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ABSTRACT

In this paper, a new design algorithm is presented
for a family of linear phase paraunitary filter banks
with generalized filter length and symmetric polarity.
A number of new constraints on the distributions of
filter length and symmetry polarity among the chan-
nels are derived. In the algorithm, the lengths of the
filters are gradually reduced through a cascade of lat-
tice structures . The derivations for filter banks with
even and odd number of channels are formulated in
a unified form.

I. Introduction

Recently, there has been considerable interest
among researchers in the design of W-channel maxi-
mally decimated filter banks, as shown in Fig. 1. The
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Figure 1: M-Channel Analysis/Synthesis Systems

theory of linear-phase (LP) filter banks and their ap-
plications have been addressed by many authors. In
two-channel case, linear phase (symmetry) property
has been imposed on the traditional subband filter
banks [1, 2, 3]. It was shown that among all cases of
two-channel FIR perfect-reconstruction QMF struc-
tures which yield LP filters, only two cases yield
good filters in the practical sense [4, 5]. The results
are extended to the case of arbitrary number M of
channels in [6, 7]. In parallel to the work on the
general perfect-reconstruction filter banks, which are
biorthogonal, researches have also been done for pa-
raunitary systems. Lattice factorizations were devel-
oped in [8, 10] for even M . In [11, 12, 13}, the results
were extended to the case where M is odd.

In the lattice factorizations of [8, 11], the filter
length is restricted to N = kM or 2kM for even
and odd M, and the step size in increasing the filter
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length is at least M. This 1s not convenient when the
number of channels is large, e.g., M = 8 or 16. In
the phase of filter design, an increase of filter length
by a large M implies a much higher non-linear pa-
rameter space to be searched and the optimization
program tends to be trapped in local minima. In the
phase of implementing filter banks, i.e., in the analy-
sis/syuthesis systems, a large increase in filter length
by M gives much higher computational complexity.
This leads to the design of general equal length filter
banks and unequal length filter banks.

In [14], the theory and structures are stud-
led for a large subclass of M-channel LP perfect-
reconstruction FIR filter banks whose the analysis
and synthesis filters have length L; = k; M + 3, where
3 is an arbitrary integer, 0 < # < M, and k; is a
non-negative integer. The extension of filter length
from N = &M to k;M + 3 gives more flexibility in
fine-tuning filter length to meet a given filter spec-
ification, e.g., stopband attenuation. The unified 7
leads to this class of filter banks to have a simple
characterization of symmetric property in polyphase
representation (Eq. (2.1) in [8] and Eq. (3) in [14)}).
It is noted that tree-structured filter banks [2, 3] can
be viewed as a kind of unequal length filter banks.
In terms of lapped orthogonal transforms [9, 15, 16],
the freedom in filter length provides the possibility
of overlap which is a fraction of the number of chan-
nels M. Moreover, it has been shown that this class
of filter banks can be used in processing finite-length
signal with the symmetric extension method {17, 18].

In this paper, we further investigate factorizations
of linear-phase paraunitary systems. In Section II,
several known results are reviewed and new con-
straints are derived. Section II1 and IV show that
the filter banks can be designed by a successive of
length reductions through a cascade of lattice struc-
tures which is minimal in terms of the number of
delays used for implementation. The algorithm can
also be applied to filter banks where the filter length
1s an integral multiple of the number of channels, or,
filter banks with equal length. In Section V, a brief
summary 1s given and a design example is included
to verify the theory.
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II. Basic constraints and properties

Definition 2.1 Consider an M-channel linear-
phase filter bank where among the M filters, there
are py, + vy, filters that have length kM + 8, 0 < k <
K, where uj and vy stand that the numbers of sym-
metric and anti-symmetric filters, respectively. A
matrix k-stack is defined to indicate distributions of
the length and symmetry polarity among the filters
. UK

0, 1, -, k
K-stack = 2 T S T 7y < R ¢
Yo, =1, cccy Vg, oty UK

Proposition 2.1 In an M-channel LP perfect-
reconstruction filter bank with filter lengths L; =
kM + 8,0 < kb < K, let v = 5M Tk, ¢ =
z:i‘;o Bk, © = :‘;0 vg. The following results have

been shown {8, 14]

1.IfMeZeandﬁeZc, '([/'EZe,d):%,gp:‘—g-;
2If MeZz.and g e Z,, weZo,rb:‘;—" Lsa:%l-—l;
3 MeZ,and BeZ., v€EZo = MEL o ML,

2
41 MeZoand BeZo, vEZe, b=HE, o= ML,
where Z, and Z, denote the sets of even and odd
integers, respectively.

Proposition 2.1 shows the total sum of the filter
length and the total numbers of symmetric and anti-
symmetric filters. However, the permissible length
and symmetry polarity distributions are not given.
For example, for a given total number pg + vg of
filters that have the longest length KM + 3, the re-
lation for the number of symmetric filters px and
the number of anti-symmetric filters vx has not been
shown. In the following, new results will be presented
and lead to the unification of the lattice structures of
filter banks with even and odd number of channels.

Partitioning of Eg(z) : It is noted that the
perfect-reconstruction property is preserved in spite
of the interchange of rows of the polyphase matrix
Ek(z). With row-wise permutations, Ex(z) can al-
ways be partitioned as

[£1)
Ex(z)={ Ea(z) |, (2)
Ba(z)

where E,(z) and E,(z) represent ux symmetric and
vk anti-symmetric filters with the longest length
Li = KM + 3; E4(2) stands for the rest M —
(g + vi) filters. For convenience, the subsequent
discussions assume that Ex(z) has already been
arranged in the form of (2). Let Eg(z) be ex-
pressed as Ex(z) = e(0) + -+ e(K — 1)z7(K-1)
e(K)z~%, e(K)# 0, and e(0), e(K — 1) and e(K)
are partitioned as

ey,1(0) eq,»(0) eg (K — 1) eg (K =1) e (K) o
€,,1(0) eq,r(0)},{es (K —1) ear(K=~1)], <e“,1(}\’) 0) s
2q,1(0) e4 ,(0) eq, (K = 1) o o o,

(3)

[N
—

where the left hand side part consists of 3 columns;
and the right hand side part consists of M — 3
columns. The lower part of e(X) and eq (K — 1),
which is to the right of eq;( K’ —1), are set to 0, as the
corresponding filters are shorter than K M + 3. Also,
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since the maximum length of filters are KM + 3, all
the elements on the right hand side of e(K) are set
to zeros.

Proposition 2.2 For a LP paraunitary filter bank

Ex(z), the polyphase components e,(0) and e,(0)
as defined in (3) satisfy

rank(es(0)) = rank(eq(0)), 2 <K {4)

rank(e, (0)) = rank(e, ;(0)), 1< K. (5)

Corollary 2.1 For an M-channel LP paraunitary
filter bank with filter lengths L; = k;M +3, 0 < 8 <
M —1,0 <k < K. The filters with the longest
length L; = KM + 3 can not be all symmetric or all
anti-symmetric.

Proposition 2.3 Let E{(z) be a FIR LP parau-
nitary filter bank whose k-stack is ( ot s >

—vp,  =vy
Then,
_ [0, if 3is even, _ [0, if M~ 3is even,
HOTVO = 1 1, if Bisodd, *1 1 1, if M — 3 is odd.

(6)

i.e., the numbers of symmetric and anti-symmetric
filters are balanced.

III. Lattice factorization

Based on Proposition 2.2, we show the “order re-
duction” process to K = 1. The next section will
present a general initialization of the lattice struc-
ture.

Proposition 3.1 Let Eg(z), 2 < K be a FIR LP
paraunitary filter bank whose k-stack is

0, 1, 2, - K -2, A -1, K
HO M1, B2y oy KR -2, KK —1, KK | -
—la, —l, V2, Ty —VK -2, —VK -1, VK

(7)

Then it can always be factored into a left hand
side factor Ex (%) and a LP paraunitary filter bank
Eg_1(z) with the order K reduced by 1, Exg(z) =
Exk(2)Eg_1(z), where the s-stack of Ex_1(2)

09 17 2y Tty I\”"2, A——l
1 !
Bor MY By tth o MRe_g Broy |, (B)
!
S S A

is related to that of Ex(z) in (7) as

B = pr+s k=K ~1

v o= wts, k=K -1

By = prtprgr-—s, k=K-2 9
v, = Vgt Vgy1 s, =

By = bk 0<k<K-3

v, = g, 0<k<K-3

where ¢ = rank(e,(0)).

Proof : The proof is achieved through an order
reduction process and is divided into three steps.

1) Partitioning of E,(z) and E,(z): Let E (z)
be expressed as E;(2) = e,(0) + e,(1)z7t + -+ +
e, (K)z~%, e,(K) # 0. Denote the rank of e,(0) as



. By cascading an orthonormal matrix Uy, , E,(z)
can be decomposed as ( Eo(2) ) = U, E,(2),

E!(z)
where
El(z) = el (0)+e (1) - e (K—1)z~ (KD 4! (K)z~F,
{10)
E/z)=0+e/(M)z"1+ -+ /(K —1)z""=D 1 0. (11)

E/(z) consists of ¢ symmetric filters and all the rows
of the polyphase components e/ (0) are linearly in-
dependent, i.e., rank(e,(0)) = ¢; E”(z) represents
the rest gy — c symmetric filters with €7(0) set to

0 through linear combmatmns Likewise, we can ex-

press E.(z) as ( E%Ef; ) = E.(z). Hence,
E(z) E(2)
E(z) Eg(z)
Ex(z2)=Q E,(2) =Q1Q; EY(z) , (1)
E;(2) E{(z)
Eq(2) Ey(z)
where Q; = diag(UZ’A, u;\vIM—-uK—uK)- and Q-

exchanges E//(z) and E/(z).

i1} Reduction of the order of E(z) and B/ (z) by
M :  Proposition 2.2 shows that rank(e,(0)) =
rank{e;(0)) = ¢. Pairwisely combining the ¢ sym-
metric and ¢ anti-symmetric rows in E/(z) and E/ (z)
vields Fg(z) satisfying the pairwise time-reversed
property

Fx(z) = T(s) (}E:,;((;;) T()= —=( L J;),

7
V2 -L

It can be shown that Fx(z) can be factored into the
“reduced form” Fg_1(z)

Fr(z) =

o1 < I U ¢ I . ) —
where Wy = 1 G(_L) ( V<) G( _J<> ; Alz) =

<‘ 11 ); U: and V. are two orthonormal ma-
d <

(13)

Ax(z)Fr_i(2), Ax(z) =Alz)Wg (14)

trices.  Moreover, Fg_i(z) with pairwise time-
reversed property can be expressed as Fp-;(z) =

T(c)( g;:t; ), where EY'(z) and E!/(:) are LP

filters with symmetric and anti-symmetric property,
respectively. Hence,

(15)

where A’(z) = T(s)A(2)T(s).
second equations in (9).

iil) Reduction of the order of E//(z) and EJ/(z) by
2M : Asshownin (11), the first M taps of the filters
in EY(z) are set to zero. Due to the symmetry of
E//(z), the last (highest order) M taps are also zeros.
As a result, EY(z) can be shifted to the left by =z,
resulting in a reduction in length of 2M, Ej(z) =

z=YE/}"(2). Similarly, E”(z) can be shifted to the left
by z to lower order filters E/"'(z), namely, E7(z) =

z7YE”"(z). 1t gives the third and fourth equations
in (9).

It yields the first and

Substituting the results in Step (ii) and §m) gives

the actoriza-
tion Ex(z) = Q1Q2A'(2)Ex_1(z) where A'(z) =
diag(A'(2), 2™ upemg, 27 yemg, Inf e =i ) and
E/'(2)
EL'(2)
Erx_i(z) =] EJ’(z) (16)
E;"(=)
Eq4(=)
IV. Initialization

Proposition 4.1 Let E;(z) be a FIR LP parauni-

0, 1
tary matrix whose k-stack is ( tos w1 > . Then it
—vg, —U1
can always be factored into a right hand side fac-
tor ©®(z}) and an initial matrix Qg

Ei(z) = Q0O(z), (17)

U
where Qo = v > U, V and W are or-
A%

thonormal matrices having centro-symmetric prop-
erty (8, 11].

Proof: Let E{(z) be expressed as E;(z) = (0} +
e(1)z7', where e(0) and e(1) be partitioned as in (3)

es,l(o) es,r(o) es,l(l) 0
ea,l(o) ea,r(o) , ea,l(l) 0 - (18)
eq,:(0) 0 0 0

Following a similar procedure of derivation of (12)

and employing (5), e(0) and e(1) can be factored as
e, (0} el .(0) el (1) 0
e;‘l(O) e;‘r(O) e’ [(1) 0
0 e’ (o) |, 0 0 (19)
0 el (0) 0 0
eq.(0) 0 0 0

where rank(e’, ,(0)) = <. Proposition 2.1, 2.2

and 2.3 show that the numbers of symmetric and
anti-symmetric filters in E{(z) and E,(z) are equal;
E/(z) and E(z) consist of balanced number of sym-
metric and anti-symmetric filters, i.e., the number
of symmetric filters is equal to or greater than the
number of anti-symmetric filters by 1; Eg4(z) itself
consists of balanced number of symmetric and anti-
symmetric filters. Pairwisely combining these sym-
metric and anti-symmetric rows to palrwise time-
reversed rows, e(0) and e(1) become

el ,(0) eb.(0) e (1) 0
0 e 0 {, | o 0o 1. (20)
e/, ,(0) 0 0 0

We focus on the left hand side 3 elements in e/, ;(0),
e;;(0) and e ,(1). The centro-symmetric rows in
e};;(0) form a basis for a yo + vo dimensional space.
With a centro-symmetric matrix performing linear
combinations of columns of €] ,(0), we can turn the
central pg + v columns of e} ,(0) into a full-ranked

centro-symmetric matrix ed(O) while at the same
time automatically set the polyphase components to
the left, rlght and above it to zeros. In particular,
e(0) and e(1) become

( 7(0) 0 el(0) ei,r(0)>
0 0 0 el {0y |, (21)

0 e’/(0) 0 0
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1Hr

ec,:}(l) g e’c’,,f& 1) 0
0 0 0 0 (22)
0 0 0 0

The columns of e.’;(0), e,"2(0), e;’3(1) and e; 4(1)

satisfy the pairwise time-reversed property. Similar
to the order reduction process in (14), we can cas-

cade A1(z) = W1 A(z) to the right of e(0) and e(1),
turning e(0) into

e1(0) 0 e/5(0) ec,(0)
e(0) = 0 0 0 e/ .(0) |, (23)
0 e(0) 0 0

and e(l) into 0. The difference between A;(z) =
W A(z) and A(z) in (14) lies in that A(z) is placed
to the right of W;. Furthermore, permuting e, .(0)
and ej .(0) gives

e/1(0) e, .(0) el3(0) 0
e(0) = 0 e, -(0) 0 1] (24)
0 0 0 e’1(0)

Note that the row in e .(0) are orthonormal. Simi-

lar to the deduction of (21), with a centro-symmetric
matrix performing linear combinations of columns of
* (0), we can turn the central M — (uo + vo) —

e ,
2¢" columns of e .(0) into a full-ranked centro-
symmetric matrix e} .(0) while at the same time au-

tomatically set the polyphase components to the left,
right and above it to zeros, i.e.,

e::,’,ll,(o) 0 lclylzll(o) 0
e0)=1[ o e’ .(0) 0 0 (25)
0 0 0 e’1(0)
With column-wise permutations, e,’{'(0) and e;5(0)

can be merged into a centro-symimetric matrix e..
e(0) becomes

ec(0)

eII

Qo = e(0) = " (0) (26)

e (0)
where e.(0), e/ (0) and e/(0) are centro-symmetric.

V. Conclusion and design example

We have presented a new algorithm for designing
a family of general linear-phase paraunitary. The
lattice factorization is obtained through a succession
of “order reduction” processes, compromising planar
rotations which force more than half of the rows to
zeros, and delay chains which shift the shorten filters
to lower orders. A 9-channel filter bank with length
{32, 32, 32, 32, 32, 32, 23, 23, 23} and alternative
symmetric and anti-symmetric property is shown in
Fig 2.
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