 
approach, the number of candidate sets generated can 
be substantially reduced to about 10 - 25% of that 
generated in CD. 

Example 1 illustrates the effectiveness of the reduc- 
tion of candidate sets using Theorem 1. 

Example 1 Assuming there are 3 sites in a system 
which partitions the DB into DB1, DB2 and DB3. 
Suppose the set of large 1-itemsets (computed at 
the first iteration) L(1) = { A , B , C , D ,  E ,  F ,G,H} ,  
in which A, B ,  and C are locally large at site 
S I ,  I?, 6, and D are locally large at site S2, and 
E ,  F,C, and H are locally large att site S3. There- 
fore, G I q l )  = ( A , B , C } ,  GL2(1) = { B , C ,  D} ,  
and GL3(1) = {E ,F ,G ,  H } .  Based on Theo- 
rem I ,  the set of size-2 candidate sets at site SI is 
CG1(2), where CGI(2) = Apriori.gen (GLI(1) )  = 
( A B ,  BC, AC}. Similarly, CG2(2) = {BC,  CD, BD},  
and CG3(2) = {EF,  EG, EH, FG, FH,GH}. Hence, 
the set of candidate sets for large 2-itemsets is 
CG(2) = CGl(2) U CGZ(2) U CG3(2), total 11 candi- 
dates. However, if Apriori-gen is applied to L(1),  the 
set of candidate sets CA(2) = Apriori-gen(L(l)) would 
have 28 candidates. This shows that it is very effective 
to apply Theorem 1 to reduce the candidate sets. 0 

3.2 Local Pruning of Candidate Sets 
The previous subsection shows that based on The- 

orem 1, one can usually generate in a distributed en- 
vironment a much smaller set of candidate sets than 
the direct application of the Apriori algorithm. 

When the set of candidate set C'G(k) is generated, 
to find the globally large itemsets, i,he support counts 
of the candidate sets must be exchainged among all the 
sites. Notice that some candidate sets in CG(k) can be 
pruned by a local pruning technique before count ex- 
change starts. The general idea is that at each site Si, 
if a candidate set X E CG,(k) is not locally large at site 
Si, there is no need for S, to find out its global support 
count to determine whether it is gllobally large. This 
is because in this case, either X is small (not glob- 
ally large), or it will be locally large at some other 
site, and hence only the site(s) at which X is locally 
large need to be responsible to find the global support 
count of X .  Therefore, in order to compute all the 
large k-itemsets, at each site Si, the candidate sets 
can be confined to only the sets X E CGi(k) which are 

locally large at site Si. For convenience, we use LL;(k) 
to denote those candidate sets in CGi(k) which are lo- 
cally large at  site Si. Based on the above discussion, 
at every iteration (the k-th iteration), the gl-large k- 
itemsets can be computed at each site Si according to 
the following procedure. 

1. Candidate sets generation: Generate the candidate 
sets CGi(k) based on the gl-large itemsets found 
at site Si at the ( k  - 1)-st iteration using the 
formula, CG;(k) = Apriori-gen ( GLz(k- l ) ) .  

2. Local pruning: For each X E CGi(k), scan the 
partition DBi to compute the local support count 
X.supi. If X is not locally large at site Si, it is 
excluded from the candidate sets & ( k ) .  (Note: 
This pruning only removes X from the candidate 
set at site Si. X could still be a candidate set at 
some other site.) 

3. Support count exchange: Broadcast the candidate 
sets in LL;(k) to other sites to collect support 
counts. Compute their global support counts and 
find all the gl-large k-itemsets in site Si. 

4. Broadcast min ing results: Broadcast the computed 
gl-large k-itemsets to all the other sites. 

For clarity, the notations used so far are listed in 
Table 1. 

number of transactions in DB 
support threshold minsup 
globally large k-itemsets 
candidate sets generated from L ( k )  
global support count of X 
number of transactions in DBi 
gl-large k-itemsets at Si 
candidate sets generated from GLi(k-1) 
locally large k-itemsets in CGi(k) 
local support count of X at Si 

Table 1: Notation Table. 

To illustrate the above procedure. we continue 
working on Example 1 as follows. 

Example 2 Assume the database in Example 1 con- 
tains 150 transactions and each one of the 3 parti- 
tions has 50 transactions. Also assume that the sup- 
port threshold s = 10%. Moreover, according to Ex- 
ample 1, at the second iteration, the candidate sets 
generated at site SI are CG1(2) = {AB,  BC,AC};  
at site S2, CGq2) = {BC, BD, CD};  and at site S3, 
CG3(2) = (EF,  EG, EH, FG, F H ,  GH}. In order to 
compute the large 2-itemsets, the local support counts 
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Table 2: Locally Large Itemsets. 

large request 
candidates from 

AB s1 
BC Sl ,  s2 
CD s2 
EF s3 
GH s3 

at each site is computed first. The result is recorded 
in Table 2. 

From Table 2, it can be seen that AC.sup1 = 2 < 
s x D1 = 5. AC is not locally large. Hence, the 
candidate set AC is pruned away at site S I .  On the 
other hand, both A B  and BC have enough local s u p  
port counts and they survive the local pruning. Hence 
LLq2) = { A B ,  BC}. Similarly, LL2(2) = {BC, CD},  
and LL3(2) = { E F ,  GH}.  After the local pruning, the 
number of size-2 candidate sets has been reduced to 
five which is less than half of the original size. Once 
the local pruning is completed, each site broadcasts 
messages containing all the remaining candidate sets 
to the other sites to collect their support counts. The 
result of this count support exchange is recorded in 
Table 3. 

1 

5 4 4 
10 10 2 
4 8 4 
4 3 8 
4 4 6 

Table 3: Globally Large Itemsets. 

The request for support count for AB is broad- 
casted from SI to site S2 and 5’3, and the counts 
sent back are recorded at site S1 as in the second row 
of Table 3. The other rows record similar count ex- 
change activities at the other sites. At the end of 
the iteration, site S1 finds out that only BC is gl- 
large, because BC.sup = 22 > s x D = 15, and 
AB.sup = 13 < s x D = 15. Hence the gl-large 
2-itemset a t  site S1 is GLl(2) = {BC}.  Similarly, 
GL2(2) = {BC,CD} and GL3(2) = { E F } .  After the 
broadcast of the gl-large itemsets, all sites return the 
large 2-itemsets 4 2 )  = {BC, CD, E F } .  

Notice that some candidate set, such as BC in this 
example, could be locally large at more than one site. 
In this case, the messages are broadcasted from all the 

sites at which BC is found to  be locally large. This 
is unnecessary because for each of candidate itemset, 
only one broadcast is needed. In Section 3.4, an opti- 
mization technique to eliminate such redundancy will 
be discussed. 0 

There is a subtlety in the implementation of the 
four steps outlined above for finding globally large 
itemsets. In order to support both step 2, “local prun- 
ing”, and step 3, “support count exchange”, each site 
Si must have two sets of support counts. For local 
pruning, Si has to find the local support counts of its 
candidate sets CGi(k). For support count exchange, 
Si has to find the local support counts of some possi- 
bly different candidate sets from other sites in order 
to answer the count requests from these sites. A sim- 
ple approach would be to scan DBi twice, once for 
collection of the counts for the local CGqk), and once 
for responding to the count requests from other sites. 
However, this would substantially degrade the perfor- 
mance. 

At Si, 
not only is CG;(k) available at the beginning of the 
H-th iteration, but also are other sets, i.e., CGj(k) 
( j  = 1 , .  . . , n,  j # i), because all the GLi(k-l), 
(i = 1 , .  . . , n), are broadcasted to every site at the 
end of the (H - 1)-st iteration, and the sets of can- 
didate sets CGqk), (i = 1, . . . , n) ,  are computed from 
the corresponding GLi(k-1). That is, at the beginning 
of each iteration, since all the gl-large itemsets found 
at the previous iteration have been broadcasted to all 
the sites, every site can compute the candidate sets of 
every other site. Therefore, the local support counts 
of all these candidate sets can be found in one scan 
and stored in a data structure like the hash-tree used 
in Apriori [2]. Using this technique, the data structure 
can be built in one scan, and the two different sets of 
support counts required in the local pruning and sup- 
port count exchange can be retrieved from this data 
structure. 
3.3 Global Pruning of Candidate Sets 

The local pruning at a site Si uses only the local 
support counts found in DBi to prune a candidate 
set. In fact, the local support counts from other sites 
can also be used for pruning. A global pruning tech- 
nique is developed to facilitate such pruning and is 
outlined as follows. At the end of each iteration, all 
the local support and global support counts of a can- 
didate set X are available. These local support counts 
can be broadcasted together with the global support 
counts after a candidate set is found to be globally 
large. Using this information, some global pruning 
can be performed on the candidate sets at the subse- 
quent iteration. 

Assume that the local support count of every can- 
didate itemset is broadcasted to all the sites after it 
is found to be globally large at the end of an itera- 

In fact, there is no need of two scans. 
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tion. Suppose X is a size-k candidiate itemset at the 
k-th iteration. Therefore, the local support counts of 
all the size-(k - 1) subsets of X are available at every 
site. With respect to a partition DBi ,  (1 5 i 5 n) ,  
we use mazsup i (X)  to denote the minimum value of 
the local support counts of all the size-(k - 1) sub- 
sets of X ,  i.e, m a z s u p i ( X )  = min{Y.supi I Y c 
X and IYI = k - 1). It follows from the subset 
relationship that mazsup i (X)  is a n  upper bound of 
the local support count X.supi. Hence, the sum of 
these upper bounds over all partitions, denoted by 
m a z s u p ( X ) ,  is an upper bound of X.sup. In other 
words, X.sup 5 maxsup(X)  = mazsup i (X) .  
Note that m a z s u p ( X )  can be computed at every 
site at the beginning of the k-th iteration. Since 
m a z s u p ( X )  is an upper bound of its global support 
count, it can be used for pruning, i.e., if mazsup(X)  < 
s x D, then X cannot be a candidate itemset. This 
technique is called global pruning. 

Global pruning can be combined with local pruning 
to form different pruning strategies. Two particular 
variations of this strategy will be adopted when we 
introduce several versions of FDM in Section 4. The 
first method is called upper-boundpruning and the 
second one is called polling-site-pruning. We will dis- 
cuss the upper-bound-pruning met hod here in detail. 
The polling-site-pruning method will be explained in 
Subsection 4.3. In the upper-boundl-pruning, a site Si 
first uses the techniques in Subsections 3.1 and 3.2 to 
generate and perform local pruning on the candidate 
sets. Before count exchange starts, the site Si applies 
global pruning to the remaining candidate sets. A 
possible upper bound of the global support count of a 
candidate set X is the sum 

x.supi + 2 m a z s u p j ( X ) .  
j=1 ,j#i 

where X.supi is found already iin the local prun- 
ing. Therefore, this upper bound can be computed 
to prune the candidate set X at  site Si. 

Example 3 We examine the global pruning at S1 af- 
ter the local pruning done in Example 2. According 
to Table 2, the survived candidate sets in the local 
pruning are AB and BC. Their lolcal support counts 
at SI can be found in Table 2. Furthermore, the local 
support counts of their subsets from all the sites are 
also available at SI and are listed in Table 4. 

From Tables 2 and 4, an upper bound of the support 
count of A B ,  (denoted by AB.-), is given by 

A B . W  = AB.sup1 + min(A.sup2, B.sup2) + 
min(A.sup3, B . s u ~ ~ )  = 5 + 4 + 4 =I 13 < s x D. 

Since this upper bound is less than the support thresh- 
old, AB is removed from the set of candidate itemsets. 

large 
1-itemset 

A 

local support count at S1 
X.supl 1 X.sup2 I X.sup3 

6 I 4 4 
B 
C 

Table 4: Local Support Counts. 

10 10 5 
4 12 5 

On the other hand, an upper bound of the support 
count of BC, (denoted by B C . W ) ,  is given by 

B C . W  = BC.sup1 + min(B.sup2, B.sup2) + 
min(B.sup3, C . S U ~ Q )  = 10 + 10 + 5 = 25 > s x D. 

Since it is larger than the threshold, BC is not pruned 
away and remains as a candidate itemset at SI. 0 

Global pruning is a useful technique for reducing 
the number of candidate sets. Its effectiveness depends 
on the distribution of the local support counts. 
3.4 Count Polling 

In the CD algorithm, the local support count of 
every candidate itemset is broadcasted from every site 
to every other site. Therefore, the number of messages 
required for count exchange for each candidate itemset 
is O(n2) ,  where n is the number of partitions. 

In our method, if a candidate itemset X is locally 
large at a site Si, Si needs O(n)  messages to collect all 
the support counts for X .  In general, few candidate 
itemsets are locally large at all the sites. Therefore, 
the FDM algorithm will usually require much less than 
O(n2) messages for computing each candidate itemset. 
To ensure that FDM requires only O(n)  messages for 
every candidate itemset in all the cases, a count polling 
technique is introduced. 

For each candidate itemset X ,  the technique uses 
an assignment function, which could be a hash func- 
tion on X ,  to  assign X a polling site (assuming that 
the assignment function is known to every site.) The 
polling site assigned to X is independent of the sites 
in which X is founded to be locally large. Therefore, 
even if X is found to be locally large at more than one 
site, it will still be sent to the same polling site. For 
each candidate itemset X ,  its polling site is responsi- 
ble to find out whether X is globally large. To achieve 
that purpose, the polling site of X has to broadcast the 
polling request for X ,  collect the local support counts, 
and compute the global support count. Since there is 
only one polling site for each candidate itemset X ,  the 
number of messages required for count exchange for X 
is reduced to O(n) .  

At the k-th iteration, after the pruning phase, (both 
local and global pruning), has been completed, FDM 
uses the following procedure at each site Si to do the 
count polling. 
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1. Send candidate sets to polling sites: At site Si, 
for every polling site Sj, find all the candidate 
itemsets in LLi(k) whose polling site is Sj and 
store them in LLi,j(k) (i.e., candidates are being 
put into groups by their polling sites). The local 
support counts of the candidate itemsets are also 
stored in the corresponding set LLi,j(k).  Send 
each L L i , j ( k )  to the corresponding polling site Sj. 

2. Poll and collect support counts: If Si is a polling 
site, Si receives all LLj,i(k) sent to it from the 
other sites. For every candidate itemset X re- 
ceived, Si finds the list of originating sites from 
which X is being sent. Si then broadcasts the 
polling requests to the other sites not on the list 
to collect the support counts. 

3. Compute gl-large itemsets: Si receives the support 
counts from the other sites, computes the global 
support counts for its candidates, and finds the gl- 
large itemsets. Eventually, Si broadcasts the gl- 
large itemsets together with their global support 
counts to all the sites. 

Example 4 In Example 2, assuming that S1 is as- 
signed as the polling site of A B  and B C ,  Sz is as- 
signed as the polling site of CD,  and S, is assigned as 
the polling site of EF and GH.  

Following from the assignment, site S1 is responsi- 
ble for the polling of A B  and B C .  In the simple case of 
A B ,  Si sends polling requests to Sz and S3 to collect 
the support counts. As for B C ,  it is locally large at 
both Si and Sz, the pair (BC, BC.supz) = ( B C ,  10) 
is sent to Si by Sz. After SI receives the message, it 
sends a polling request to the remaining site 5’3. Once 
the support count BC.sup3 = 2 is received from S3, 
Si finds out that BC.sup = 10 + 10 i- 2 = 22 > 15. 
Hence B C  is a gl-large itemset at S i .  In this exam- 
ple, with a polling site, the double polling messages 
for B C  has been eliminated. cl 

4 Algorithm for Distributed Mining of 
Association Rules 

In this section, the basic version of FDM, i.e., the 
FDM-LP (FDM with Local Pruning) algorithm, is 
first presented, which adopts two techniques: candi- 
date set reduction and local pruning, discussed in Sec- 
tion 3. According to our performance study in Sec- 
tion 5, FDM-LP is much more efficient than CD. 
4.1 The FDM-LP algorithm 
Algorithm 1 FDM-LP: FDM with Local Prun- 
ing 

Input: DBi (i = 1 , .  . . , n):  the database partition at 
each site Si. 

Output: L: the set of all globally large itemsets. 

Method: Iteratively execute the following program 
fragment (for the k-th iteration) distributively at 
each site Si. The algorithm terminates when 
either L ( k )  = 0, or the set of candidate sets 
CG(k) = 0. 

(1) 
(2) z(1) = get-local-count(DBi, 0 , l )  
(3) else { 

if k = 1 then 

(4) CG(k) = UZ“=,Gf(k). 
= Uin,,Aprzorz-gen(GLi(k-l)); 

q ( k )  = get-local-count(DBi, CG(k), i) ; } 

if X.supi 2 s x Di then 
for j = 1 to n do 

(5) 
(6) 
(7) 

for-all X E q ( k )  do 

if polling-site(X) = Sj then 
(8) 
(9) 

insert ( X ,  X.supi) into LLi,j(k);  
(10) for j = 1 , .  . . , n do send LLi,j(k) to site Sj; 
(11) for j = 1, . . . , n do { 
(12) receive LLj,i(k);  

(13) for-all X E LLj,i(k) do { 
if X $2 LPqk) then 

insert X into LPqk); 
(14) 

(15) update X.large-sites; } } 
(16) for-all X E LPi(b) do 
(17) send-pollzng-request ( X ) ;  
(18) reply-pol l ing-reques t (~(k) ) ;  
(19) for-all X E LPi(k) do { 
(20) receive X.supj from the sites Sj ,  

where Sj # X.largesites; 

if X.sup 2 s x D then 
(21) x . s u p  = cy=l x.supi;  
(22) 

(23) broadcast Gqk); 
(24) receive Gj(k) from all other sites Sj, ( j  # i); 

(26) divide L ( k )  into GLi(k), (i = 1 , .  . . , n) ;  
(27) return L ( k ) .  

insert X into G q k ) ;  } 

(25) L ( k )  = UY=IGi(k). 

Explanation of Algorithm 1 
In Algorithm 1, every site Si is initially a “home 

site” of a set of candidate sets that it generates. Later, 
it becomes a polling site to serve the requests from 
other sites. Subsequently, it changes its status to a 
remote site to supply local support counts to other 
polling sites. The corresponding steps in Algorithm 1 
for these different roles and activities are grouped and 
explained as the follows. 

1. H o m e  site: generate candidate sets and submit 
them to polling sites (lines 1 - 10). 

At the first iteration, the site Si calls 
get-local-count to scan the partition DBi once 
and store the local support counts of all the 1- 
itemsets found in the array q(1). At the k-th (for 
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2. 

3. 

4. 

5. 

k > 1) iteration, Si first compultes the set of can- 
didate set CG(k), and then scans DBj to build 
the hash tree ?;:(k) containing the locally support 
counts of all the sets in CG(1,). By traversing 
T i ( k ) ,  Si finds out all locally large k-itemsets and 
group them according to their polling sites. Fi- 
nally, it sends the candidate sets with their local 
support counts to their polling sites. 

Polling site: receive candidate sets and send polling 
requests (lines 11 - 17). 
As a polling site, site Si receives candidate sets 
from the other sites and insert them in LPip). 
For each candidate set X E LP,(k , S, stores all its 
“home” sites in X.large-sites, w h ich contains all 
those sites from which X is sent to Si for polling. 
In order to perform count exchange for X ,  S, calls 
sendqolling-request to send X to those sites not 
in the list X.large-sites to colliect the remaining 
support counts. 

Remote site: return support counts to polling site 
(line 18). 
When Si receives polling requests from the other 
sites, it acts as a remote site. For each candidate 
set Y it receives from a polling site, it retrieves 
Y.supi from the hash tree x ( k )  and returns it to 
the polling site. 

Polling site: receive support counts and find large 
itemsets (lines 19 - 23 ). 
As a polling site, Si receives the local support 
counts for the candidate sets in LPi(k). Following 
that, it computes the global support counts of 
all these candidate sets and find out the globally 
large itemsets among them. These globally large 
k-itemsets are stored in the set Gi(k). Finally, Si 
broadcasts the set Gqk) to all the other sites. 

H o m e  site: receive large itemsets (lines 24 - 27). 

As a “home” site, Si receives the sets of globally 
large k-itemsets Gl(k) from all the polling sites. 
By taking the union of G,(k), ( i  = 1 , .  . .,n), Si 
finds out the set Lk of all the size-k large itemsets. 
Further, S, finds out from L k  the set GLi(k) of gl- 
large itemsets for each site by using the site list 
in X.darge-sites. The sets GLi(k) will be used for 
candidate set generation at the next iteration. 0 

4.2 The FDM-LUP algorithm 
Algorithm 2 FDM-LUP: FDM with Local and 
Upper-Bound-Pruning 

Method: The program fragment of FDM-LUP is ob- 
tained from FDM-LP by inserting the following 
condition (line 7.1) after line 7 of Algorithm 1. 

(7.1) if g-upperhound(X) 2 s x D then 

Explanation of Algorithm 2 
The only new step in FDM-LUP is the one 

for upper-bound-pruning (line 7.1). The function 
g-upper-bound computes an upper bound for a can- 
didate set X according to the formula suggested in 
Subsection 3.3. In other words, g-upper-bound returns 
an upper bound of X as the sum 

n 

x .supi  + muzsupJ ( X ) .  
j=1 , j # i  

As explained in Subsection 3.3, X.supi is computed 
already in the local pruning step, and the values of 
m a z s u p j ( X ) ,  ( j  = 1 , .  . . , n,  j # i ) ,  can be computed 
from the local support counts from the ( k  - 1)-st iter- 
ation. If this upper bound is smaller than the global 
support threshold, it is used to prune away X .  FDM- 
LUP should usually have a smaller number of candi- 
date sets for count exchange in comparison with FDM- 
LP. 0 

4.3 The FDM-LPP algorithm 
Algorithm 3 FDM-LPP: FDM with Local 
Pruning and Polling-Site-Pruning 

Method: The program fragment of FDM-LPP is ob- 
tained from Algorithm 1 by replacing its line 17 
with the following two lines. 

(16.1) 
(17) send-polling-request ( X )  ; 

if p-upper-bound(X) 2 s x D then 

Explanation of Algorithm 3 
The new step in FDM-LPP is the one for polling- 

site-pruning (line 16.1). At that stage, Si is a polling 
site and has received requests from the other sites 
to perform polling. Each request contains a locally 
larEe itemset X and its local sumort count X.sup;.  

-.I, _ _  
The FDM-LP described above has utilized the tech- 

niques described in Subsections 3.1, 3.2, and 3.4. An 
illustration of FDM-LP by example can be found in 
Examples 1, 2 and 3 together. 

In the following, two refinements of FDM-LP, by 
adoption of different global pruning techniques, are 
presented. 

where Sj is a site from which X is sent to Si. 
Note that X.large-sites is the set of all the origi- 
nating sites from which the requests for polling X 
are being sent to the polling site (line 15). For ev- 
ery site Sj E X.large-sites, the local support count 
X.supj has been sent to Si already. For a site S, 
X.Zarge-sites, since X is not locally large at S,, its 
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local support count X.sup, must be smaller than the 
local threshold s x D,. Following from the discus- 
sion in Subsection 3.3, X.supq is bounded by the value 
min(maxsupq ( X ) ,  s x D, - 1). Hence an upper bound 
of X.sup can be computed by the sum 

x .supj  + 
jEX.large-sites 

2 min(mazsupq(X) ,  s x Dq - 1). 
q = l  ,q+?X.large-sites 

In FDM-LPP, Si calls p-upper-bound to compute an 
upper bound for X.sup according to the above for- 
mula. This upper bound can be used to  prune away 
X if it is smaller than the global support threshold. 

0 
As discussed before, both FDM-LUP and FDM- 

LPP may have less candidate sets than FDM-LP. How- 
ever, they require more storage and communication 
messages for the local support counts. Their efficiency 
comparing with FDM-LP will depend largely on the 
data distribution. 

5 Performance Study of FDM 
An in-depth performance study has been performed 

to compare FDM with CD. We have chosen to im- 
plement the representative version of FDM, FDM- 
LP, and compare it against CD. Both algorithms are 
implemented on a distributed system by using PVM 
(Parallel Virtual Machine) [6]. A series of three to 
six RS/6000 workstations, running the AIX system, 
are connected by a 10Mb LAN to perform the experi- 
ment. The databases in the experiment are composed 
of synthetic data. 

In the experiment result, the number of candidate 
sets found in FDM at each site is between 10 - 25% of 
that in CD. The total message size in FDM is between 
10 - 15% of that in CD. The execution time of FDM 
is between 65 - 75% of that in CD. The reduction 
in the number of candidate sets and message size in 
FDM is very significant. The reduction in execution 
time is also substantial. However, it is not directly 
proportional to the reduction in candidate sets and 
message size. This is mainly due to the overhead of 
running FDM and CD on PVM. What we have ob- 
served is that the overhead of PVM in FDM is very 
close to that in CD, even though the amount of mes- 
sage communication is significantly smaller in FDM. 
From the results of our experiments, it is also clear 
that the performance gain of FDM over CD will be 
higher in distributed systems in which the commu- 
nication bandwidth is an important performance fac- 
tor. For example, if the mining is being done on a 
distributed database over wide area or long haul net- 
work. The performance of FDM-LP against Apriori 
in a large database is also compared. In that case, the 
response time of FDM-LP is only about 20% longer 

Interpretation 
transaction mean size 
mean size of maximal 
potentially large itemsets 
number of potentially 
large itemsets 
Number of items 
Clustering size 
Pool size 
Correlation level 
Multiplying factor 

Parameter 
ITI 
I I I  

I L I  

N 
sq 
Ps 

Mf 
Cr 

Value 
10 
4 

2000 

1000 
5 - 6  
50 - 70 
0.5 
1260 - 2400 

Table 5: Parameter Table. 

than 1/n of the response time of Apriori, where n is 
the number of sites. This is a very ideal speed-up. In 
terms of total execution time, FDM-LP is very close 
to Apriori. 

The test bed that we use has six workstations. Each 
one of them has its own local disk, and its partition is 
loaded on its local disk before the experiment starts. 
The databases used in our experiment are synthetic 
data generated using the same techniques introduced 
in [2, lo]. The parameters used are similar to those 
in [lo]. Table 5 is a list of the parameters and their 
values used in our synthetic databases. Readers not 
familiar with these parameters can refer to [2, lo]. In 
the following, we use the notation Tx.Iy.Dm to denote 
a database in which D = m (in thousands), IT1 = x, 
and 111 = y. 

T10.14.D200K, s = 3% 

4 5 6 
Number of Nodes 

+FDM +CD 

Figure 1: Candidate Sets Reduction (n = 3, 4, 5, 6) 

5.1 Candidate Sets and Message Size Re- 
duction 

The sizes of the databases in our study range from 
200K to 600K transactions, and the minimumsupport 
threshold ranges from 3% to 3.75%. Note that the 
number of candidate sets at each site are the same 
in CD and different in FDM. In our experiment, we 
witnessed a reduction of 75 - 90% of candidate sets on 
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T10.14.D200K, n = 3 T10.14.D200K, n = 3 

60 , I 

S 8 3.00 3.25 3.510 3.75 
YO % %I YO 

Minimum support 
+FDM + k C D  

~ g s  3.00% 3.25% 3.50% 3.75% 

Minimum support 

+FDM +CD 

Figure 4: Message Size Reduction Figure 2: Candidate Sets Reduction 

average at each site when FDM-LP is compared with 
CD. In Figure 1, the average number of candidate sets 
generated by FDM-LP and CD for a 200K transaction 
database are plotted against the number of partitions. 
FDM-LP has a 75 - 90% reduction in the candidate 
sets. The percentage of reduction increases when the 
number of partitions increases. This shows that FDM 
becomes more effective when the system is scaled up. 
In Figure 2, the same comparison between FDM-LP 
and CD is presented for the same database with three 
partitions on different thresholds. In this case, FDM- 
LP experienced a similar amount of reduction. 

T10.14.D200K, s = 30/0 

I- 

150 

100 

50 

0 
3 4 5 6 

Number of Nodos 

+FDM +CB 

Figure 3: Message Size Reduction (n = 3, 4, 5 ,  6) 

The reduction in candidate sets should have a pro- 
portional impact on the reduction (of messages in the 
comparison. Moreover, as discussed before, the polling 
site technique guarantees that FDM only requires 
O(n)  messages for each candidate set, which is much 
smaller than the O ( n 2 )  messages required in CD. In 
our experiment, FDM has about 90% reduction in the 
total message size in all cases when it is compared with 
CD. In Figure 3, the total message size in FDM and 
CD for the same 200K database are plotted against the 
number of partitions. In Figure 4, the same compari- 
son on the same database of three partitions with dif- 

ferent support thresholds are presented. Both results 
confirm our analysis that FDM-LP is very effective in 
cutting down the number of messages required. 

T10.14.D200K, s = 3% 
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3 4 5 6 

Number of Nodes 
+FDM +CD 

Figure 5:  Execution Time (n = 3, 4, 5 ,  6) 

T10.14.D200K, n = 3 

3.00% 3.25% 3.50% 3.75% 

Minimum Support 

-E-FDM -A-CD 

Figure 6: Execution Time 

5.2 Execution Time Reduction 
We have also compared the execution time between 

FDM-LP and CD. The execution time of FDM-LP 
and CD on a 200K database are plotted against the 
number of partitions in Figure 5. FDM-LP is about 
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25 - 35% faster than CD in all cases. In Figure 6, the 
comparison is plotted against different thresholds for 
the same database on three partitions. Again, FDM- 
LP is shown to have similar amount of speed-up as in 
Figure 5. 

n = 3, D = 60011, s = 2% I Apriori I FDM-LP 
response time (sec) I 1474 I 387 

I total execution time (sec) I 844.7 I 842.9 I 

Table 6:  Efficiency of FDM-LP. 

We have also compared FDM-LP on three sites 
against Apriori with respect to a 600K transactions 
database in order to find out its efficiency in large 
database. The result is shown in Table 6. The re- 
sponse time of FDM-LP is only slightly (20%) larger 
than 1/3 of that of Apriori. In terms of the total ex- 
ecution time, FDM-LP is very close to Apriori. For 
a large database, FDM-LP may have a bigger portion 
of the database residing in the distributed memory 
than Apriori. Therefore, it will be much faster than 
running Apriori on the same database in a single ma- 
chine. This shows that FDM-LP on a scalable dis- 
tributed system is an efficient and effective technique 
for mining association rules in large databases. 

The performance study has demonstrated that 
FDM generates a much smaller set of candidate sets 
and requires a significantly smaller amount of mes- 
sages when comparing with CD. The improvement in 
execution time is also substantial even though the 
overhead incurred from PVM prevents FDM from 
achieving a speed-up proportional to the reduction 
in candidate sets and message size. Even though, 
we have only compared CD with FDM-LP, there is 
enough evidence to show that FDM is more efficient 
than CD in a distributed environment. In the follow- 
ing sections, we will discuss our future plan of imple- 
menting the other versions of FDM. 

6 Discussions 
In this discussion, we will first discuss the issue of 

possible extension of FDM for fast parallel mining of 
association rules. Following that, we will discuss two 
other related issues: (1) the relationship between the 
effectiveness of FDM and the distribution of data, and 
(2) support threshold relaxation for possible reduction 
of message overhead. 

The CD and PDM algorithms are designed for 
share-nothing parallel environment. In particular, CD 
has been implemented and tested on the IBM SP2 
machine. In designing algorithm for parallel mining 
of association rules, not only the number and size of 
messages required should be minimized, but also the 
number of synchronizations, which is the number of 
rounds of message communication. CD has a simple 

synchronization scheme. It requires only one round 
of message communication in every iteration. Besides 
the second iteration, PDM also has the same synchro- 
nization scheme as CD. If FDM was used in the paral- 
lel environment, it has a shortcoming: even though it 
requires much less message passings then CD, it needs 
more synchronizations. However, FDM can be modi- 
fied to overcome this problem. In fact, in each itera- 
tion, the candidate set reduction and global pruning 
techniques can be used to eliminate many candidates 
and then a broadcast can be used to exchange the local 
support counts of the remaining candidates. This ap- 
proach will generate less candidate sets than CD and 
has the same number of synchronization. Therefore, it 
will perform better than CD in all cases. Performance 
studies has been carried out in a 32-nodes IBM SP2 
to study several variations of this approach, and the 
result is very promising. 

Another interesting issue is the relationship be- 
tween the performance of FDM and the distribution 
of the itemsets among the partitions. From both The- 
orem 1 and Example 1, it is clear that the number of 
candidate sets decreases dramatically if the distribu- 
tion of itemsets is quite skewed among the partitions. 
If most of the globally large itemsets were locally large 
at  most of the sites, the reduction of candidate sets in 
FDM would not have been as significant. In the worst 
case, if every globally large itemset is locally large at 
all the sites, the candidate sets in FDM and CD will be 
the same. Therefore, data skewness may improve the 
performance of FDM in general. Special partitioning 
technique can be used to increase the data skewness 
to optimize the performance of FDM. Some further 
study is required to explore this issue. 

The last issue that we want to  discuss is the pos- 
sible usage of the relaxation factor proposed in [ll].  
In FDM, if a site sends not only those candidate sets 
which are locally large but also those that are almost 
locally large to the polling sites, the polling sites may 
have local support counts from more sites to perform 
the global pruning of candidate sets. For example, if 
the support threshold is lo%, every site can send the 
candidate sets whose local support counts exceed 5% 
to their polling sites. In this case, for some candi- 
date sets, their polling sites may receive local sup- 
port counts from more sites than the no relaxation 
case. Hence, the global pruning may be more effec- 
tive. However, there is a trade-off between sending 
more candidate sets to the polling sites and the prun- 
ing of candidate sets at the polling sites. More study 
is necessary on the detailed relationship between the 
relaxation factor and the performance of the pruning. 

7 Conclusions 
In this paper, we proposed and studied an efficient 

and effective distributed algorithm FDM for mining 
association rules. Some interesting properties between 
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locally and globally large itemsets are observed, which 
leads to an effective technique for the reduction of can- 
didate sets in the discovery of large itemsets. Two 
powerful pruning techniques, local and global prun- 
ings, are proposed. Furthermore, the optimization 
of the communications among the participating sites 
is performed in FDM using the polling sites. Sev- 
eral variations of FDM using different combination of 
pruning techniques are described. A representative 
version, FDM-LP, is implemented and whose perfor- 
mance is compared with the CD algorithm in a dis- 
tributed system. The result shows the high perfor- 
mance of FDM at mining association rules. 

Several issues related to the extensions of the 
method are also discussed. The techniques of can- 
didate set reduction and global pruning can be inte- 
grated with CD to perform mining in a parallel envi- 
ronment which will be better than CD when consider- 
ing both message communication and synchronization. 
Further improvement of the performance of the FDM 
algorithm using the skewness of data distribution and 
the relaxation of support thresholds is also discussed. 

Recently, there have been interesting studies on the 
mining of generalized association rules [14], multiple- 
level association rules [8], quantitative association 
rules [15], etc. Extension of our method to the min- 
ing of these kinds of rules in a distributed or parallel 
system are interesting issues for future research. Also, 
parallel and distributed data mining of other kinds 
of rules, such as characteristic rules [7], classification 
rules, clustering [9], etc. is an important direction for 
future studies. For our performance studies, an im- 
plementation of the different versions of FDM on an 
IBM SP2 system with 32 nodes has been carried out 
and the result is very promising. 
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