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ABSTRACT 

In this paper, a new design algorithm is presented 
for a family of linear phase paraunitary filter banks 
with generalized filter length and symmetric polarity. 
A number of new constraints on the distributions of 
filter length and symmetry polarity among the chan- 
nels are derived. In the algorithm. the lengths of the 
filters are gradually reduced through a cascade of lat- 
tice structures . The derivations for filter banks with 
even and odd number of channels are formulated in 
a unified form. 

I. Introduction 
Recently, there has been considerable interest 

among researchers in the design of ,Wchannel maxi- 
mally decimated filter banks. as shown in Fig. 1. The  

theory of linear-phase ( L P )  filter banks and their ap- 
plications have been addressed by many authors. In 
two-channel case, linear phase (symmetry) property 
has been imposed on the traditional subband filter 
banks [l, 2 %  31. It was shown that  among all cases of 
two-channel FIR perfect-reconstruction QMF struc- 
tures which yield LP filters, only two cases yield 
good filters in the practical sense [4. 51. The  results 
are extended to the case of arbitrary number :VI of 
channels in [6, 71. In parallel to  the work on the 
general perfect-reconstruction filter banks, which are 
biorthogonal, researches have also been done for pa- 
raunitary systems. Lattice factorizations were devel- 
oped in [8, 101 for even M . In [ l l ,  12,  131, the results 
were extended to the case where ibI is odd. 

In the lattice factorizations of [8, 111, the filter 
length is restricted to N = kAbI or 2kibI for even 
and odd i W ,  and the step size in increasing the filter 
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length is at  least ‘LI. This is not convenient when the 
number of channels is large, e.g.. &I = 8 or 16. In 
the phase of filter design, an increase of filter length 
by a large LLI implies a much higher non-linear pa- 
rameter space to be searched and the optimization 
program tends to be trapped in local minima. In the 
phase of implementing filter banks, i.e., in the analy- 
sis/synthesis systems. a large increase in filter length 
by AbI gives much higher computational complexity. 
This leads to the design of general equal length filter 
banks and unequal length filter banks. 

In [14, the theory and structures are stud- 
ied for a large subclass of M-channel LP perfect- 
reconstruction FIR filter banks whose the analysis 
and synthesis filters have length Li = k i M + P ,  where 
3 is an arbitrary integer, 0 5 p < ibI, and ki is a 
non-negative integer. The extension of filter length 
from AV = k M  to k i M  + i? gives more flexibility in 
fine-tuning filter length to meet a given filter spec- 
ification. e.g., stopband attenuation. The  unified ,b’ 
leads to this class of filter banks to have a simple 
characterization of symmetric property in polyphase 
representation (Eq. (2.1) in [8] and Eq. (3) in [14]). 
I t  is noted that tree-structured filter banks [2, 31 can 
be viewed as a kind of unequal length filter banks. 
In terms of lapped orthogonal transforms [9, 15, 161, 
the freedom in filter length provides the possibility 
of overlap which is a fraction of the number of chan- 
nels .\.I. Moreover, it  has been shown tha t  this class 
of filter banks can be used in processing finite-length 
signal with the symmetric extension method [U, 181. 

In this paper. we further investigate factorizations 
of linear-phase paraunitary systems. In Section 11, 
several known results are reviewed and new con- 
straints are derived. Section I11 and IV show that 
the filter banks can be designed by a successive of 
length reductions through a cascade of lattice struc- 
tures which is minimal in terms of the number of 
delays used for implementation. The  algorithm can 
also be applied to filter banks where the filter length 
is an integral multiple of the number of channels, o r ,  
filter banks with equal length. In Section V ,  a brief 
summary is given and a design example is included 
to verify the theory. 
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11. Basic constraints and properties 
Definition 2.1 Consider an M-channel linear- 
phase filter bank where among the -VI filters, there 
are pk + Vk filters that have length k M  + 0, 0 5 k < 
AA7, where pk and vk stand that  the numbers of sym- 
metric and anti-symmetric filters, respectively. A 
matrix tc-stack is defined to  indicate distributions of 

symmetry polarity among the filters 

. (1) 
0, l,..', k, ' " ;  P t )  

110, Pi,..., P k ,  . . .  
-UO, - V i ,  .", - U k ,  . . . ,  -VI< 

Proposition 2.1 In an M-channel LP perfect- 
reconstruction filter bank with filter lengths Li = 
k i M  + p, 0 5 k; 5 IC, let 3 = k , ,  6 = 

t d k = O ~ k r  ip = C k = , v k .  The following results have 
been shown [8, 141 

1 . I f  114 E Z, and P E  Z,, CL E Z,, b = y ,  v = +; 
2.If 114 E Z,  and p E z,, + E  z,, 6 = ?+I, ;o = +-I; 
3 , I f n / 1 ~ ~ , a n d p ~ ~ , ,  + E Z , ,  b = y , V = q ;  

where 2, and 2, denote the sets of even and odd 
integers, respectively. 

Proposition 2.1 shows the total sum of the filter 
length and the total numbers of symmetric and anti- 
symmetric filters. However, the permissible length 
and symmetry polarity distributions are not given. 
For example, for a given total number p~ + VK of 
filters that have the longest length K i M  + ,!j', the re- 
lahon for the number of symmetric filters p~ and 
the number of anti-symmetric filters VK has not been 
shown. In the following, new results will be presented 
and lead to the unification of the lattice structures of 
filter banks with even and odd number of channels. 

Partitioning of E K ( ~ )  : It is noted that the 
perfect-reconstruction property is preserved in spite 
of the interchange of rows of the polyphase matrix 
EK(z). With row-wise permutations, EK(z) can al- 
ways be partitioned as 

7 f i  f i  

4 . I f  M E Z,  and P E  z,, i E z,, 6 = y, v = 2; M-1 

Efc(z) = ( i:lfi , ( 2 )  

where E,(z) and E,(z) represent p~ symmetric and 
V,Y anti-symmetric filters with the longest length 
L; = A'M + /3; E d ( ? )  stands for the rest iVf - 
( p ~  + YK) filters. For convenience, the subsequent 
discussions assume that  EK (2) has already been 
arranged in the form of (2). Let EK(:) be ex- 
pressed as EK(z) = e(0) + . . . + e(K - l ) ~ - ( ~ - l )  + 
e(K)z-K, e(K) # 0, and e(O), e(K - 1) and e(li) 
are partitioned as 

E d ( z )  

e , , l ( O )  e ~ , , ( o )  e , , l ( K  - 1) * e , r ( K  - 1) , , l ( r c )  
( e a , i ( o )  e d , l ( o )  e a , . ( o ) )  - d , r ( O )  . (ea. i (K e d . l  (K - - l )  1) e a , r ( K  - 1;) . G ~ , ~ ( K )  I) , 

(3) 

where the left hand side part consists of j3' columns; 
and the right hand side part consists of - ,8 
columns. The lower part of .(IC) and ed,,(K - l),  
which is to  the right ofed , , (K- l ) ,  are set to  0, as the 
corresponding filters are shorter than ICM 1-3. Also, 

since t,he maximum length of filters are K'bf + d ,  all 
the elements on the right hand side of e(1i) are set 
to  zeros. 

Proposition 2.2 Foir a LP paraunitary filter bank 
EK(:), the polyphase components es(0) and ea(0) 
as defined i n  ( 3 )  satisfy 

(4) 

( 5 )  

~ z n k ( e ~ ( 0 ) )  = r u n k ( e , ( o ) ) ,  2 5 K 
Tank(e jq l (0 ) )  :: rank(e,,L(O)), 15  K .  

Corollary 2.1 For a.n ;VI-channel LP paraunitary 
filter bank with filter lengths L; = k ; h + y ,  0 5 9 5 

- I., 0 5 k; 5 I<. The filters with the longest 
length L; = Ii-bf + ,O can not be all symmetric or all 
anti-symmetric. 

Proposition 2.3 Let El(:) be a FIR LP parau- 
nitary filter bank whose K-stack is ( ,,:: 
Then, 

,,; ) - y o .  -U1 

0, if A4 - p is even, 
1, if M - /3 is odd. 

( 6 )  

0. if ,b' is even, 
pJ-vo .= = 

1, if /3 is odd, 

i.e., the numbers of 5,ymmetric and anti-symmetric 
filters are balanced. 

111. Lattice factorization 
Based on Proposition 2.2,  we show the "order re- 

duction" process to l i  = 1. The  next section will 
present a general initialization of the lattice struc- 
ture. 

Proposition 3.1 Let EK(z),  2 5 I< be a FIR LP 
paraunitary filter bank whose rc-stack is 

0 ,  1 ,  2 , ' . '  , h - - 2 ,  A - - 1 ,  
PO, P I ?  P 2 ,  " '  

- U o ,  - V i ,  -U?, ' " ,  - U j , - - 2 ,  - U i < - i ,  --Vi< 

( 7) 

Then it cain always be factored into a left hand 
side factor ZK(::) and a LP paraunitary filter bank 
E K - ~ ( z )  with the order I< reduced by 1, EK(z) = 
Z,y(z)E~- , (z ) ,  where the 6-stack of E ~ - l ( z )  

> P i c - 2 ,  P X - 1  , ( 8 )  
, - d .  r, -I 

U;, P i ,  P ; ,  ... 
- I / ; ,  -.U;, --U;, ... 

0 ,  1, 2 ,  " '  

k = A - - l  Pk = P k f C ,  
= Uk f c ,  k Z K - 1  4 = P k f P k t 1  - < ,  k = I i - 2  

Vi = 
U k f Y k + i  - < ,  k =  K - 2  

@ k  = P k ,  O < k < K - 3  
, U; = "k O < k < K - 3  

is related to that of EK(z) in (7) as 

(9) 

where c = mnk(e , (O) ) .  

Proof: 

i) Partztzonzng of lE,(z) and E,(z): 

The  proof is achieved through an order 
reduct ion process and is divided into three steps. 

Let E,(=)  
be expressed as E, ( 2 )  = es(0) + e,( 1)z-1 + . . . + 
eS(J<)L-K, e,(hr) # 0. Denote the rank of e,(O) as 

2378 



E ~ ( z )  consists of c symmetric filters and all the rows 
of the polyphase components e/,(O) are linearly in- 
dependent, i.e., mnk(e i (0 ) )  = c ;  E Y ( ~ )  represents 
the rest K - c symmetric filters with e’,’(O) set to 

press E,(=) as ( :![:; ) = VvKE, (z ) .  Hence, 
0 throug E linear combinations. Likewise, we can ex- 

where & I  = d i a g ( U p K , V ~ ~ , I , ~ ~ - P K - v K ) .  T and QS 
exchanges E:( z )  and E’, (2). 

ii) Reductzon of t h e  order of E:(:) and E’,(z) by 
A4 : Proposition 2.2 shows that  r u n k ( e a ( 0 ) )  = 
mnk(e,(O)) = F. Pairwisely combining the c sym- 
metric and c anti-symmetric rows in E: ( z )  and E’, ( z )  
yields FK ( z )  satisfying the pairwise time-reversed 
property 

1 
Fl;(z) = T ( r )  (E:{:;) , T ( c )  = - ( J q  ) . (13) 

fi J, -I, 

It can be shown that  F K ( ~ )  can be factored into the 
“reduced form” FK- 1 ( z )  

Fi,-(z) = A~,- (z)FI<-~(z) ,  Alii(.) = A(=)W.t< (14) 

r‘ =-11, ) ; U, and V, are two orthonormal ma- 

trices. Moreover, FK-~( : )  with pairwise time- 
reversed property can be expressed a s  FI<-l(z) = 

T ( c )  ( z!:[fi ) ,  where E’,’(z) and E:’(:) are LP 
filters with symmetric and anti-symmetric property, 
respectively. Hence, 

where A’(z) = T(c )A(z )T(c ) .  It  yields the first and 
second equations in (9). 

iii) Reductzon of the order ofElg(z) and E:(:) by 
2 M  : As shown in ( l l ) ,  the first iz.l taps of the filters 
in E:(:) are set to zero. Due to the symmetry of 
E:(z), the last (highest order) Df taps are also zeros. 
As a result, E’,’(z) can be shifted to the left by z ,  
resulting in a reduction in length of 2 M ,  E:(=) = 
=-‘E&”’(:). Similarly, E:(z) can be shifted to the left 
by z to lower order filters E:“(:), namely, E:(:) = 
z-’E:’’(z). It gives the third and fourth equations 
in (9).  

Substituting the results in Step (ii)  and iii) gives 
the lac toriza- 
tion EK(:) = Q1Q’A’(z)EK-1(:) where A’(z) = 
d i a g ( A ’ ( z ) ,  z- i IPK- .q ,  : ‘IvK-<, Ilvf-pK-uK) and - 

(16) 

IV. Initialization 
Proposition 4.1 Let El(:) be a FIR LP parauni- 

tary matrix whose r;-stacl; is ( @:) . Then it 

can always be factored into a right hand side fac- 
tor e(:) and an initial matrix f20 

El(=) =Go@(=),  (17) 

0 ,  

--uo, - V I  

where & = v ,>. U, V and W are or- 

thonormal matrices having centro-symmetric prop- 
erty [8, 111. 

( 

Proof:  Let El(:) be expressed as El(.) = e(o)+  
e(I)z-*, where e(0) and e(1) be partitioned as in (3) 

es , i (o )  e s , r ( O )  ) , ( :s,L(l) 
e5.1(o) ea , , (0 )  e5,1(1) . (18) 

Following a similar procedure of derivation of (12) 
and employing (51, e(0) and e(1) can be factored as 

) ( e d , l ( o )  0 

e:,i(O) e : , r (o )  e: , lO)  0 [ y o )  s‘::“ e:,#) j, [ i l 1 ( 1 )  i j (19) 

e d , l  ( O )  

where rank(e’,, ,(O)) = c’. Proposition 2.1, 2.2 
and 2.3 show that the numbers of symmetric and 
anti-symmetric filters in E:(=) and E’,(:) are equal; 
E/, (2) and Eh(:) consist of balanced number of sym- 
metric and anti-symmetric filters, i.e., the number 
of symmetric filters is equal to  or greater than the 
number of anti-symmetric filters by 1; E d ( z )  itself 
consists of balanced number of symmetric and anti- 
symmetric filters. Pairwisely combining these sym- 
metric and anti-symmetric rows to  pairwise time- 
reversed rows, e(0) and e( 1) become 

eL,r(1) 
0 ) ? ( ; ; ) . (20) 

We focus on the left hand side B elements in eL,l(0), 
e;,/(O) and e;,,(l). The centro-symmetric rows in 
e&,,(O) form a basis for a po + vo dimensional space. 
With a centro-symmetric matrix performing linear 
combinations of columns of e&,,(O), we can turn the 
central p0 + Y O  columns of e;,,(O) into a full-ranked 
centro-symmetric matrix e’&(O) while a t  the same 
time automatically set the polyphase components to  
the left. right and above it to zeros. In particular, 
e(0)  and e( 1) become 

c,,(o) 0 e:,;(o) e:,,(o) 
0 

e&r(o) 0 0 
( g ‘  
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e:,; (1) 0 e”’ 
0 c , 4 ( 1 )  0 8 ) . (22) 
0 0 0 

The columns of e:,lI(O), e:,’2(0), ey,i(l) and eL,4(l) 
satisfy the pairwise time-reversed pro erty. Similar 
to the order reduction process in (147, we can cas- 
cade Al(z) = WlA(i) to the right of e(0) and e(1), 
turning e(0) into 

0 

and e(1) into 0. The difference between Al(z) = 
W , A ( z )  and A(;) in (14) lies in that  A(z) is placed 
to  the right of W1. Furthermore, permuting eL,r(0) 
and e’,,r(0) gives 

e(0)  = 8 ) . (24) 
U 0 el;(o) 

Note that  the row in e:,?(O) are orthonormal. Simi- 
lar to the deduction of ( 2 l ) ,  with a centro-symmetric 
matrix performing linear combinations of columns of 
e;,?-(O), we can turn the central hf - (po + YO) - 
2 ~ ’  columns of eL,r(0) into a full-ranked centro- 
symmetric matrix e:,?(O) while a t  the same time au- 
tomatically set the polyphase components to  the left, 
rigjht and above it to zeros, i.e., 

e:,’F(o) 0 e:,y(o) 
e: ,m 0 

With column-wise permutations, e”(i’(0) and e:,’‘(O) 
can be merged into a centro-symmetric matrix e,. 
e( 0) becomes 

8 ) . (25) 
0 o e&’(o) 

where ec(0), ey,r(0) and e:(O) are centro-symmetric. 

V. Conclusion and design example 
We have presented a new algorithm for designing 

a family of general linear-phase paraunitary. The 
lattice factorization is obtained through a succession 
of .‘order reduction” processes, compromising planar 
rotations which force more than half of the rows to 
zeros, and delay chains which shift the shorten filters 
to  lower orders. A 9-channel filter bank with length 
{X?, 32, 32, 32, 32, 32, 23, 23, 23) and alternative 
symmetric and anti-symmetric property is shown in 
Fig 2.  
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