
Mining Frequent Spatio-temporal Sequential Patterns

Huiping Cao, Nikos Mamoulis, and David W. Cheung
Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong

{hpcao, nikos, dcheung}@cs.hku.hk

Abstract

Many applications track the movement of mobile objects,
which can be represented as sequences of timestamped lo-
cations. Given such a spatio-temporal series, we study
the problem of discovering sequential patterns, which are
routes frequently followed by the object. Sequential pat-
tern mining algorithms for transaction data are not directly
applicable for this setting. The challenges to address are
(i) the fuzziness of locations in patterns, and (ii) the iden-
tification of non-explicit pattern instances. In this paper,
we define pattern elements as spatial regions around fre-
quent line segments. Our method first transforms the orig-
inal sequence into a list of sequence segments, and detects
frequent regions in a heuristic way. Then, we propose al-
gorithms to find patterns by employing a newly proposed
substring tree structure and improving Apriori technique. A
performance evaluation demonstrates the effectiveness and
efficiency of our approach.

1 Introduction

The movement of an object (i.e., trajectory) can be de-
scribed by a sequence of spatial locations sampled at con-
secutive timestamps (e.g., with the use of Global Position-
ing System (GPS) devices). Parts of the object routes are
often repeated in the archived history of locations. For in-
stance, buses move along series of streets repeatedly, people
go to and return from work following more or less the same
routes, etc. The movement routes of most objects (e.g., pri-
vate cars) are not predefined. Even for objects (e.g., buses)
with pre-scheduled paths, the routes may not be repeated
with same frequency due to different schedule in weekends
or some special days. We are interested in finding fre-
quently repeated paths, i.e., spatio-temporal sequential pat-
terns, from a long spatio-temporal sequence. These patterns
could help to analyze/predict the past/future movement of
the object, support approximate query on the original data,
and so on. However, they cannot be obtained straightfor-

wardly by eliminating the noisy movement because of the
large volume of the spatio-temporal data.

Discovery of sequential patterns from transactional
databases has attracted lots of interest since Agrawal et al.
introduced the problem [1]. In such a database, each trans-
action contains a set of items bought by some customer in
one time, and a transaction sequence is a list of transac-
tions ordered by time. For example, 〈(a, b), (a, c), (b)〉 is
a sequence containing three transactions (a, b), (a, c) and
(b). Given a collection of transaction sequences, the prob-
lem is to find ordered lists of itemsets appearing with high
frequency. E.g., 〈(b), (a), (b)〉 is a pattern supported by the
above sequence.

Unfortunately, pattern discovery techniques in transac-
tional databases are not readily applicable for finding se-
quential patterns in spatio-temporal data. First, the elements
in a transactional pattern are items that explicitly appear in
pattern instances. On the other hand, location coordinates in
a spatio-temporal series are real numbers, which do not re-
peat themselves exactly in every pattern instance. Second,
the patterns are discovered from explicitly defined sets of
sequences, like 〈(a, b), (a, c), (b)〉, in the previous example.
Thus, a transaction list only contributes 0 or 1 to the sup-
port of a pattern, depending on whether the pattern appears
or not in the specific sequence-set. In our setting, however,
we detect frequent patterns from one long spatio-temporal
sequence, without predefined segmentation of the data. The
challenge is to identify the segments that contribute to a pat-
tern, without allowing them to overlap with each other.

To summarize, the main contributions of this paper are:
(i) We propose a model for spatio-temporal sequential pat-
terns mining, based on appropriate definitions for pattern
elements and pattern instances. (ii) We present an effective
method for extracting pattern elements. (iii) We provide
efficient pattern mining algorithms for discovering longer
patterns. The remainder of the paper is organized as fol-
lows. Section 2 reviews the related literature. The formal
definition of spatio-temporal sequential pattern is given in
Section 3. Section 4 presents our solutions in detail. An ex-

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

perimental evaluation about the effectiveness and efficiency
of our approach is presented in Section 5. Finally, Section
6 concludes this paper.

2 Related work

Our work is most related to pattern discovery from se-
quential data, which include time series, event sequences,
and spatio-temporal trajectories.

Mannila et al. [10] investigated the discovery of frequent
episodes from event sequences. An episodes is a (partially
or totally) ordered list of events, thus is a variant of sequen-
tial pattern. A fixed sliding window w is used to extract
segments (i.e., subsequences) in the event series, and the
contribution of every segment to each candidate episode’s
frequency is counted. The segments supporting one episode
may overlap, which is reasonable since episodes try to cap-
ture the appearing order of instantaneous events. However,
this methodology may not get satisfactory results in finding
spatio-temporal patterns, for several reasons. First, the win-
dow limits the length of the patterns. Second, pattern sup-
ports may not be counted correctly. E.g., the object’s move-
ment is aabbcdefg, where each character a, b, etc. corre-
sponds to a spatial region. The occurrence of the pattern abc
should be 1, since the object moves from a to c, once. How-
ever, if w is 5, pattern abc has support 4 due to the contri-
bution of 4 segments (a b c, ab c, a bc, and a bc). Third,
as opposed to well-defined categorical values for event in-
stances, object locations do not repeat themselves exactly
in pattern instances, for they are usually ordinal and inex-
act. Yang et al. investigated mining long sequential patterns
in [13], also dealing with event series with noise.

Previous work on detecting patterns from time-series
(e.g, [2, 7]) converted the problem to finding subsequences
in lists of categorical data (e.g., event sequences), by pre-
processing the original sequence to a string. A window w of
fixed size is slided along the sequence, and a subsequence
with length w is extracted for every position. In [2], the
subsequences are clustered based on their shapes, and each
cluster is given an id. In [7], some features are extracted
from each subsequence (e.g., the slope of the best-fitting
line of the sub-series, the mean of the signal, etc.). The fea-
ture space is divided into groups of similar values, and every
subsequence is converted to a group-id. The raw sequence is
then transformed to a string of cluster-ids or group-ids. The
use of the window may over-count the patterns due to the
reason explained above. In addition, since w is fixed, the ex-
tracted subsequences have the same length, which may af-
fect the resultant patterns. Furthermore, for spatio-temporal
data, even when we extract the subsequences using a slid-
ing window and get simple features from these segments,
we cannot directly group these features using methods in
[2] and [7]. The cluster-based approach ([2]) has been dis-
credited by [8]. The way to group the subsequence features

([7]) may be effective for time-series with 1-dimension val-
ues. For more complex spatio-temporal data, if we directly
apply this method, i.e., split the features into groups, we
may miss the information about the spatial proximity of seg-
ments, which is essential for grouping.

The first study on finding frequent sequential patterns
from spatio-temporal data is [11]. The raw data here is not
a long sequence, but lists of spatial locations. After dis-
cretizing the locations to pre-defined spatial decomposition,
the process is intrinsically similar to that in transactional
databases.

[9] addresses the problem of discovering periodic pat-
terns in spatio-temporal data, which is a generalization of
mining periodic patterns in event sequences. Given a pe-
riod T , in the case of spatio-temporal data, a periodic pat-
tern is a (not necessarily contiguous) sequence of spatial
regions, which appears frequently every T timestamps and
describes the object movement (e.g., a bus moves from dis-
trict a to district b and then to c with high probability, every
three hours). The contribution of [9] is that it does not treat
spatio-temporal series as event sequences, by merely replac-
ing each location by a predefined region enclosing it, but
automatically discovers the regions that form the patterns.
This method, although effective for its purpose, relies on
a fixed T (i.e., the patterns repeat themselves every regular
time periods). In addition, it is prone to distortions/shiftings
of the pattern instances, i.e., periodic segments where the
pattern does not appear in the same positions as in the pat-
tern definition do not contribute to the pattern’s support.

3 Spatio-temporal sequential patterns
A spatio-temporal sequence S is a list of locations,

(x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn), where ti repre-
sents the timestamp of location (xi, yi) (1 ≤ i ≤ n). Figure
1 illustrates the movement of an object which repeats a sim-
ilar route in three runs. We are interested in movement pat-
terns repeated frequently in such a series. This section first
motivates our solution, then formally defines the problem.

3.1 Motivation

Locations are not repeated exactly in every instance of
a movement pattern. Our idea is to summarize a series of
spatial locations to that of spatial regions.

A naive method is to use a regular grid (or some pre-
defined spatial decomposition) to divide the space into re-
gions by taking a user-defined parameter G,an approximate
number that each axis will be split to. Then, the locations
series can become a sequence of grid-ids utilizing a trans-
formation approach. The first method, Grid I, converts each
location to the id of the cell it falls in. E.g., the raw se-
ries in Figure 1a, can be transformed to the cell-id sequence
c2c4c8c9c6c2 . . . c3. Although intuitive, this method has
two problems. First, we lose the information on how the
object moves inside a cell, if the space decomposition is

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

coarse. The patterns may not be very descriptive. Second,
for two instances of a pattern, the locations may not fall into
the same cell (i.e., two adjacent locations appear in neigh-
boring cells). We may miss some frequent patterns, whose
instances are divided between different grid-based patterns.
The first problem could be alleviated by decreasing G, how-
ever, this would increase the chances of missing patterns
due to the second problem. An alternative conversion tech-
nique adds the ids of cells that intersect with the line seg-
ments connecting consecutive locations to the transformed
sequence. In the example of Figure 1a, Grid II converts the
sequence for the first run to c2c1c4c7c8c9c6c3c2. Neverthe-
less, by this improvement, the new series may be signifi-
cantly longer than the original one, which may already be
extremely long, like spatio-temporal sequences usually are.

1 2 3

4 5 6

7 8 9

run 1
run 2
run 3

l

run 1
run 2
run 3

(a) (b)

Figure 1. Object Movement

Thus, we need a better way to abstract the trajectory.
Motivated by line simplification techniques ([3]), we repre-
sent segments of the spatio-temporal series by directed line
segments. Figure 1b shows that the line segment l summa-
rizes the first three points in each of the three runs with little
error. In this way, not only do we compress the original data,
decreasing the mining effort, but also the derived line seg-
ments (which approximately describe movement) provide
initial seeds for defining the spatial regions, which could be
expanded later by merging similar and close segments.

3.2 Problem definition

A segment sij in a spatio-temporal sequence S (1 ≤
i < j ≤ n) is a contiguous subsequence of S, starting
from (xi, yi, ti) and ending at (xj , yj, tj). Given sij , we de-
fine its representative line segment �lij with starting point
(xi, yi) and ending point (xj , yj). Let ε be a distance er-
ror threshold, sij complies with �lij with respect to ε and
is denoted as sij ∝ε

�lij , if dist((xk, yk), �lij) ≤ ε for all
k(i ≤ k ≤ j), where dist((xk, yk),�l) is the distance be-
tween (xk, yk) and line segment �l. When sij ∝ε

�lij , each
point (xk, yk), i ≤ k ≤ j, in sij can be projected to a point
(x′

k, y′
k) on �lij . (x′

k, y′
k) implicitly denotes the projection

of (xk, yk) to �lij . Figure 2a illustrates a segment sij com-
plying with �lij and shows the projection (x′

k, y′
k) of point

(xk, yk) on �lij . A segmental decomposition Ss of S is
defined by a list of consecutive segments that constitute S.
Formally, Ss = sk0k1sk1k2 . . . skm−1km , k0 = 1, km =
n, m < n, where skiki+1 ∝ε

�lkiki+1 for all i, To simplify
notation, we use s0s1 . . . sm−1 to denote Ss.

Let�l represent a directed line segment, �l.angle and �l.len
be its slope angle and length respectively. Two line seg-
ments �lij and �lgh representing segments sij and sgh are
similar, denoted by �lij ∼ �lgh, with respect to angle dif-
ference threshold θ and length factor f (0 ≤ f ≤ 1) if:
(i) | �lij .angle− �lgh.angle| ≤ θ and
(ii) | �lij .len − �lgh.len| ≤ f × max(�lij .len, �lgh.len) If
�lij ∼ �lgh, sij and sgh are also treated as similar to each
other. Note that similarity is symmetric. The location infor-
mation of segments is not considered in defining similarity,
since we use it when defining the segments’ closeness.

Line segment �lij is close to �lgh if for ∀(x′
k, y′

k) ∈ �lij ,
dist((x′

k, y′
k), �lgh) ≤ ε. When �lij is close to �lgh, we also

say that the segment sij is close to the segment sgh, where
sij ∝ε

�lij and sgh ∝ε
�lgh. As opposed to similarity, close-

ness is asymmetric. Figure 2b shows an example. Let �lij
is parallel to �lgh and ε = 5.0. The distance between these
two parallel line segments is 4.5. Observe that �lij is close to
�lgh because the distance from each point in �lij to �lgh is less

than 5.0. However, �lgh is not close to �lij for the point in the
right upper part has distance to �lij bigger than 5.0.

Let L be a set of segments from sequence Ss. The mean
line segment for L, �lc, is a line segment that best fits all
the points in L with the minimum sum of squared errors
(SSE). In other words, if PSet contains all the points of
the segments in L, the mean line segment �lc is such that∑

p∈PSet dist(p, �lc) ≤ ∑
p∈PSet dist(p,�l) ∀�l 	= �lc.

Let tol be the average orthogonal distance of all the
points in L to �lc. A spatial pattern element is a rectangu-
lar spatial region rL with four sides determined by (�lc, tol)
as following: (1) two sides of r’s that are parallel to �lc, have
the same length as �lc, and their distances to �lc are tol; (2)
the other two vertical sides have length 2 · tol, and their
midpoints are the two end points of �lc. We refer to �lc as
the central line segment of region rL. We say that region
rL contains k segments or k segments contribute to rL if L
consists of k segments. Figure 2c visualizes this definition.
A spatio-temporal sequential pattern P is an ordered se-
quence of pattern elements: r1r2 . . . rq , (1 ≤ q ≤ m). The
length of pattern P is the number of regions in it.

A contiguous subsequence of Ss, sisi+1 . . . si+q−1, is a
pattern instance for P : r1r2 . . . rq if ∀j(1 ≤ j ≤ q), if
the representative line segment for segment si+j−1 is sim-
ilar and close to the central line segment of region rj . A
pattern’s instances cannot overlap in time (the pattern may
be over-counted like that in [10] otherwise), i.e., if two con-

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

ijl

()',' kk yx

(kk yx ,)

ijl

ghl

4.5
r

tol

cl

(a) Segment complies with �lij (b) Example for closeness (c) Region r determined by (�lc, tol)

Figure 2. Example of definitions

tinuous subsequences of Ss, si . . . sj and sg . . . sh, are two
instances for pattern P , either j < g or h < i. Given pat-
terns P ′: r′1r′2 . . . r′i and P : r1r2 . . . rj , P ′ is a subpattern
of P if i ≤ j and ∃k, (1 ≤ k ≤ j− i+1) such that r′1 = rk ,
r′2 = rk+1, . . ., r′i = rk+i−1. P is a superpattern of P ′.

The support of a pattern P is the number of instances
supporting P . Given a support threshold min sup, P is
frequent if its support exceeds min sup. Since a pattern
with same frequency to one of its supersets is redundant, we
focus on detecting closed frequent patterns [4], for which
every proper subpattern has equal frequency. The mining
problem is to find frequent patterns from a long spatio-
temporal sequence S with respect to a support threshold
min sup, and subject to a segmenting distance error thresh-
old ε, a similarity parameter θ and a length factor f . The
parameter values depend on the application domain, or can
be tuned as part of the mining process [2]. In using the raw
data to discover patterns, we discuss how to set the parame-
ters in Section 5.1 more applicably.

4 Solution

In this section, we describe how to discover frequent sin-
gular patterns, i.e., frequent spatial regions (Section 4.1)
and longer closed patterns (Section 4.2).

4.1 Discovering frequent singular patterns

The segmentation (line simplification) algorithm ([3, 5,
6]) is used to convert the locations series to segments se-
quences so that each raw sequence segment could be ab-
stracted by a line segment. Our idea is to transform S to
Ss using such a technique, and take the segments obtained
as seed for the desired spatial regions, whose central line
segments best fit the points of segments in the regions. The
DP (Douglas-Peucker) algorithm [3] is a classical top down
approach for this problem. [6] provides an online algorithm
in splitting a sequence to segments with quite good quality.
Since it is important to keep the internal movement inside a
region, we need to capture the sharp turn of the movement
in the transformation. We employ DP method because it
has been proved to be the best algorithm in choosing split-
ting points [12]. In brief, DP algorithm recursively decom-
poses S: {p1, . . . , pn} to a series of line segments l1, . . . lm,
m ≤ n, each of which, li, simplifies a subsequence Sli ,

such that the perpendicular distance from every point in Sli

to li is at most ε. For efficiency purpose, DP’s improved
version ([5]) could be adopted.

Discovering frequent singular patterns from Ss is a hard
problem, since in the worst-case, all combinations of seg-
ments in Ss have to be considered as candidate. To expe-
dite the process, we employ a heuristic, Growing. Let Segs
be a set initially containing all the segments in Ss. Grow-
ing works as follows. It selects the segment s with median
length, i.e., the median of the lengths of the segments in
Segs, as seed for the initial spatial region r. Then, r is
grown by merging other segments in Segs through filtering
and verification steps, described later. Next, for the set of
remaining segments not merged to r, the segment s′ with
median length in it is selected as seed for growing. Finally,
the overall algorithm terminates after all segments (i) have
been assigned to a region (as initial seeds or to the region of
another seed), or (ii) have been found not to belong to any
frequent region and marked as outliers. Selecting the seg-
ment with median length as seed could help to absorb short
segments with less error, compared to taking segment with
longer length as seed. Meanwhile, it could prevent gener-
ating regions with too fine granularity, which could happen
when shorter length segment is used as seed. Growing is
deterministic in using this seed selection procedure.

The filtering process checks two conditions. First, for
each si in Segs the angle difference diff ai between �ls and
si is computed, and si is treated as candidate if diff ai is
less than θ. All the candidate segments are put into a set C.
Second, the minimum distance from every segment in C to
�ls is computed and all segments whose minimum distances
to �ls is larger than f · �ls.len are pruned. The remaining
segments in C will be used for verification.

The filtering step computes the minimum distance be-
tween segments, but it does not consider the length differ-
ence (second condition of similarity), between each �lsi ∈ C

and �ls, and the exact spatial distances of segments in C to
�ls (closeness condition). In the verification step, Algorithm
1 (shown below) merges the segments in C to the spatial re-
gion r around �ls, if si ∈ C satisfies the closeness and length
difference condition. Otherwise, we extract from si the part
that satisfies the condition, and merge this part with r. The
remaining part of si is a new segment and inserted back to

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

Segs (Line 15) for later processing.

Algorithm 1 Verification(�ls, C, Segs, f , min sup)

1: α := �ls.len × f ; m:=0;
2: //length check
3: for each segment si in C do
4: intersect si with �ls, get s′ and �ls′ ;
5: if (diff(�ls .len, �ls′ .len) ≤ α) m++;
6: end for
7: //closeness check
8: while (m ≥ min sup) do
9: Get �lc from all intersected points for region r;

10: Validate all intersected parts from C;
11: if (all intersected parts are close to �lc) break;
12: end while
13: if (m<min sup) return;
14: for each segment si in C do
15: Add non-intersected part of si to Segs;
16: Remove si from Segs;
17: end for
18: Remove segment that �ls represents from Segs;

We explain how we compute the intersected part of si

and �ls in Line 4. Let �lsi be the representative line seg-
ment for si. If all projection points (x′

k, y′
k) in �lsi have

distance to �ls no more than α (Line 1), its related location
point (xk, yk) in the segment is put into the intersected part
s′. The line segment created by mapping each point in s′

to �lsi is denoted as �ls′ . For example, let si represent seg-
ment (x10, y10, t10), . . . , (x30, y30, t30). Assume that the
distances from points in �lsi to �ls are all smaller than α ex-
cept points from (x′

10, y
′
10) to (x′

15, y
′
15). Then, s′ is seg-

ment (x16, y16, t16), . . ., (x30, y30, t30), and �ls′ represents
line segment from (x′

16, y
′
16) to (x′

30, y
′
30) in �lsi .

4.2 Deriving longer patterns

After finding frequently visited spatial regions, original
data S is converted to a series SR of spatial regions by
changing the segments in frequent regions to region ids,
and those not in any region to outliers. SR preserves the
motion continuity of the object by showing how it moves
among regions. Although each region in SR is repeated
frequently, the concatenation of some regions may not be
frequent. E.g., a person living in r1 often goes to a place r2

in some days and to region r3 in other days. r1, r2 and r3

are frequently visited, but the path r2r3 is not frequent. This
section discusses how to detect the longer frequent patterns.

4.2.1 Level-wise mining

A direct way is to perform level-wise pattern mining. How-
ever, this approach suffers from the disadvantage that SR

needs to be scanned many times. We propose solutions to
reduce the number of candidates and scans in probing long
candidates, based on the following properties we observe.

Property 1 (Connectivity Constraint): Due to conti-
nuity of object movement, a spatial region can only connect

to some but not all the others in SR. This constraint can
help reduce the number of generated candidates, as follows.
We first construct a connectivity graph for all the spatial re-
gions in SR. A directed edge from ri to rj is added to the
graph if the substring rirj appears in the sequence. The
edge weight is the frequency that rirj appears in the se-
quence. Let r1r2 . . . rk be a frequent pattern, and rk only
points to ri and rj , only two candidates, r1r2 . . . rkri and
r1r2 . . . rkrj are generated. Further, if the edge weight from
rk to some element, say ri, is no more than min sup, we
need not generate candidate r1r2 . . . rkri.

Property 2 (Closeness Property): Given a pattern P ,
suppose its last element connects to r1, r1 connects to r2,
. . ., rm−1 connects to rm, (m ≥ 2). We can get pattern
P1 = Pr1 (concatenating P and r1), P2 = Pr1r2, . . .,
Pm = Pr1r2 . . . rm. Obviously, if P1 and Pm have the
same support, any Pi, (1 < i < m) also has the same
support. This property helps to generate candidates more
efficiently. Let result be the frequent patterns at the end of
the kth scan and P be a pattern in it with last element r. We
can extend P using other patterns in result that start with r.
For instance, let P = r1r2r3, and r3 only connect to r4 in
the connectivity graph. In addition, assume that result con-
tains only one pattern starting from r3: P ′ = r3r4r6r7. P
can then be extended to candidates r1r2r3r4 (using Property
1), and r1r2r3r4r6r7 (using Property 2). If r1r2r3r4 and
r1r2r3r4r6r7 have the same support after the counting, we
only need to consider candidates longer than r1r2r3r4r6r7

later, significantly reducing the number of scans.

4.2.2 Mining using the substring tree

We propose a substring tree structure to facilitate counting
of long substrings with different elements. The substring
tree is a rooted directed tree whose root links to multiple
substring sub-trees. Each node in a sub-tree consists of pat-
tern element and a counter, which counts the number of
substrings (i.e., subsequences of elements) that contribute
to the pattern formed by the path from the root to this node.
A substring tree example is shown in Figure 3a.

To construct the tree, in scanning SR, we extract sub-
strings containing distinct elements, and insert them to the
tree. In seeing an element r in SR, we concatenate it to
the substrings found so far that do not contain r. Also, if
no substring starting with r is found, r is treated as a new
substring. We give an example to illustrate the extraction of
substrings. Let SR be r1r2r3r4r1r3r4r2r3r4r1r2r3r4. Ini-
tially, no substring is extracted. When see the first r1, we
create a new substring for it. On seeing the second element
r2, we create a new substring r2 since no substring starting
with r2 exists. In addition, we concatenate it to the only
substring r1 and get r1r2. The process continues until we
see the fifth element r1. There is already a string r1r2r3r4

with r1 as first element, so r1r2r3r4 is inserted to the tree,

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

and a new substring starting from r1 is created. Figure 3a
shows the full substring tree for sequence SR.

root

3r

2r

4r

1r

1 2r

4 4r

4 3r

2 1r

1 2r

1 2r

2 1r

3 4r

1 3r

1 3r

3r

2r
3

2 3r

2 2r

2 4r

1r3

3r1

1 2r

4r

3

1

1
1 3

2

(a) Substring tree example

stack result stack result
r3(4) r3r4(4)
r1(3) r1(3)
r2(3) ⇒ r2(3)
r4(3) r4(3) r3(4)

r1(3) r2(3)
r2(3) r4(3)

⇒ r4(3) ⇒ r3r4r1(2) r1(3)
r3r4r1(2) r3r4(4) r1r2r3r4(2) r3r4(4)

(b) Mining patterns from the substring tree

Figure 3. Mining using substring tree

For deriving frequent patterns from the substring tree,
we utilize a stack. Each element in the stack comprises of
a pattern, its count and a level, indicating whether the pat-
tern has reached a leaf or not. First, we add to the stack the
patterns associated with the root’s children. Then, we iter-
atively pop patterns with highest frequency from the stack.
If the popped up pattern is not at leaf level and is frequent,
we output it, and extend it by concatenating it with its chil-
dren’s elements and push the extended patterns to the stack;
otherwise, the pattern is just output (if frequent). In the
above example, there are initially four elements in the stack.
Figure 3b shows the first several steps for the mining pro-
cess. Let min sup = 2. When popping r3(4) from the
initial stack, we output it as result, and extend it to r3r4

since it is not at the leaf level. Next, we pop up r3r4(4)
and delete r3(4) from the result because its frequency is the
same to that of r3r4 (definition of closed patterns). This
process continues until no pattern exists in the stack. The
final closed patterns are r3r4(4), r1(3), r2r3r4(3), r4r1(2),
r3r4r1(2), r1r2r3r4(2), r2r3r4r1(2). The patterns discov-
ered from the substring tree are not the final results be-
cause they only contain patterns with distinct elements. We
extend the patterns using the level-wise method. The re-
sult may contain overlapping patterns like r1r2r3r4(2) and
r2r3r4r1(2). We report all of them though the pattern space
may be large. The reason is that if we output only one of
them, say r1r2r3r4(2), the information that r4 connects to
r1 (necessary for generating longer patterns) will be missed.

Finally, our algorithm outputs frequent closed patterns.

5 Experiments

This section evaluates our proposed approach with real
and synthetic data. After discussing the way to set the pa-
rameters in Section 5.1, we study the effectivesness and ef-
ficiency in Section 5.2.

Real datasets: The real data contain tracked bus move-
ments in Patras, Greece. Each sequence is the movement
of a bus in a single day. The coordinates in the sequence
are in meters following the EGSA84 projection (A Greek
coordinate system). Bus locations were sampled every 30
seconds. However, since a vehicle might stop intermittently
and the GPS is switched off during that period, the move-
ment in a sequence may not be straightly continuous. The
series length varies in the range between 1000 to 7000.

Synthetic data: We also generated long sequences to
facilitate the performance study. The generator takes three
parameters, |p|, n, and m. |p| is the number of line segments
constituting circular paths (i.e., patterns) of the movement.
n denotes the sequence length. And m represents the num-
ber of times that the object repeats the patterns. Obviously,
n > |p| × m. The generator first creates circular routes
with |p| connected line segments. Then, it generates lo-
cations along the routes to simulate the object movement.
The actual number of positions for each run is produced
by adding/reducing some random values to/from � n

m
. In
every run, the locations for each line segment are approxi-
mately the same. The description of the artificial series is
given in related experiments.

5.1 Setting the parameters

0

1

2

3

4

5

6

0 1 2 3 4

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

YR1

YR2

YR3

YR4

YR5

YR6

Figure 4. Parameter estimation example

We employ a heuristic based on sampling, to determine
the value of parameter ε. We choose a random sample from
the dataset and keep only the locations, for which the x co-
ordinates are very close to a set of x values, say x1, x2, x3.
For each value in the set, we cluster the y coordinates of
the sample points and derive dense ranges of y values. For
instance, in Figure 4 for x values x1 = 1, x2 = 2, x3 = 3,
we can identify 6 dense ranges Y R1, Y R2, . . . , Y R6 —
denoted by the bold (red in color mode) vertical short line
segments.

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

10
9
8
7
6
5
4
3
2
1
0

9876543210

52

10

9

8

7

6

5
98765

51
5

6

7

5 6 7
5

6

7

5 6 7

(a) Raw sequence (b) Partial sequence (c) Pattern 1 (d) Pattern 2

10
9
8
7
6
5
4
3
2
1
0

9876543210

7

6

5
765

6

5
65

(e) Grid II (G=10) (f) Grid II (G=20) (g) Grid II (G=100)

Figure 5. Raw sequence and patterns discovered

We define εy as the average length of these y val-
ues. Similarly, εx can be obtained. Finally, we set ε =
min{εx, εy} as smaller ε will allow pattern definition at a
finer granularity. Experimentally, we found that, for most
datasets, by setting ε to the estimated value (even vary a
little), θ to around 0.3 radians, and f to around 0.2 (20%
rule), our algorithm retrieves hidden patterns in the data,
i.e., pre-scheduled paths for bus data and patterns generated
for synthetic data.

5.2 Effectiveness and efficiency study

We examine the effectiveness of our method taking as
input a raw bus movement sequence shown in Figure 5a,
which contains 6921 locations. This movement exhibits
partial regularity and consists of noise.

For visualization purpose, we show its interesting part
in more detail in Figure 5b because the remainder contains
noise segments appearing only once. According to the de-
scription in Section 5.1, we tune the parameters to ε = 20
(map size is 100 × 100), f = 0.2, θ = 0.3 radian, and
min sup = 3. In this movement, the frequently repeated
paths are around cell c51. Figure 5c and 5d show the two
longest closed patterns discovered by our method. For sim-
plicity, only the central line segments for the regions in the
patterns are plotted. The arrow of each central line seg-
ment shows the movement direction inside that region and
the connection of these directed line segments illustrates the
movement from one region to another. They are not con-
nected because of the noise movement near the boundary of
grid 51 (see Figure 5b). We also plot the results discovered
by Grid II since it is more effective than Grid I. When G is
10, the pattern discovered near cell 51 is c50c51c60 in Figure
5e (movement from the region of cell c50 to cell c51 then to
cell c60). This is quite coarse, since the movement inside
each cell is unknown. The longest closed patterns for G=20

and G=100 are shown in Figure 5f and Figure 5g. They
improve on accuracy with the increase of G, however, the
patterns in the cell above c51 (related to pattern in Figure 5d)
is still missed. Furthermore, the mining efficiency degrades
significantly. Our approach takes about 200ms, while Grid
II with G = 100 takes about 450ms, which is more than
double. In summary, the results show that our method can
find hidden sequential patterns effectively. Given proper G,
Grid II can also discover coarse movement patterns. How-
ever, it suffers from two disadvantages (i) the internal move-
ment in a grid cell cannot be found; (ii) it is less efficient
than our method in finding patterns of similar quality.

We used synthetic data to evaluate the efficiency. We
first analyze the performance of finding frequent singular
patterns. The parameters of the data generator were set to
|p| = 20, n = 30K , and m = 50 in a map of size=1×1. We
set the mining parameters ε = 0.01, f = 0.2 and θ = 0.3,
and vary min sup. The performance is shown in Table
1a. NumP1 is the number of frequent singular patterns and
SR

len is the length of SR. We observe that the time rises
only when the increase of min sup brings the decrease of
NumP1 . It is because the Growing method inspects more
seeds before it finds satisfactory spatial regions when the re-
sultant NumP1 is smaller. In the worst case, every segment
in Segs need to be examined.

Table 1b compares the total time spent by our methods,
and the grid methods which use the substring tree for find-
ing longer patterns. The generating parameters are |p| =
100, m = 50, and n = 500K . The substring tree technique
slightly outperforms the level-wise method in all cases since
it uses most time (about 12s) to find singular frequent pat-
tern and most patterns contain long subpatterns with distinct
elements. Their time is nearly constant to min sup because
SR

len is the same for different min sup. The grid methods

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

min sup NumP1 SR
len time (ms)

≤ 82 18 1576 560
83,84 11 1268 600

85 3 423 1130
≥ 86 2 339 1190

(a) Time for discovering singular patterns vs. min sup

time (s) for different min sup
Method 50 60 70

Level-wise 17.35 17.33 17.32
Substring tree 13.47 13.49 13.49

Grid I (G = 10) 42.58 42.56 16.11
Grid II (G = 10) 30.52 30.56 30.51
Grid I (G = 20) 57.38 33.86 22.00
Grid II (G = 20) 345.35 58.56 45.54

(b) Total time vs. various min sup

Table 1. Efficiency comparison

take longer time, since the transformed cell-ids sequence
is much longer (i.e., n or higher) than that of SR. When
we increase G from 10 to 20, the time increases sharply,
since the number of cells quadruplicates and the sequence
becomes much longer. Sometimes, Grid II may take less
time than Grid I (e.g., for G=10 and min sup=50 and 60).
This happens because many cells in the sequence become
outliers for this case, thus Grid II discovers shorter patterns
(whereas Grid I finds longer ones, since it does not intro-
duce intermediate cells at a sharp movement).

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

tim
e

(s
)

data volume (M)

Find singular pattern
Total mining task

Figure 6. Scalability

Figure 6 tests the scalability of our method in using the
substring tree. We generate the datasets, keeping |p| con-
stant (50) and changing n (the number of spatial locations
in S) from 50K to 1.5M. The total cost is nearly linear to
n, although it includes the cost for sorting the segments
lengths and computing angle differences, which is about
O(mlogm) where m (m � n) is the number of segments.

6 Conclusion
In this paper, we modeled the problem of mining sequen-

tial patterns from spatio-temporal data by considering both
spatial and temporal information. Singular frequent pat-

terns are found effectively, by grouping segments not only
by similar shape (like previous work in time-series min-
ing), but also by closeness in space. In addition, we em-
ployed special properties of the problem (spatial connectiv-
ity, closeness) and a newly proposed substring tree to accel-
erate search for longer patterns.

Acknowledgements
The authors would like to thank Dieter Pfoser and CTI

for providing us with the real bus dataset. Unfortunately,
the data are copyrighted and cannot be made publicly avail-
able. The work was supported by grant HKU 7142/04E
from Hong Kong RGC.

References
[1] R. Agrawal and R. Srikant. Mining sequential patterns. In

Proc. of Intl. Conf. on Data Engineering, pages 3–14, 1995.
[2] G. Das, K. I. Lin, H. Mannila, G. Renganathan, and P. Smyth.

Rule discovery from time series. In Proc. of Intl. Conf. on
Knowledge Discovery and Data Mining, pages 16–22, 1998.

[3] D. H. Douglas and T. K. Peucker. Algorithms for the reduc-
tion of the number of points required to represent a digitized
line or its caricature. In The Canadian Cartographer, Vol.10,
No.2, pages 112–122, 1973.

[4] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k fre-
quent closed patterns without minimum support. In Proc. of
Intl. Conf. on Data Mining, pages 211–218, 2002.

[5] J. Hershberger and J. Snoeyink. Speeding up the douglas-
peucker line-simplification algorithm. In Proc. of the 5th Intl.
Symposium on Spatial Data Handling(SDH), pages 134–143,
1992.

[6] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algo-
rithm for segmenting time series. In Proc. of Intl. Conf. on
Data Mining, pages 289–296, 2001.

[7] E. Keogh, S. Lonardi, and B. Chiu. Finding surprising pat-
terns in a time series database in linear time and space. In
Proc. of ACM Knowledge Discovery and Data Mining, pages
550–556, 2002.

[8] J. Lin, E. Keogh, and W. Truppel. Clustering of streaming
time series is meaningless. In Proc. of the SIGMOD work-
shop in Data Mining and Knowledge Discovery, pages 56–
65, 2003.

[9] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao, and D. Cheung. Mining, indexing, and querying his-
torical spatiotemporal data. In Proc. of Intl. Conf. on Knowl-
edge Discovery and Data Mining, pages 236–245, 2004.

[10] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of
frequent episodes in event sequences. In Data Mining and
Knowledge Discovery, Vol. 1, pages 259–287, 1997.

[11] I. Tsoukatos and D. Gunopulos. Efficient mining of spa-
tiotemporal patterns. In Proc. of Intl. Symp. on Spatial and
Temporal Databases, pages 425–442, 2001.

[12] E. R. White. Assessment of line-generalization algorithms
using characteristic points. The American Cartographer,
12(1):17–27, 1985.

[13] J. Yang, W. Wang, P. S. Yu, and J. Han. Mining long sequen-
tial patterns in a noisy environment. In Proc. of SIGMOD
conf., pages 406–417, 2002.

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)

1550-4786/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

