
The Telephone Directory Enquiry System of Hong Kong

K.P. Chow, T.W. Lam, and K.H. Lee
Department of Computer Science

University of Hong Kong, Hong Kong
Email: {chow, twlam, khlee}@cs.hku.hk

Abstract

This paper is concerned with the design and per-
formance of the telephone directory enquiry system
newly adopted in Hong Kong. This system main-
tains three million telephone records and supports
over forty thousand enquiries per hour at the peak. In
the Hong Kong society the uses of English and Chi-
nese (in particular, Cantonese) has been blending in
a thrust of exciting language culture, giving rise to a
variety of telephone enquires that traditional B-tree
or hashing based telephone directory enquiry systems
fail to handle. The efficiency and flexibility achieved
by the new system stem from hosting all indexing
data structures in the main memory; these data struc-
tures occupy about half giga-bytes and would have
been considered too expensive to be placed in the
main memory in the past.

1 Introduction

In Hong Kong, there are about three million tele-
phone records and online telephone directory enquiry
always has a big demand, especially in the business
sector. At present, the Hong Kong Telecom Company
Limited provides a 24-hour online enquiry service.
Everybody can phone to the enquiry center to ask the
operator to search the telephone records through the
computer. At the peak, the enquiry center receives
over forty thousand enquiries per hour.

The previous telephone directory enquiry system
used in Hong Kong was developed fifteen years ago.
It was based on an implementation of B-trees, in
which telephone records are indexed by the names
of customers in English (or Chinese). Such an en-
quiry system is similar to other systems used in coun-
tries with English as the primary language and it
can serve swiftly for enquires that specify clearly the

whole name of customers or the leading characters.
However, due to the intermix of Chinese and English
language culture in Hong Kong, the number of en-
quiries that fail to provide the whole name of cus-
tomers or the leading characters is much more than
expected. As to be explained in Section 2, there are
indeed many cases in which the operators have to use
a trial-and-error basis to search the telephone records,
generating a number of queries to the computer; and
in the worst case the required records could not be
found. One of the goals of developing a new system
is to support very flexible queries so that the operator
can handle an enquiry by invoking a single query to
the computer.

Apart from supporting flexible queries, we must
also ensure the shortest possible response time to each
individual query. Existing database systems such as
Oracle and Sybase cannot satisfy such requirement.
They are designed for managing large data sets and
can serve straightforward queries efficiently. But for
those more complicated queries such as searching for
incomplete names, the response time is not accept-
able. In the new telephone directory enquiry sys-
tem, the indexing data structures of the telephone
records are indeed placed in the main memory. This
requires about half giga-bytes of memory. Nowa-
days machines with even one giga-bytes of main mem-
ory are commercially available at a reasonable cost.
Putting all indexing data structures into the main
memory speeds up the searching algorithms drasti-
cally and makes it feasible to support those compli-
cated queries. More importantly, from the viewpoint
of system design, the whole system becomes simpler
to implement and manage. We believe that in the
near future more database systems that are tradition-
ally built on secondary storage would be redesigned
to run on the main memory; Some complicated data
structures and algorithms designed to cope with sec-
ondary storage will also be simplified.

268
0-8186-7638-8/96 $05.00 0 1996 IEEE

The remainder of this paper is organized as follows:
Section 2 describes the characteristic of telephone di-
rectory enquires in Hong Kong and lays down the
requirements of the queries we expect the new en-
quiry system to handle. Section 3 studies the archi-
tecture of the new enquiry system. Section 4 shows
the details of the indexing data structures of tele-
phone records, that are to be kept in the main mem-
ory. These data structures adopt a uniform treat-
ment to both Chinese and English words and admit
a simple and efficient algorithm to search the tele-
phone records. Section 5 highlights the way the in-
dexing data structures is updated while a number of
enquiries are served at the same time. In the last sec-
tion, the performance of the new enquiry system is
discussed.

2 Characteristics of Telephone
Directory Enquires in Hong
Kong

Most of the telephone directory enquiries are actu-
ally related to the business. When a business is set
up in Hong Kong and applies for a telephone line, it
is only required to supply a name of the business in
English and the Chinese name is optional. This is
probably due to the historical development of Hong
Kong. Moreover, there are many international busi-
nesses in Hong Kong which do not have official Chi-
nese names. Apparently, there should not be any
problem if every enquiry can specify the name of the
business in English. Yet about 98% of the residents
in Hong Kong are Chinese speaking a Chinese dialect
called Cantonese. Though English is an official lan-
guage and a compulsory language subject at school,
most residents cannot speak fluent English. When
the operator receives a call, it is very often that the
enquirer fails to provide the full name of the business
in English, but can probably remember one or two
keywords of the business in English, and the rest in
Chinese. Thus, an enquiry is often composed of only
Chinese words or a mix of English and Chinese words.

Of course, one may expect the operator to translate
an enquiry to English. However, this creates a lot
of problems because there is no unique way to do
the translation and the Chinese and English names
of some businesses may actually have no relationship.
It is more desirable to build a telephone directory
enquiry system that supports enquiries in Chinese,

English, or a mix.

Another interesting point is that an enquirer, as
well as the operator, often fails to pronounce some
English words or spell the words correctly. Thus,
the operator often has difficulty in entering the ex-
act spelling of some English words. To remedy this
situation, the operator usually puts down only the
prefix or suffix of an English word to avoid mismatch
due to wrong spelling. For example, many residents
cannot pronounce and spell the word “Shangrila” cor-
rectly; it is not surprising to find the operator to enter
a query in the form of Than- Hotel” or “ -la Hotel”.

In Hong Kong, a business can be set up in no time.
There are many businesses with the same names. For
instance, there are over a hundred businesses with the
same name “Hung Fat”. To narrow the search, the
operator always asks for address information such as
the names of the district, street, or building in English
or Chinese.

In summary, a query prepared by the operator is
comprised of up to four fields: English name, Chinese
name, English address, and Chinese address. Each
field itself contains a sequence of keywords. Note that
an English keyword can appear in the form of a pre-
fix and/or suffix, but a Chinese keyword is simply a
single character. To process such query, the enquiry
system must find the record(s) that matches all these
fields. Traditional databases which organize the tele-
phone records according to the full English names or
the full Chinese names would obviously have a poor
performance.

3 Architecture Overview

The new enquiry system is a client-server system con-
sisting of six server machines (Unix machines) and
about three hundred client machines (personal com-
puters) connected through a network.

Client: A client machine is an ordinary PC. There
is not much computation done on it. When a client
machine starts up, it is assigned to be served by one of
the six server machines. Whenever a query is entered
through a client machine, a message is sent to the as-
signed server machine, which will process the query
and return the result in a message. The client ma-
chine waits for this result message to arrive, then for-
mats and displays the result accordingly. The client-
server message passing mechanism is implemented by
Remote Procedure Calls [3].

269

A Server Machine

Server: The six server machines are identical, run-
ning in parallel to even out the work load. Each server
machine is a HP9000-K200 machine with 768 mega-
bytes of main memory. In each server machine, there
is a process called Query-Server which contains the
program code of the searching algorithms described in
Section 4. Query-Server is a multi-threaded process
[5]. Whenever it receives a query from a client ma-
chine, it generates a thread (with the program code
shared) to handle that request. This new thread ex-
ecutes the searching algorithms and sends the result
in a message to the client machine. The main mem-
ory of a server machine is basically occupied by the
indexing data structures of the telephone records and
the threads generated by Query-Server (details of
memory utilization will be discussed in Section 4).
Figure 1 depicts the architecture of the new enquiry
system.

Telephone records and indexing data struc-
tures: Each server machine keeps a copy of the mas-
ter file of the telephone records in its hard disk. The
master file is a plain file; each record is accessed by
a unique record number (which is in the range be-
tween one and the total number of records). All in-
dexing data structures to these records are kept in

Figure 1: System architecture

270

the main memory; they are built from scratch when
the server machine starts. These data structures are
shared and read simultaneously by the threads gen-
erated by Query-Server. From the viewpoint of a
thread, a search in these shared data structures re-
sults in a list of record numbers that correspond to
those records needed. The actual telephone records
are retrieved from the master file eventually and sent
to the client machine.

Daily Update and weekly reorganization:
Everyday there are approximately 6,000 updates of
the telephone records. Each update is either an in-
sertion or a deletion of a record (a request of change
is treated as a deletion followed by an insertion). The
update requests are serialized at the enquiry service
center and sent to all server machines through the
network. Each server machine has one single process
dedicated to serving such request. Upon receiving a
request, this process updates the master file and in-
dexing data structures in real time. A very important
issue in designing the algorithm for updating of the
indexing data structures is not to lock any memory
location. This is to ensure that all enquiries can be
processed concurrently and correctly. Details of the
algorithm are discussed in Section 5. To simplify and

speedup the updating process, records that are sup-
posed to be deleted are only “marked”. After a while,
many obsolete entries may be left in the hard disk and
the main memory. Thus, a global reorganization of
the master file and the indexing data structures is
performed once a week. During the reorganization,
no enquiry is supported by the server machine. All
client machines connected to this server machine are
switched to other server machines. To minimize the
disturbance to the enquiry system, the reorganization
is carried out at mid-night and at most one server ma-
chine is reorganized in one day.

4 Data structures and search-
ing algorithms

To process a query described in Section 2 efficiently,
we need to minimize the number of disk accesses to
the master file of telephone records. This is achieved
by building a number of indexing data structures
(more precisely, tries) in the main memory to cap-
ture all name and address information of all tele-
phone records. A query is processed by a search in
these tries, which produces a list of record numbers
referring to the required records. Only these required
records are retrieved from the hard disk.

4.1 Tries-a review

Tries [4, 6 , 71 are popular data structures for repre-
senting a set of words. Unlike AVL trees, B-trees,
or other comparison-based data structures, tries can
take advantage of the fact that the word can be de-
composed into a sequence of characters, and thus sup-
port very efficient search for a word or a prefix.

A trie is simply a rooted tree in which every node
(except the root) contains a character and a termi-
nal flag. Figure 2(a) depicts a trie representing seven
words. Note that the path from the root to a node
defines uniquely a sequence of characters. For a node
with its terminal flag turned on, it is called a termi-
nal node and its path from the root corresponds to a
distinct word represented by the trie. In other words,
the set of words represented by the trie is defined by
its terminal nodes.

Given a word w, it is straightforward to check
whether w is one of the words represented by a trie.
We simply follow a path in the trie labeled with w.

271

If the trie does represent w among others, the path
should eventually end at a terminal node. To ease our
discussion, we denote MATCH(W) this terminal node.
To find all the words that contain w as a prefix, we can
examine the terminal nodes inside the subtree rooted
at MATCH(W) using any tree traversal algorithm. We
also denote PREFIX(W) the set of such terminal nodes.

4.2 Trie-based indexing data struc-
t ures

The indexing data structures of the new enquiry
system basically consists of four tries, correspond-
ing to the English names, English addresses, Chi-
nese names, and Chinese addresses of the telephone
records. These tries are of the same structures. Our
discussion focuses on the trie for English names. De-
note this trie T,. T, represents every word that ap-
pears as part of the English name of some telephone
records. Each terminal node in T, is augmented to
keep a list of record numbers. If the i-th telephone
record contains a word w then the list for the terminal
node representing w contains i. An example of such
an augmented trie is shown in Figure 2(b). Note that
we do not require the list of record numbers to be
sorted in any order. The list of record numbers as-
sociated with each terminal node is implemented as a
linked list of blocks, each containing up to ten record
numbers. This list will be updated dynamically (see
Section 5). We choose the block size as ten instead of
one in order to save space for pointers.

When a server machine starts, T, is built from
scratch. We start off with an empty trie containing a
dummy root node. We retrieve the telephone records
from the master file one by one, and attempt to insert
every word in the name of a telephone record into T,.
Details are as follows: Suppose we are examining the
i-th record that contains a word w in its name. Step 1:
We start from the root of T, and trace the path la-
beled with w. If we fail to proceed before reaching the
end of w, we create a chain of non-terminal trie nodes
in T, to store the missing characters of w. Step 2: Let
a be the node in T, of which the path from the root
is labeled with w. If the terminal flag of a was off
before, it is turned on now and a is associated with a
list containing one record number, i.e. i. Otherwise,
we simply append the number i to the existing list as-
sociated with a; if the last block of the list has been
full, a new block is created.

Given a suffix “-2’, searching T, for all the words

n

Figure 2: (a) A trie representing the words GOOD, GOODS, KEE, KEUNG, KIT, SHOP, STORE. The small circle
in each node indicates the status of the node; a terminal node has this circle filled. (b) Each terminal node
augmented with a list of record numbers.

that contain x as a suffix is very inefficient. To speed
up the computation, we store an additional trie T,‘
representing the reversed words of all the names. To
handle a suffix LL-x”, we search T,‘ instead of T, for
all the words that contain the reverse of x as a pre-
fix. To reduce the space for storing TL, every terminal
node of Ti shares the list of record numbers with the
corresponding terminal node of T,. For example, the
list associated with the terminal node representing
the word “SHANGRILA” in T, should be the same as
the list associated with the terminal node represent-
ing the word “ALIRGNAHS” in TL; thus, T, and T,‘ can
share the same list. In addition to T,‘, there is also a
reversed trie for English addresses.

A Chinese word is represented by a two-byte code
and can be treated as an English word consisting of
two letters. The tries for the Chinese names and ad-
dresses are basically the same as the tries discussed
above, but the depth of these tries is exactly two.
Note that a Chinese keyword is a single character and
we do not need a reversed trie for searching the suffix
of a Chinese keyword.

4.3 Searching algorithms

As a warm-up, we first consider a simple query Q
consisting of k keywords w1 , w2,. . . , Wk of a name,
each wi is in the form of a complete word or a prefix.

For any 1 f i 5 I C , we search Te for the keyword wi.
Depending on whether wi is a complete word or a pre-

fix, we identify the required terminal nodes in T,, i.e.
MATCH(W%) or PREFIX(W~) . Let Lw, denote the union
of the lists of record numbers associated with these
terminal nodes. Then, the answer to the query Q
should be the record numbers in L,, n L,, n. . .n L,, .
It remains to show how to efficiently compute each
L,, , which involves a number of list union operations,
and find the intersection of all the Lw, ’ S .

The problem of finding the intersection (or the
union) of lists of arbitrary numbers is a classical prob-
lem. It is unlikely that one can obtain an algorithm
with time complexity better than O(n log m), where
m is the number of lists and n is the total number of
numbers in the lists. In our case, the number of lists
involved in the intersection problem is usually very
small; however; for a particular w, that is a prefix,
there may be a large number of corresponding termi-
nal nodes in T, , and we need to union a large number
of lists.

Below, we show a two-pass algorithm for the above
list union-and-intersection problem. It is very effi-
cient and actually reads every number in a list at
most twice. The improvement stems from the obaer-
vation that the numbers in the lists are not arbitrary,
they are always bounded by the maximum number
of records in the master file (i.e. approximately three
million). Therefore, our algorithm can afford to allo-
cate a working array A of this size in the main mem-
ory. Though this array is huge, our algorithm never
examines every entry of this array in brute force, and
it even does not need to initialize every entry of this

272

array. Details are as follows:

Pass I: First, we traverse the lists associated with
the terminal nodes defined by w1, and set Ab] to
zero whenever the record number j is encountered.
Second, we traverse the lists associated with the ter-
minal nodes defined by w2, if a record number j is
encountered and Ab] is equal to zero, we set Ab] to
1. Similarly, we process the lists for 203, . . . , Wk one
by one. In general, when we traverse the lists for wi,
if a record number j is encountered and A[j] is equal
to i - 2, we set A[j] to i - 1. Figure 3 gives an example
illustrating the updating of the array A.

Pass 11: Note that if a number j is in L,, n L,, n
n L,,, A[j] should be equal to k - 1, but the

converse may not be true (since A is not assumed to
have been initialized properly). If we examine every
entry of A to report all j’s such that A[j] = k - 1,
it is very time consuming and may produce wrong
results. The way we find the intersection of all L,*’s
is as follows: We traverse the lists associated with the
terminal nodes defined by w1 again. For each record
number j encountered, if Ab] is equal to k - 1, we
report the number j .

Next, we highlight the way we handle more com-
plicated queries. Consider a query Q that involves
some English name keywords in the form of a suf-
fix “-y”. The search for the suffix “-y” is conducted
in the trie T,‘ instead of T,. This also produces a
number of lists of record numbers. The answer to
the query Q can still be obtained by performing the
union-and-intersection operation on the lists defined
by all the keywords. For a query involving keywords
in other fields such as English address, we search the
corresponding tries for the lists of record numbers.
At the end, the union-and-intersection operation is
performed on all the lists defined by the keywords.

Notice that for some enquires, the enquirer may
specify that the ordering of the keywords in the name
field must be observed. In such case, our searching
algorithm still proceeds as before, but after all the
records have been retrieved from the master file, it
performs an additional filtering to ensure only those
records that observe the ordering of the keywords are
returned.

4.4 Memory utilization

A server machine is equipped with 768 mega-bytes
of main memory. The indexing data structures for

the three million telephone records occupy about 500
mega-bytes. The rest of the memory is allocated to
the threads of Query-Server. The memory usage of
such a thread is dominated by the temporary array A
mentioned above. We assume the maximum number
of telephone records is 3.6 millions, and restrict the
number of keywords in a query to be at most sixteen.
The latter is reasonable as the name kept in a tele-
phone record seldom contains more than ten words
and the enquirer provides at most five words in most
cases. Therefore, each entry of A stores a value in the
range from zero to fifteen and can be represented by
a half-byte. The memory requirement for A is 3.6/2
= 1.8 mega-bytes of memory. Together with other
dynamic variables, a thread of Query-Server needs
about 2 mega-bytes of memory. On average, there
are fifty client machines connected to a server ma-
chine. Even all the client machines submit queries at
the same time, about 100 mega-bytes of memory are
sufficient to host all the threads of Query-Server.

5 Online updating

As mentioned before, the new enquiry system sup-
ports online updating of telephone records. That
means, the indexing data structures in the main mem-
ory are being updated while queries are processed si-
multaneously. The update requests are serialized and
processed by the server machine one by one.

Below, we sketch the algorithms for updating of the
indexing data structures. These algorithms do not
require any locking of the memory, yet can always
guarantee the correctness of a search.

Deletion: w e maintain an array called DELETE-
BITS in the shared memory. The size of this array de-
pends on the maximum number of telephone records.
The i-th entry of the array is equal to one if and
only if the telephone record with record number i has
been deleted. A request for deleting a record is pro-
cessed simply by setting the corresponding entry in
DELETE-BITS to one. The searching algorithms have
to be modified with a filtering. That is, after perform-
ing the union-and-intersection operation to generate
a list of record numbers, each record number is vali-
dated with the array DELETE-BITS.

Insertion: To insert a new record, we first append
it to the master file, and assign the next available
record number to it. Next, we should update the
indexing data structures in the main memory. This

273

? ? ? ? ? ? ? ?

LWI p7-l O ? ? O ? ? 0 ?

q 3 4 5 7 8 O ? ? 1 ? ? 1 ?

has to be done carefully as a number of threads of
Query-Server may be searching these data structures
at the same time.

Conceptually, what we need to do is to insert each
word in the English name, Chinese name, English ad-
dress, and Chinese address of the new record into
the corresponding tries. The procedure should be
the same as that of building the tries incrementally
when the server machine starts. However, to guaran-
tee a search to be performed smoothly at the same
time, we make sure that while the tries are being
updated, they never contain any dangling pointers
and a traversal inside these tries will not be led to
nowhere. The problem concerned can be abstracted
as follows: There is a linked list on which several pro-
cesses are traversing simultaneously, and to which a
process wants to add a node. We do not care whether
the processes will or will not encounter the new node
during their individual traversals, but they must visit
all other nodes on the list. The solution to this prob-
lem is very simple. We always ensure that the suc-
cessor pointer in the new node has been set properly
to a node in the list before we modify any successor
pointer in the list to point to it. Based on the above
idea, it is easy to write an insertion procedure for the
tries that can ensure any search can proceed smoothly
as before.

To avoid those threads of Query-Server that are
generated prior to the insertion of a record produc-
ing inconsistent or even wrong result regarding this
record, we require that when a thread is generated, it
first memorizes the currently largest record number
before executing the search procedure. During the
search, any record number encountered greater than
this memorized number is not reported.

6 Performance

To find out the response time of the server machine to
a query, we have performed testing with a simulated
environment under different loading conditions. We
control the number of clients which send queries to
the server machine repeatedly, as well as the inter-
query time at each client, i.e. the amount of time
between a client receiving the result of previous query
and sending the next query. The queries used (totally,
five thousands) are extracted randomly from the daily
log of the “real” queries. Figure 4 shows the average
response time (in seconds) of the enquiry system with
respect to different combinations of number of the
clients and inter-query time.

Note that an operator usually needs at least five
seconds to communicate with an enquirer before sub-
mitting a query to the server, we are more concerned
with the performance when the inter-query time is
five or more. The above table shows that when there
is no more than ten clients, the response time re-
mains almost the same even the inter-query time is
reduced to one second, this is because there is little
chance of several queries being processed at the same
time. When the number of clients exceeds twenty,
the response time increases rapidly with more clients
or shorter inter-query time. Nevertheless, under the
load of fifty clients and five seconds of inter-query
time, the average response time is only one tenth of
a second. This is considered to be fast enough in a
telephone directory enquiry system as the time for an
operator to prepare a query is at least a few seconds.

In reality, after the release of the new enquiry sys-
tem, the average time for an operator to serve an
enquiry is estimated to have dropped by 30%. This
achievement is not only due to the shortening of the

274

inter-query time = 10 seconds
inter-query time = 5 seconds
inter-auerv time = 1 seconds

Figure 4: The average response time (in seconds) of the enquiry system under different combinations of number
of the clients and inter-query time.

number of clients
1 5 10 20 30 40 50

0.038 0.043 0.044 0.047 0.051 0.059 0.074
0.038 0.043 0.044 0.050 0.067 0.085 0.105
0.038 0.049 0.076 0.152 0.324 0.671 1.112

response time to a query but also due to the avail- [8] T.H. Cormen, C.E. Leiserson, and R.L.
ability of very flexible queries. With the new system, Rivest, Introduction to Algorithms, MIT
an operator seldom needs to invoke several queries to
the server machine in order to serve one enquiry. Note
that the time saved in invoking one less query per en-
quiry is much more significant than in improving the
response time.

We are grateful to Hong
Kong Telecom Company Limited, in particular, Cyril
Leung, Hewlett-Packard Hong Kong Limited, and F.
Chin and H.F. Hung of the University of Hong Kong.

Press/McGraw-Hill, 1990.

[9] H.R. Lewis and L. Deneberg, Data Structures
and their Algorithms, Harper-Collins, 1991.

Acknowledgments:

References

G.M. Adel’son-Vel’skii and E.M. Landis, An
Algorithm for the Organization of Informa-
tion, Soviet Math. Doklady, 3, 1962, pp. 1259-
1262.

R. Bayer and E.M. McCreight, Organization
and Maintenance of Large Ordered Indices,
Acta Informataca, 1, 1972, pp. 173-189.

J. Bloomer, Power programming with RPC,
O’Reilly & Associates, Inc., 1992

E. Fredkin, Trie Memory, Communications of
the ACM, 3, 1960, pp. 490-499.

B. Lewis and D.J. Berg, Therads primer: a
guide to multithreaded programming, Prentice
Hall, 1996.

D.R. Morrison, PATRICA-Pratical Algo-
rithm To Retrieve Information Coded in Al-
phanumeric, Journal of the ACM, 15, 1968,
pp. 514-534.

E.G. Coffman and J. Eve, File Structures Us-
ing Hashing Functions, Communications of
the ACM, 13, 1970, pp. 427-432,436.

275

