
A Fast Distributed Algorithm for Mining Association Rules *

David W. Cheungt Jiawei Hans Vincent T. Ngtt Ada W. Fuss Yongjian F u I

t Department of Computer Science, The University of Hong Kong, Hong Kong. Email: dcheungOcs.hku.hk. * School of Computing Science, Simon Fraser University, Canada. Email: hanOcs.sfu.ca.

tt Department of Computing, Hong Kong Polytechnic University, Hong Kong. Email: cstyngOcomp.po1yu.edu.hk.

$4 Department of Computer Science and Engineering, The Chinese University of Hong Kong,Hong Kong. Email: adafuOcs.cuhk.hk.

Abstract
With the existence of many large transaction

databases, the huge amounts of data, the high scal-
ability of distributed systems, and the easy partition
and distribution of a centralized database, it is im-
portant to inuestzgate eficient methods for distributed
mining of association rules. This study discloses some
interesting relationships between locally large and glob-
ally large itemsets and proposes an interesting dis-
tributed association rule mining algorithm, FDM (Fast
Distributed Mining of association rules), which gener-
ates a small number of candidate sets and substantially
reduces the number of messages to be passed at min-
ing association rules. Our performance study shows
that FDM has a superior performance over the direct
application of a typical sequential algorithm. Further
performance enhancement leads to a few variations of
the algorithm.

1 Introduction
An association rule is a rule which implies certain

association relationships among a set of objects (such
as “occur together” or “one implies the other”) in a
database. Since finding interesting association rules
in databases may disclose some useful patterns for
decision support, selective marketing, financial fore-
cast, medical diagnosis, and many other applications,
it has attracted a lot of attention in recent data min-
ing research [5]. Mining association rules may require
iterative scanning of large transaction or relational
databases which is quite costly in processing. There-
fore, efficient mining of association rules in transaction
and/or relational databases has been studied substan-
tially [l, 2, 4, 8, 10, 11, 12, 14, 151.

*The research of the first author was supported in part
by RGC (the Hong Kong Research Grants Council) grant
338/065/0026. The research of the second author was supported
in part by the research grant NSERC-A3723 from the Natural
Sciences and Engineering Research Council of Canada, the re-
search grant NCE:IRIS/PRECARN-HMI5 from the Networks
of Centres of Excellence of Canada, and a research grant from
Hughes Research Laboratories.

Previous studies examined efficient mining of asso-
ciation rules from many different angles. An influen-
tial association rule mining algorithm, Apriori [2], has
been developed for rule mining in large transaction
databases. A DHP algorithm [lo] is an extension of
Apriori using a hashing technique. The scope of the
study has also been extended to efficient mining of se-
quential patterns [3], generalized association rules [14],
multiple-level association rules [8], quantitative asso-
ciation rules [15], etc. Maintenance of discovered asso-
ciation rules by incremental updating has been studied
in [4]. Although these studies are on sequential data
mining techniques, algorithms for parallel mining of
association rules have been proposed recently [ll, 11.

We feel that the development of distributed algo-
rithms for efficient mining of association rules has its
unique importance, based on the following reasoning.
(1) Databases or data warehouses [13] may store a
huge amount of data. Mining association rules in such
databases may require substantial processing power,
and distributed system is a possible solution. (2)
Many large databases are distributed in nature. For
example, the huge number of transaction records of
hundreds of Sears department stores are likely to be
stored at different sites. This observation motivates
us to study efficient distributed algorithms for min-
ing association rules in databases. This study may
also shed new light on parallel data mining. Further-
more, a distributed mining algorithm can also be used
to mine association rules in a single large database
by partitioning the database among a set of sites and
processing the task in a distributed manner. The high
flexibility, scalability, low cost performance ratio, and
easy connectivity of a distributed system makes it an
ideal platform for mining association rules.

In this study, we assume that the database to be
studied is a transaction database although the method
can be easily extended to relational databases as well.
The database consists of a huge number of transac-
tion records, each with a transaction identifier (TID)
and a set of data items. Further, we assume that the

0-8186-7475-X/96 $5.00 0 1996 IEEE
31

database is “horizontally” partitioned (i.e., grouped
by transactions) and allocated to the sites in a dis-
tributed system which communicate by message pass-
ing. Based on these assumptions, we examine dis-
tributed mining of association rules. It has been well
known that the major cost of mining association rules
is the computation of the set of large itemsets (i.e., fre-
quently occurring sets of items, see Section 2.1) in the
database [2]. Distributed computing of large itemsets
encounters some new problems. One may compute lo-
cally large itemsets easily, but a locally large itemset
may not bc globally large. Since it is very expensive
to broadcast the whole data set to other sites, one op-
tion is to broadcast all the counts of all the itemsets,
no matter locally large or small, to other sites. How-
ever , a database may contain enormous combinations
of itemsets, and it will involve passing a huge number
of messages.

Based on our observation, there exist some interest-
ing properties between locally large and globally large
itemsets. One should maximally take advantages of
such properties to reduce the number of messages to
be passed and confine the substantial amount of pro-
cessing to local sites. As mentioned before, two al-
gorithms for parallel mining of association rules have
been proposed. The two proposed algorithms PDM
and Count Distribution (CD) are designed for share-
nothing parallel systems [ll, 13. However, they can
also be adapted to distributed environment. We have
proposed an efficient distributed data mining algo-
rithm FDM (Fast Distributed Mining of associatzon
rules), which has the following distinct feature in com-
parison with these two proposed parallel mining algo-
rithms.

1. The generation of candidate sets is in the same
spirit of Apriori. However, some interesting rela-
tionships between locally large sets and globally
large ones are explored to generate a smaller set of
candidate sets at each iteration and thus reduce
the number of messages to be passed.

2. After the candidate sets have been generated, two
pruning techniques, local pruning and global prun-
ing, are developed to prune away some candidate
sets at each individual sites.

3. In order to determine whether a candidate set is
large, our algorithm requires only O(n) messages
for support count exchange, where n is the num-
ber of sites in the network. This is much less than
a straight adaptation of Apriori, which requires
O(n2) messages.

Notice that several different combinations of the
local and global prunings can be adopted in FDM.
We studied three versions of FDM: FDM-LP, FDM-
LUP, and FDM-LPP (see Section 4), with similar

framework but different combinations of pruning tech-
niques. FDM-LP only explores the local prunzng;
FDM-LUP does both local pruning and the upper-
bound-prunzng; and FDM-LPP does both local prun-
ing and the pollang-szte-prunang.

Extensive experiments have been conducted to
study the performance of FDM and compare it against
the Count Distribution algorithm. The study demon-
strates the efficiency of the distributed mining algo-
rithm.

The remaining of the paper is organized as follows.
The tasks of mining association rules in sequential as
well as distributed environments are defined in Sec-
tion 2. In Section 3, techniques for distributed mining
of association rules and some important results are dis-
cussed. The algorithms for different versions of FDM
are presented in Section 4. A performance study is re-
ported in Section 5. Our discussions and conclusions
are presented respectively in Sections 6 and 7.

2 Problem Definition
2.1 Sequential Algorithm for Mining As-

sociation Rules
Let I = { i l , i 2 , . . .,im} be a set of atems. Let D B

be a database of transactions, where each transaction
T consists of a set of items such that T C I . Given an
ztemset X C I , a transaction T contazns X if and only
if X T . An assocaatzon rule is an implication of the
form X a Y , where X C_ I , Y 2 I and X n Y = 0.
The association rule X j Y holds in D B with confi-
dence c if the probability of a transaction in D B which
contains X also contains Y is e. The association rule
X Y has support s in D B if the probability of a
transaction in D B contains both X and Y is s. The
task of mining association rules is to find all the asso-
ciation rules whose support is larger than a mznamum
support threshold and whose confidence is larger than
a mznzmum confidence threshold.

For an itemset X , its support is the percentage of
transactions in DB which contains X , and its support
count, denoted by X.sup, is the number of transactions
in D B containing X . An itemset X is large (or more
precisely, frequently occurrzng) if its support is no less
than the minimum support threshold. An itemset of
size k is called a k-ztemset. It has been shown that the
problem of mining association rules can be reduced to
two subproblems [2]: (1) find all large itemsets for Q

gaven mznzmum support threshold, and (2) generate the
association rules from the large atemsets found. Since
(1) dominates the overall cost of mining association
rules, the research has been focused on how to develop
efficient methods to solve the first subproblem [a] .

An interesting algorithm, Aprzorz [a] , has been pro-
posed for computing large itemsets a t mining asso-
ciation rules in a transaction database. There have
been many studies on mining association rules using
sequential algorithms in centralized databases (e.g.,

32

[lo, 14, 8, 12, 4, 15]), which can be viewed as vari-
ations or extensions to Apriori. For example, as an
extension to Apriori, the DHP algorithm [lo] uses a
direct hashing technique to eliminate some size-2 can-
didate sets in the Apriori algorithm.
2.2 Distributed Algorithm for Mining As-

sociation Rules
We examine the mining of association rules in a

distributed environment. Let DB be a database
with D transactions. Assume that there are n
sites S1,S2,. . . , Sn in a distributed system and the
database DB is partitioned over the n sites into
(DB1, DB2,. . . , DB,}, respectively.

Let the size of the partitions DBi be Di, for
i = 1 , . . . , n. Let X.sup and X.supi be the support
counts of an itemset X in DB and DBi, respectively.
X.sup is called the global support count, and X.supi
the local support count of X at site Si. For a given
minimum support threshold s , X is globally large if
X.sup 2 s x D; correspondingly, X is locally large at
site Si, if X.supi 2 s x Di. In the following, L de-
notes the globally large itemsets in DB, and L(k) the
globally large k-itemsets in L. The essential task of
a distributed association rule mining algorithm is to
find the globally large itemsets L.

For comparison, we outline the Count Distribution
(CD) algorithm as the follows [l]. The algorithm is an
adaptation of the Apriori algorithm in the distributed
case. At each iteration, CD generates the candidate
sets at every site by applying the Apriorigen function
on the set of large itemsets found at the previous it-
eration. Every site then computes the local support
counts of all these candidate sets and broadcasts them
to all the other sites. Subsequently, all the sites can
find the globally large itemsets for that iteration, and
then proceed to the next iteration.

3 Techniques for Distributed Data

3.1 Generation of Candidate Sets
It is important to observe some interesting proper-

ties related to large itemsets in distributed environ-
ments since such properties may substantially reduce
the number of messages to be passed across network
at mining association rules.

There is an important relationship between large
itemsets and the sites in a distributed database: every
globally large itemsets must be locally large at some
site(s). If an itemset X is both globally large and locally
large at a site Si, X is called gl-large at site Si. The
set of gl-large itemsets at a site will form a basis for
the site to generate its own candidate sets.

Two monotonic properties can be easily observed
from the locally large and gl-large itemsets. First, if
an itemset X is locally large at a site Si, then all of
its subsets are also locally large at site Si. Secondly,
if an itemset X is gl-large at a site Si, then all of

Mining

its subsets are also gl-large at site Si. Notice that a
similar relationship exists among the large itemsets in
the centralized case. Following is an important result
based on which an effective technique for candidate
sets generation in the distributed case is developed.

Lemma 1 I f an itemset X is globally large, there ex-
ists a site Si, (1 < i < n) , such that X and all its
subsets are gl-large at site Si.
Proof. If X is not locally large at any site, then
X.supi < s x Di for all i = 1 , . . . , n. Therefore,
X.sup < s x D, and X cannot be globally large. By
contradiction, X must be locally large at some site Si,
and hence X is gl-large at Si. Consequently, all the

0

We use GLi to denote the set of gl-large itemsets
at site Si, and GLi(k) to denote the set of gl-large k-
itemsets at site Si. It follows from Lemma 1 that if
X E L (k) , then there exists a site si, such that all its
size-(k - 1) subsets are gl-large at site Si, i.e., they
belong to GLi(k-1).

In a straightforward adaptation of Apriori, the set
of candidate sets a t the k-th iteration, denoted by
CA(k), which stands for size-k candidate sets from
Apriori, would be generated by applying the Apri-
origen function on L (k - 1) . That is,

subsets of X must also be gl-large at Si.

CA(k) = Apriori-gen(L(k-1)).

At each site Si, let CGi(k) be the set of candidates
sets generated by applying Apriorigen on GLi(k-11,
i.e.,

CGi(k) = Apriori-gen(GL,(k- 1)),
where CG stands for candidate sets generated from
gl-large itemsets. Hence CGi(k) is generated from
GLi(k-l). Since GLi(k-1) 5 L(k- l) , CGqk) is a sub-
set of CA(k). In the following, we use CG(k) to denote
the set Uy="=,Gi(k).

Theorem 1 For every IC > 1, the set of all large k-
itemsets L(k) is Q subset of CG(k) = CGi(k),
where CGi(k) = Apriori-gen(GL,(k- 1)).
Proof. Let X E L (k) . It follows from Lemma 1 that
there exists a site Si, (1 5 i < n) , such that all the
size-(k - 1) subsets of X are gl-large at site Si. Hence
X E CGi(k). Therefore,

L (k) G CG(k) = U CGi(k) = U Apriori-gen(GL,(k-I)).
n n

i=l i=l

U

Theorem 1 indicates that CG(k), which is a subset
of CA(k) and could be much smaller than CA(,), can
be taken as the set of candidate sets for the size-k large
itemsets. The difference between the two sets, CA(k)

and CG(k), depends on the distribution of the item-
sets. This theorem forms a basis for the generation
of the set of candidate sets in the algorithm FDM.
First the set of candidate sets CG!i(k) can be gener-
ated locally at each site Si at the k-th iteration. After
the exchange of support counts, the gl-large itemsets
GLqk) in CGi(k) can be found at the end of that itera-
tion. Based on GL;(k), the candidate sets at Si for the
(k + 1)-st iteration can then be generated. According
to the performance study in Section 5, by using this
approach, the number of candidate sets generated can
be substantially reduced to about 10 - 25% of that
generated in CD.

Example 1 illustrates the effectiveness of the reduc-
tion of candidate sets using Theorem 1.

Example 1 Assuming there are 3 sites in a system
which partitions the DB into DB1, DB2 and DB3.
Suppose the set of large 1-itemsets (computed at
the first iteration) L(1) = { A , B , C , D , E , F ,G,H} ,
in which A, B , and C are locally large at site
S I , I?, 6, and D are locally large at site S2, and
E , F,C, and H are locally large att site S3. There-
fore, G I q l) = (A , B , C } , GL2(1) = { B , C , D} ,
and GL3(1) = {E ,F ,G , H } . Based on Theo-
rem I , the set of size-2 candidate sets at site SI is
CG1(2), where CGI(2) = Apriori.gen (GLI(1)) =
(A B , BC, AC}. Similarly, CG2(2) = {BC, CD, BD},
and CG3(2) = {EF, EG, EH, FG, FH,GH}. Hence,
the set of candidate sets for large 2-itemsets is
CG(2) = CGl(2) U CGZ(2) U CG3(2), total 11 candi-
dates. However, if Apriori-gen is applied to L(1), the
set of candidate sets CA(2) = Apriori-gen(L(l)) would
have 28 candidates. This shows that it is very effective
to apply Theorem 1 to reduce the candidate sets. 0

3.2 Local Pruning of Candidate Sets
The previous subsection shows that based on The-

orem 1, one can usually generate in a distributed en-
vironment a much smaller set of candidate sets than
the direct application of the Apriori algorithm.

When the set of candidate set C'G(k) is generated,
to find the globally large itemsets, i,he support counts
of the candidate sets must be exchainged among all the
sites. Notice that some candidate sets in CG(k) can be
pruned by a local pruning technique before count ex-
change starts. The general idea is that at each site Si,
if a candidate set X E CG,(k) is not locally large at site
Si, there is no need for S, to find out its global support
count to determine whether it is gllobally large. This
is because in this case, either X is small (not glob-
ally large), or it will be locally large at some other
site, and hence only the site(s) at which X is locally
large need to be responsible to find the global support
count of X . Therefore, in order to compute all the
large k-itemsets, at each site Si, the candidate sets
can be confined to only the sets X E CGi(k) which are

locally large at site Si. For convenience, we use LL;(k)
to denote those candidate sets in CGi(k) which are lo-
cally large at site Si. Based on the above discussion,
at every iteration (the k-th iteration), the gl-large k-
itemsets can be computed at each site Si according to
the following procedure.

1. Candidate sets generation: Generate the candidate
sets CGi(k) based on the gl-large itemsets found
at site Si at the (k - 1)-st iteration using the
formula, CG;(k) = Apriori-gen (GLz(k- l)) .

2. Local pruning: For each X E CGi(k), scan the
partition DBi to compute the local support count
X.supi. If X is not locally large at site Si, it is
excluded from the candidate sets & (k) . (Note:
This pruning only removes X from the candidate
set at site Si. X could still be a candidate set at
some other site.)

3. Support count exchange: Broadcast the candidate
sets in LL;(k) to other sites to collect support
counts. Compute their global support counts and
find all the gl-large k-itemsets in site Si.

4. Broadcast min ing results: Broadcast the computed
gl-large k-itemsets to all the other sites.

For clarity, the notations used so far are listed in
Table 1.

number of transactions in DB
support threshold minsup
globally large k-itemsets
candidate sets generated from L (k)
global support count of X
number of transactions in DBi
gl-large k-itemsets at Si
candidate sets generated from GLi(k-1)
locally large k-itemsets in CGi(k)
local support count of X at Si

Table 1: Notation Table.

To illustrate the above procedure. we continue
working on Example 1 as follows.

Example 2 Assume the database in Example 1 con-
tains 150 transactions and each one of the 3 parti-
tions has 50 transactions. Also assume that the sup-
port threshold s = 10%. Moreover, according to Ex-
ample 1, at the second iteration, the candidate sets
generated at site SI are CG1(2) = {AB, BC,AC};
at site S2, CGq2) = {BC, BD, CD}; and at site S3,
CG3(2) = (EF, EG, EH, FG, F H , GH}. In order to
compute the large 2-itemsets, the local support counts

34

Table 2: Locally Large Itemsets.

large request
candidates from

AB s1
BC Sl , s2
CD s2
EF s3
GH s3

at each site is computed first. The result is recorded
in Table 2.

From Table 2, it can be seen that AC.sup1 = 2 <
s x D1 = 5. AC is not locally large. Hence, the
candidate set AC is pruned away at site S I . On the
other hand, both A B and BC have enough local s u p
port counts and they survive the local pruning. Hence
LLq2) = { A B , BC}. Similarly, LL2(2) = {BC, CD},
and LL3(2) = { E F , GH}. After the local pruning, the
number of size-2 candidate sets has been reduced to
five which is less than half of the original size. Once
the local pruning is completed, each site broadcasts
messages containing all the remaining candidate sets
to the other sites to collect their support counts. The
result of this count support exchange is recorded in
Table 3.

1

5 4 4
10 10 2
4 8 4
4 3 8
4 4 6

Table 3: Globally Large Itemsets.

The request for support count for AB is broad-
casted from SI to site S2 and 5’3, and the counts
sent back are recorded at site S1 as in the second row
of Table 3. The other rows record similar count ex-
change activities at the other sites. At the end of
the iteration, site S1 finds out that only BC is gl-
large, because BC.sup = 22 > s x D = 15, and
AB.sup = 13 < s x D = 15. Hence the gl-large
2-itemset a t site S1 is GLl(2) = {BC}. Similarly,
GL2(2) = {BC,CD} and GL3(2) = { E F } . After the
broadcast of the gl-large itemsets, all sites return the
large 2-itemsets 4 2) = {BC, CD, E F } .

Notice that some candidate set, such as BC in this
example, could be locally large at more than one site.
In this case, the messages are broadcasted from all the

sites at which BC is found to be locally large. This
is unnecessary because for each of candidate itemset,
only one broadcast is needed. In Section 3.4, an opti-
mization technique to eliminate such redundancy will
be discussed. 0

There is a subtlety in the implementation of the
four steps outlined above for finding globally large
itemsets. In order to support both step 2, “local prun-
ing”, and step 3, “support count exchange”, each site
Si must have two sets of support counts. For local
pruning, Si has to find the local support counts of its
candidate sets CGi(k). For support count exchange,
Si has to find the local support counts of some possi-
bly different candidate sets from other sites in order
to answer the count requests from these sites. A sim-
ple approach would be to scan DBi twice, once for
collection of the counts for the local CGqk), and once
for responding to the count requests from other sites.
However, this would substantially degrade the perfor-
mance.

At Si,
not only is CG;(k) available at the beginning of the
H-th iteration, but also are other sets, i.e., CGj(k)
(j = 1 , . . . , n, j # i), because all the GLi(k-l),
(i = 1 , . . . , n), are broadcasted to every site at the
end of the (H - 1)-st iteration, and the sets of can-
didate sets CGqk), (i = 1, . . . , n) , are computed from
the corresponding GLi(k-1). That is, at the beginning
of each iteration, since all the gl-large itemsets found
at the previous iteration have been broadcasted to all
the sites, every site can compute the candidate sets of
every other site. Therefore, the local support counts
of all these candidate sets can be found in one scan
and stored in a data structure like the hash-tree used
in Apriori [2]. Using this technique, the data structure
can be built in one scan, and the two different sets of
support counts required in the local pruning and sup-
port count exchange can be retrieved from this data
structure.
3.3 Global Pruning of Candidate Sets

The local pruning at a site Si uses only the local
support counts found in DBi to prune a candidate
set. In fact, the local support counts from other sites
can also be used for pruning. A global pruning tech-
nique is developed to facilitate such pruning and is
outlined as follows. At the end of each iteration, all
the local support and global support counts of a can-
didate set X are available. These local support counts
can be broadcasted together with the global support
counts after a candidate set is found to be globally
large. Using this information, some global pruning
can be performed on the candidate sets at the subse-
quent iteration.

Assume that the local support count of every can-
didate itemset is broadcasted to all the sites after it
is found to be globally large at the end of an itera-

In fact, there is no need of two scans.

35

tion. Suppose X is a size-k candidiate itemset at the
k-th iteration. Therefore, the local support counts of
all the size-(k - 1) subsets of X are available at every
site. With respect to a partition DBi , (1 5 i 5 n) ,
we use mazsup i (X) to denote the minimum value of
the local support counts of all the size-(k - 1) sub-
sets of X , i.e, m a z s u p i (X) = min{Y.supi I Y c
X and IYI = k - 1). It follows from the subset
relationship that mazsup i (X) is a n upper bound of
the local support count X.supi. Hence, the sum of
these upper bounds over all partitions, denoted by
m a z s u p (X) , is an upper bound of X.sup. In other
words, X.sup 5 maxsup(X) = mazsup i (X) .
Note that m a z s u p (X) can be computed at every
site at the beginning of the k-th iteration. Since
m a z s u p (X) is an upper bound of its global support
count, it can be used for pruning, i.e., if mazsup(X) <
s x D, then X cannot be a candidate itemset. This
technique is called global pruning.

Global pruning can be combined with local pruning
to form different pruning strategies. Two particular
variations of this strategy will be adopted when we
introduce several versions of FDM in Section 4. The
first method is called upper-boundpruning and the
second one is called polling-site-pruning. We will dis-
cuss the upper-bound-pruning met hod here in detail.
The polling-site-pruning method will be explained in
Subsection 4.3. In the upper-boundl-pruning, a site Si
first uses the techniques in Subsections 3.1 and 3.2 to
generate and perform local pruning on the candidate
sets. Before count exchange starts, the site Si applies
global pruning to the remaining candidate sets. A
possible upper bound of the global support count of a
candidate set X is the sum

x.supi + 2 m a z s u p j (X) .
j=1 ,j#i

where X.supi is found already iin the local prun-
ing. Therefore, this upper bound can be computed
to prune the candidate set X at site Si.

Example 3 We examine the global pruning at S1 af-
ter the local pruning done in Example 2. According
to Table 2, the survived candidate sets in the local
pruning are AB and BC. Their lolcal support counts
at SI can be found in Table 2. Furthermore, the local
support counts of their subsets from all the sites are
also available at SI and are listed in Table 4.

From Tables 2 and 4, an upper bound of the support
count of A B , (denoted by AB.-), is given by

A B . W = AB.sup1 + min(A.sup2, B.sup2) +
min(A.sup3, B . s u ~ ~) = 5 + 4 + 4 =I 13 < s x D.

Since this upper bound is less than the support thresh-
old, AB is removed from the set of candidate itemsets.

large
1-itemset

A

local support count at S1
X.supl 1 X.sup2 I X.sup3

6 I 4 4
B
C

Table 4: Local Support Counts.

10 10 5
4 12 5

On the other hand, an upper bound of the support
count of BC, (denoted by B C . W) , is given by

B C . W = BC.sup1 + min(B.sup2, B.sup2) +
min(B.sup3, C . S U ~ Q) = 10 + 10 + 5 = 25 > s x D.

Since it is larger than the threshold, BC is not pruned
away and remains as a candidate itemset at SI. 0

Global pruning is a useful technique for reducing
the number of candidate sets. Its effectiveness depends
on the distribution of the local support counts.
3.4 Count Polling

In the CD algorithm, the local support count of
every candidate itemset is broadcasted from every site
to every other site. Therefore, the number of messages
required for count exchange for each candidate itemset
is O(n2) , where n is the number of partitions.

In our method, if a candidate itemset X is locally
large at a site Si, Si needs O(n) messages to collect all
the support counts for X . In general, few candidate
itemsets are locally large at all the sites. Therefore,
the FDM algorithm will usually require much less than
O(n2) messages for computing each candidate itemset.
To ensure that FDM requires only O(n) messages for
every candidate itemset in all the cases, a count polling
technique is introduced.

For each candidate itemset X , the technique uses
an assignment function, which could be a hash func-
tion on X , to assign X a polling site (assuming that
the assignment function is known to every site.) The
polling site assigned to X is independent of the sites
in which X is founded to be locally large. Therefore,
even if X is found to be locally large at more than one
site, it will still be sent to the same polling site. For
each candidate itemset X , its polling site is responsi-
ble to find out whether X is globally large. To achieve
that purpose, the polling site of X has to broadcast the
polling request for X , collect the local support counts,
and compute the global support count. Since there is
only one polling site for each candidate itemset X , the
number of messages required for count exchange for X
is reduced to O(n) .

At the k-th iteration, after the pruning phase, (both
local and global pruning), has been completed, FDM
uses the following procedure at each site Si to do the
count polling.

36

1. Send candidate sets to polling sites: At site Si,
for every polling site Sj, find all the candidate
itemsets in LLi(k) whose polling site is Sj and
store them in LLi,j(k) (i.e., candidates are being
put into groups by their polling sites). The local
support counts of the candidate itemsets are also
stored in the corresponding set LLi,j(k). Send
each L L i , j (k) to the corresponding polling site Sj.

2. Poll and collect support counts: If Si is a polling
site, Si receives all LLj,i(k) sent to it from the
other sites. For every candidate itemset X re-
ceived, Si finds the list of originating sites from
which X is being sent. Si then broadcasts the
polling requests to the other sites not on the list
to collect the support counts.

3. Compute gl-large itemsets: Si receives the support
counts from the other sites, computes the global
support counts for its candidates, and finds the gl-
large itemsets. Eventually, Si broadcasts the gl-
large itemsets together with their global support
counts to all the sites.

Example 4 In Example 2, assuming that S1 is as-
signed as the polling site of A B and B C , Sz is as-
signed as the polling site of CD, and S, is assigned as
the polling site of EF and GH.

Following from the assignment, site S1 is responsi-
ble for the polling of A B and B C . In the simple case of
A B , Si sends polling requests to Sz and S3 to collect
the support counts. As for B C , it is locally large at
both Si and Sz, the pair (BC, BC.supz) = (B C , 10)
is sent to Si by Sz. After SI receives the message, it
sends a polling request to the remaining site 5’3. Once
the support count BC.sup3 = 2 is received from S3,
Si finds out that BC.sup = 10 + 10 i- 2 = 22 > 15.
Hence B C is a gl-large itemset at S i . In this exam-
ple, with a polling site, the double polling messages
for B C has been eliminated. cl

4 Algorithm for Distributed Mining of
Association Rules

In this section, the basic version of FDM, i.e., the
FDM-LP (FDM with Local Pruning) algorithm, is
first presented, which adopts two techniques: candi-
date set reduction and local pruning, discussed in Sec-
tion 3. According to our performance study in Sec-
tion 5, FDM-LP is much more efficient than CD.
4.1 The FDM-LP algorithm
Algorithm 1 FDM-LP: FDM with Local Prun-
ing

Input: DBi (i = 1 , . . . , n): the database partition at
each site Si.

Output: L: the set of all globally large itemsets.

Method: Iteratively execute the following program
fragment (for the k-th iteration) distributively at
each site Si. The algorithm terminates when
either L (k) = 0, or the set of candidate sets
CG(k) = 0.

(1)
(2) z(1) = get-local-count(DBi, 0 , l)
(3) else {

if k = 1 then

(4) CG(k) = UZ“=,Gf(k).
= Uin,,Aprzorz-gen(GLi(k-l));

q (k) = get-local-count(DBi, CG(k), i) ; }

if X.supi 2 s x Di then
for j = 1 to n do

(5)
(6)
(7)

for-all X E q (k) do

if polling-site(X) = Sj then
(8)
(9)

insert (X , X.supi) into LLi,j(k);
(10) for j = 1 , . . . , n do send LLi,j(k) to site Sj;
(11) for j = 1, . . . , n do {
(12) receive LLj,i(k);

(13) for-all X E LLj,i(k) do {
if X $2 LPqk) then

insert X into LPqk);
(14)

(15) update X.large-sites; } }
(16) for-all X E LPi(b) do
(17) send-pollzng-request (X) ;
(18) reply-pol l ing-reques t (~(k)) ;
(19) for-all X E LPi(k) do {
(20) receive X.supj from the sites Sj ,

where Sj # X.largesites;

if X.sup 2 s x D then
(21) x . s u p = cy=l x.supi;
(22)

(23) broadcast Gqk);
(24) receive Gj(k) from all other sites Sj, (j # i);

(26) divide L (k) into GLi(k), (i = 1 , . . . , n) ;
(27) return L (k) .

insert X into G q k) ; }

(25) L (k) = UY=IGi(k).

Explanation of Algorithm 1
In Algorithm 1, every site Si is initially a “home

site” of a set of candidate sets that it generates. Later,
it becomes a polling site to serve the requests from
other sites. Subsequently, it changes its status to a
remote site to supply local support counts to other
polling sites. The corresponding steps in Algorithm 1
for these different roles and activities are grouped and
explained as the follows.

1. H o m e site: generate candidate sets and submit
them to polling sites (lines 1 - 10).

At the first iteration, the site Si calls
get-local-count to scan the partition DBi once
and store the local support counts of all the 1-
itemsets found in the array q(1). At the k-th (for

37

2.

3.

4.

5.

k > 1) iteration, Si first compultes the set of can-
didate set CG(k), and then scans DBj to build
the hash tree ?;:(k) containing the locally support
counts of all the sets in CG(1,). By traversing
T i (k) , Si finds out all locally large k-itemsets and
group them according to their polling sites. Fi-
nally, it sends the candidate sets with their local
support counts to their polling sites.

Polling site: receive candidate sets and send polling
requests (lines 11 - 17).
As a polling site, site Si receives candidate sets
from the other sites and insert them in LPip).
For each candidate set X E LP,(k , S, stores all its
“home” sites in X.large-sites, w h ich contains all
those sites from which X is sent to Si for polling.
In order to perform count exchange for X , S, calls
sendqolling-request to send X to those sites not
in the list X.large-sites to colliect the remaining
support counts.

Remote site: return support counts to polling site
(line 18).
When Si receives polling requests from the other
sites, it acts as a remote site. For each candidate
set Y it receives from a polling site, it retrieves
Y.supi from the hash tree x (k) and returns it to
the polling site.

Polling site: receive support counts and find large
itemsets (lines 19 - 23).
As a polling site, Si receives the local support
counts for the candidate sets in LPi(k). Following
that, it computes the global support counts of
all these candidate sets and find out the globally
large itemsets among them. These globally large
k-itemsets are stored in the set Gi(k). Finally, Si
broadcasts the set Gqk) to all the other sites.

H o m e site: receive large itemsets (lines 24 - 27).

As a “home” site, Si receives the sets of globally
large k-itemsets Gl(k) from all the polling sites.
By taking the union of G,(k), (i = 1 , . . .,n), Si
finds out the set Lk of all the size-k large itemsets.
Further, S, finds out from L k the set GLi(k) of gl-
large itemsets for each site by using the site list
in X.darge-sites. The sets GLi(k) will be used for
candidate set generation at the next iteration. 0

4.2 The FDM-LUP algorithm
Algorithm 2 FDM-LUP: FDM with Local and
Upper-Bound-Pruning

Method: The program fragment of FDM-LUP is ob-
tained from FDM-LP by inserting the following
condition (line 7.1) after line 7 of Algorithm 1.

(7.1) if g-upperhound(X) 2 s x D then

Explanation of Algorithm 2
The only new step in FDM-LUP is the one

for upper-bound-pruning (line 7.1). The function
g-upper-bound computes an upper bound for a can-
didate set X according to the formula suggested in
Subsection 3.3. In other words, g-upper-bound returns
an upper bound of X as the sum

n

x .supi + muzsupJ (X) .
j=1 , j # i

As explained in Subsection 3.3, X.supi is computed
already in the local pruning step, and the values of
m a z s u p j (X) , (j = 1 , . . . , n, j # i) , can be computed
from the local support counts from the (k - 1)-st iter-
ation. If this upper bound is smaller than the global
support threshold, it is used to prune away X . FDM-
LUP should usually have a smaller number of candi-
date sets for count exchange in comparison with FDM-
LP. 0

4.3 The FDM-LPP algorithm
Algorithm 3 FDM-LPP: FDM with Local
Pruning and Polling-Site-Pruning

Method: The program fragment of FDM-LPP is ob-
tained from Algorithm 1 by replacing its line 17
with the following two lines.

(16.1)
(17) send-polling-request (X) ;

if p-upper-bound(X) 2 s x D then

Explanation of Algorithm 3
The new step in FDM-LPP is the one for polling-

site-pruning (line 16.1). At that stage, Si is a polling
site and has received requests from the other sites
to perform polling. Each request contains a locally
larEe itemset X and its local sumort count X.sup;.

-.I, _ _
The FDM-LP described above has utilized the tech-

niques described in Subsections 3.1, 3.2, and 3.4. An
illustration of FDM-LP by example can be found in
Examples 1, 2 and 3 together.

In the following, two refinements of FDM-LP, by
adoption of different global pruning techniques, are
presented.

where Sj is a site from which X is sent to Si.
Note that X.large-sites is the set of all the origi-
nating sites from which the requests for polling X
are being sent to the polling site (line 15). For ev-
ery site Sj E X.large-sites, the local support count
X.supj has been sent to Si already. For a site S,
X.Zarge-sites, since X is not locally large at S,, its

38

local support count X.sup, must be smaller than the
local threshold s x D,. Following from the discus-
sion in Subsection 3.3, X.supq is bounded by the value
min(maxsupq (X) , s x D, - 1). Hence an upper bound
of X.sup can be computed by the sum

x .supj +
jEX.large-sites

2 min(mazsupq(X) , s x Dq - 1).
q = l ,q+?X.large-sites

In FDM-LPP, Si calls p-upper-bound to compute an
upper bound for X.sup according to the above for-
mula. This upper bound can be used to prune away
X if it is smaller than the global support threshold.

0
As discussed before, both FDM-LUP and FDM-

LPP may have less candidate sets than FDM-LP. How-
ever, they require more storage and communication
messages for the local support counts. Their efficiency
comparing with FDM-LP will depend largely on the
data distribution.

5 Performance Study of FDM
An in-depth performance study has been performed

to compare FDM with CD. We have chosen to im-
plement the representative version of FDM, FDM-
LP, and compare it against CD. Both algorithms are
implemented on a distributed system by using PVM
(Parallel Virtual Machine) [6]. A series of three to
six RS/6000 workstations, running the AIX system,
are connected by a 10Mb LAN to perform the experi-
ment. The databases in the experiment are composed
of synthetic data.

In the experiment result, the number of candidate
sets found in FDM at each site is between 10 - 25% of
that in CD. The total message size in FDM is between
10 - 15% of that in CD. The execution time of FDM
is between 65 - 75% of that in CD. The reduction
in the number of candidate sets and message size in
FDM is very significant. The reduction in execution
time is also substantial. However, it is not directly
proportional to the reduction in candidate sets and
message size. This is mainly due to the overhead of
running FDM and CD on PVM. What we have ob-
served is that the overhead of PVM in FDM is very
close to that in CD, even though the amount of mes-
sage communication is significantly smaller in FDM.
From the results of our experiments, it is also clear
that the performance gain of FDM over CD will be
higher in distributed systems in which the commu-
nication bandwidth is an important performance fac-
tor. For example, if the mining is being done on a
distributed database over wide area or long haul net-
work. The performance of FDM-LP against Apriori
in a large database is also compared. In that case, the
response time of FDM-LP is only about 20% longer

Interpretation
transaction mean size
mean size of maximal
potentially large itemsets
number of potentially
large itemsets
Number of items
Clustering size
Pool size
Correlation level
Multiplying factor

Parameter
ITI
I I I

I L I

N
sq
Ps

Mf
Cr

Value
10
4

2000

1000
5 - 6
50 - 70
0.5
1260 - 2400

Table 5: Parameter Table.

than 1/n of the response time of Apriori, where n is
the number of sites. This is a very ideal speed-up. In
terms of total execution time, FDM-LP is very close
to Apriori.

The test bed that we use has six workstations. Each
one of them has its own local disk, and its partition is
loaded on its local disk before the experiment starts.
The databases used in our experiment are synthetic
data generated using the same techniques introduced
in [2, lo]. The parameters used are similar to those
in [lo]. Table 5 is a list of the parameters and their
values used in our synthetic databases. Readers not
familiar with these parameters can refer to [2, lo]. In
the following, we use the notation Tx.Iy.Dm to denote
a database in which D = m (in thousands), IT1 = x,
and 111 = y.

T10.14.D200K, s = 3%

4 5 6
Number of Nodes

+FDM +CD

Figure 1: Candidate Sets Reduction (n = 3, 4, 5, 6)

5.1 Candidate Sets and Message Size Re-
duction

The sizes of the databases in our study range from
200K to 600K transactions, and the minimumsupport
threshold ranges from 3% to 3.75%. Note that the
number of candidate sets at each site are the same
in CD and different in FDM. In our experiment, we
witnessed a reduction of 75 - 90% of candidate sets on

39

T10.14.D200K, n = 3 T10.14.D200K, n = 3

60 , I

S 8 3.00 3.25 3.510 3.75
YO % %I YO

Minimum support
+FDM + k C D

~ g s 3.00% 3.25% 3.50% 3.75%

Minimum support

+FDM +CD

Figure 4: Message Size Reduction Figure 2: Candidate Sets Reduction

average at each site when FDM-LP is compared with
CD. In Figure 1, the average number of candidate sets
generated by FDM-LP and CD for a 200K transaction
database are plotted against the number of partitions.
FDM-LP has a 75 - 90% reduction in the candidate
sets. The percentage of reduction increases when the
number of partitions increases. This shows that FDM
becomes more effective when the system is scaled up.
In Figure 2, the same comparison between FDM-LP
and CD is presented for the same database with three
partitions on different thresholds. In this case, FDM-
LP experienced a similar amount of reduction.

T10.14.D200K, s = 30/0

I-

150

100

50

0
3 4 5 6

Number of Nodos

+FDM +CB

Figure 3: Message Size Reduction (n = 3, 4, 5 , 6)

The reduction in candidate sets should have a pro-
portional impact on the reduction (of messages in the
comparison. Moreover, as discussed before, the polling
site technique guarantees that FDM only requires
O(n) messages for each candidate set, which is much
smaller than the O (n 2) messages required in CD. In
our experiment, FDM has about 90% reduction in the
total message size in all cases when it is compared with
CD. In Figure 3, the total message size in FDM and
CD for the same 200K database are plotted against the
number of partitions. In Figure 4, the same compari-
son on the same database of three partitions with dif-

ferent support thresholds are presented. Both results
confirm our analysis that FDM-LP is very effective in
cutting down the number of messages required.

T10.14.D200K, s = 3%

90

E 3

2 8

.= U 70
c c
.Q 8
a c 50
c

x s w

"" I

3 4 5 6

Number of Nodes
+FDM +CD

Figure 5: Execution Time (n = 3, 4, 5 , 6)

T10.14.D200K, n = 3

3.00% 3.25% 3.50% 3.75%

Minimum Support

-E-FDM -A-CD

Figure 6: Execution Time

5.2 Execution Time Reduction
We have also compared the execution time between

FDM-LP and CD. The execution time of FDM-LP
and CD on a 200K database are plotted against the
number of partitions in Figure 5. FDM-LP is about

40

25 - 35% faster than CD in all cases. In Figure 6, the
comparison is plotted against different thresholds for
the same database on three partitions. Again, FDM-
LP is shown to have similar amount of speed-up as in
Figure 5.

n = 3, D = 60011, s = 2% I Apriori I FDM-LP
response time (sec) I 1474 I 387

I total execution time (sec) I 844.7 I 842.9 I

Table 6: Efficiency of FDM-LP.

We have also compared FDM-LP on three sites
against Apriori with respect to a 600K transactions
database in order to find out its efficiency in large
database. The result is shown in Table 6. The re-
sponse time of FDM-LP is only slightly (20%) larger
than 1/3 of that of Apriori. In terms of the total ex-
ecution time, FDM-LP is very close to Apriori. For
a large database, FDM-LP may have a bigger portion
of the database residing in the distributed memory
than Apriori. Therefore, it will be much faster than
running Apriori on the same database in a single ma-
chine. This shows that FDM-LP on a scalable dis-
tributed system is an efficient and effective technique
for mining association rules in large databases.

The performance study has demonstrated that
FDM generates a much smaller set of candidate sets
and requires a significantly smaller amount of mes-
sages when comparing with CD. The improvement in
execution time is also substantial even though the
overhead incurred from PVM prevents FDM from
achieving a speed-up proportional to the reduction
in candidate sets and message size. Even though,
we have only compared CD with FDM-LP, there is
enough evidence to show that FDM is more efficient
than CD in a distributed environment. In the follow-
ing sections, we will discuss our future plan of imple-
menting the other versions of FDM.

6 Discussions
In this discussion, we will first discuss the issue of

possible extension of FDM for fast parallel mining of
association rules. Following that, we will discuss two
other related issues: (1) the relationship between the
effectiveness of FDM and the distribution of data, and
(2) support threshold relaxation for possible reduction
of message overhead.

The CD and PDM algorithms are designed for
share-nothing parallel environment. In particular, CD
has been implemented and tested on the IBM SP2
machine. In designing algorithm for parallel mining
of association rules, not only the number and size of
messages required should be minimized, but also the
number of synchronizations, which is the number of
rounds of message communication. CD has a simple

synchronization scheme. It requires only one round
of message communication in every iteration. Besides
the second iteration, PDM also has the same synchro-
nization scheme as CD. If FDM was used in the paral-
lel environment, it has a shortcoming: even though it
requires much less message passings then CD, it needs
more synchronizations. However, FDM can be modi-
fied to overcome this problem. In fact, in each itera-
tion, the candidate set reduction and global pruning
techniques can be used to eliminate many candidates
and then a broadcast can be used to exchange the local
support counts of the remaining candidates. This ap-
proach will generate less candidate sets than CD and
has the same number of synchronization. Therefore, it
will perform better than CD in all cases. Performance
studies has been carried out in a 32-nodes IBM SP2
to study several variations of this approach, and the
result is very promising.

Another interesting issue is the relationship be-
tween the performance of FDM and the distribution
of the itemsets among the partitions. From both The-
orem 1 and Example 1, it is clear that the number of
candidate sets decreases dramatically if the distribu-
tion of itemsets is quite skewed among the partitions.
If most of the globally large itemsets were locally large
at most of the sites, the reduction of candidate sets in
FDM would not have been as significant. In the worst
case, if every globally large itemset is locally large at
all the sites, the candidate sets in FDM and CD will be
the same. Therefore, data skewness may improve the
performance of FDM in general. Special partitioning
technique can be used to increase the data skewness
to optimize the performance of FDM. Some further
study is required to explore this issue.

The last issue that we want to discuss is the pos-
sible usage of the relaxation factor proposed in [ll].
In FDM, if a site sends not only those candidate sets
which are locally large but also those that are almost
locally large to the polling sites, the polling sites may
have local support counts from more sites to perform
the global pruning of candidate sets. For example, if
the support threshold is lo%, every site can send the
candidate sets whose local support counts exceed 5%
to their polling sites. In this case, for some candi-
date sets, their polling sites may receive local sup-
port counts from more sites than the no relaxation
case. Hence, the global pruning may be more effec-
tive. However, there is a trade-off between sending
more candidate sets to the polling sites and the prun-
ing of candidate sets at the polling sites. More study
is necessary on the detailed relationship between the
relaxation factor and the performance of the pruning.

7 Conclusions
In this paper, we proposed and studied an efficient

and effective distributed algorithm FDM for mining
association rules. Some interesting properties between

41

locally and globally large itemsets are observed, which
leads to an effective technique for the reduction of can-
didate sets in the discovery of large itemsets. Two
powerful pruning techniques, local and global prun-
ings, are proposed. Furthermore, the optimization
of the communications among the participating sites
is performed in FDM using the polling sites. Sev-
eral variations of FDM using different combination of
pruning techniques are described. A representative
version, FDM-LP, is implemented and whose perfor-
mance is compared with the CD algorithm in a dis-
tributed system. The result shows the high perfor-
mance of FDM at mining association rules.

Several issues related to the extensions of the
method are also discussed. The techniques of can-
didate set reduction and global pruning can be inte-
grated with CD to perform mining in a parallel envi-
ronment which will be better than CD when consider-
ing both message communication and synchronization.
Further improvement of the performance of the FDM
algorithm using the skewness of data distribution and
the relaxation of support thresholds is also discussed.

Recently, there have been interesting studies on the
mining of generalized association rules [14], multiple-
level association rules [8], quantitative association
rules [15], etc. Extension of our method to the min-
ing of these kinds of rules in a distributed or parallel
system are interesting issues for future research. Also,
parallel and distributed data mining of other kinds
of rules, such as characteristic rules [7], classification
rules, clustering [9], etc. is an important direction for
future studies. For our performance studies, an im-
plementation of the different versions of FDM on an
IBM SP2 system with 32 nodes has been carried out
and the result is very promising.

References
[l] R. Agrawal and J. C. Shafer. Parallel mining of

association rules: Design, implementation, and
experience. In IBM Research Report, 1996.

[2] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In Proc. 1994 Int. Conf.
Very Large Data Bases, pages 487-499, Santiago,
Chile, September 1994.

[3] R. Agrawal and R. Srikant. Mining sequential
patterns. In Proc. 1995 Int. Conf. Data Engi-
neering, pages 3-14, Taipei, Taiwan, March 1995.

[4] D.W. Cheung, J . Wan, V. Ng, and C.Y. Wong.
Maintenance of discovered association rules in
large databases: An incremental updating tech-
nique. In Proc. 1996 Int’l Conf. on Data Engi-
neering, New Orleans, Louisiana, Feb. 1996.

[5] U. M. Fayyad, 6. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy. Advances zn Knowledge Dis-
covery and Data Mining. AAAI/MIT Press, 1996.

[6] A. Geist, A. Beguelin, J . Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine, A Users’ Guide and Tutorial

for Networked Parallel Computing. MIT Press,
1994.

[7] J . Han, Y, Cai, and N. Cercone. Data-
driven discovery of quantitative rules in relational
databases. IEEE Trans. Knowledge and Data En-
gineering, 5:29-40, 1993.

Discovery of multiple-level
association rules from large databases. In Proc.
1995 Int. Conf. Very Large Data Bases, pages
420-431, Zurich, Switzerland, Sept. 1995.

[8] J . Han and Y. Fu.

[9] R. Ng and J. Han. Efficient and effective cluster-
ing method for spatial data mining. In Proc. 1994
Int. Conf. Very Large Data Bases, pages 144-155,
Santiago, Chile, September 1994.

[lo] J.S. Park, M.S. Chen, and P.S. Yu. An effec-
tive hash-based algorithm for mining association
rules. In Proc. 1995 ACM-SIGMOD Int. Conf.
Management of Data, pages 175-186, San Jose,
CA, May 1995.

[ll] J.S. Park, M.S. Chen, and P.S. Yu. Efficient par-
allel mining for association rules. In Proc. 4th Int.
Conf. on Information and Knowledge Manage-
ment, pages 31-36, Baltimore, Maryland, Nov.
1995.

[12] A. Savasere, E. Omiecinski, and S. Navathe. An
efficient algorithm for mining association rules
in large databases. In Proc. 1995 Int. Conf.
Very Large Data Bases, pages 432-443, Zurich,
Switzerland, Sept. 1995.

[13] A. Silberschatz, M. Stonebraker, and J . D. U11-
man. Database research: Achievements and op-
portunities into the 21st century. In Report of an
NSF Workshop on the Future of Database Sys-
tems Research, May 1995.

[14] R. Srikant and R. Agrawal. Mining general-
ized association rules. In Proc. 1995 Int. Conf.
Very Large Data Bases, pages 407-419, Zurich,
Switzerland, Sept. 1995.

association rules in large relational tables. In
Proc. 1996 ACM-SIGMOD Int. Conf. Manage-
ment of Data, Montreal, Canada, June 1996.

[15] R. Srikant and R. Agrawal. Mining quantitative

42

