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Evaluation of the stability of anchor-reinforced
slopes

D.Y. Zhu, C.F. Lee, D.H. Chan, and H.D. Jiang

Abstract: The conventional methods of slices are commonly used for the analysis of slope stability. When anchor
loads are involved, they are often treated as point loads, which may lead to abrupt changes in the normal stress distri-
bution on the potential slip surface. As such abrupt changes are not reasonable and do not reflect reality in the field,
an alternative approach based on the limit equilibrium principle is proposed for the evaluation of the stability of
anchor-reinforced slopes. With this approach, the normal stress distribution over the slip surface before the application
of the anchor (i.e., 6,) is computed by the conventional, rigorous methods of slices, and the normal stress on the slip
surface purely induced by the anchor load (i.e., A,0,, where X is the load factor) is taken as the analytical elastic
stress distribution in an infinite wedge approximating the slope geometry, with the anchor load acting on the apex.
Then the normal stress on the slip surface for the anchor-reinforced slope is assumed to be the linear combination of
these two normal stresses involving two auxiliary unknowns, 1, and 1,; that is, ¢ = 1,0, + M, A,0,. Simultaneously
solving the horizontal force, the vertical force, and the moment equilibrium equations for the sliding body leads to the
explicit expression for the factor of safety (F,)—or the load factor (A,), if the required factor of safety is prescribed.
The reasonableness and advantages of the present method in comparison with the conventional procedures are demon-
strated with two illustrative examples. The proposed procedure can be readily applied to designs of excavated slopes or
remediation of landslides with steel anchors or prestressed cables, as well as with soil nails or geotextile reinforce-
ments.

Key words: slopes, factor of safety, anchors, limit equilibrium method.

Résumé : Les méthodes conventionnelles des tranches sont habituellement utilisées pour I’analyse de la stabilité des ta-
lus. Lorsque des charges d’ancrage sont impliquées, elles sont souvent traitées comme des charges ponctuelles, ce qui
peut conduire a des changements abruptes dans la distribution de la contrainte normale sur la surface potentielle de
glissement. Comme de tels changements abruptes ne sont pas raisonnables et ne refletent pas la réalité sur le terrain,
on propose une approche alternative basée sur le principe d’équilibre limite pour |"évaluation de la stabilit€ des talus
armés par des ancrages. Avec cette approche, la distribution de la contrainte normale sur la surface de glissement avant
I’application de 1’ancrage, i.e., Oy, est calculée par les méthodes conventionnelles rigoureuses des tranches, alors que la
contrainte normale sur la surface de glissement purement induite par la charge d’ancrage, i.e., 4,0, (A, étant le facteur
de charge), est prise comme la distribution de la contrainte analytique élastique en un coin infini qui représente ap-
proximativement la géométrie de la pente avec la charge d’ancrage agissant sur le sommet. Alors on suppose que la
contrainte normale sur la surface de glissement pour le talus armé d’ancrages est la combinaison linéaire de ces deux
contraintes normales impliquant deux inconnues 1, et 1, ¢’est-a-dire, 6 = 1,6, + N,A,6,. La solution simultanée des
équations de la force horizontale, de la force verticale et du moment d’équilibre pour le corps en mouvement conduit a
I’expression explicite pour le coefficient de sécurité F, ou pour le facteur de charge A, si le coefficient de sécurité re-
quis est prescrit. Le caractére raisonnable et I’avantage de la présente méthode en comparaison avec les procédures
conventionnelles sont démontrés ici au moyen de deux exemples explicatifs. La procédure proposée peut étre appliquée
aisément aux conceptions de pentes excavées ou de comportement de glissements avec des ancrages d’acier ou des ca-
bles précontraints, de méme qu’avec des clous dans le sol ou des armatures géotechniques.

Mots clés : talus, coefficient de sécurité, ancrages, méthode d’équilibre limite.
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Introduction

Anchors and soil nails are commonly used to stabilize po-
tentially unstable slopes. The anchor loads not only directly
provide the forces and (or) moments counteracting those
forces tending to destabilize the slope but also improve the
shear resistance along the slip surface by increasing the nor-
mal stress on that surface (Hobst and Zajic 1983: Bromhead
1994). Evaluation of slope stability. including the anchor
loads. is important for the design of stabilization measures
involving anchors.

Limit equilibrium methods of slices have been widely used
for calculating factors of safety for natural and constructed
slopes (Duncan 1996). The commonly used methods include
those proposed by Fellenius (1936). Bishop (1955). Morgen-
stern and Price (1965). Spencer (1967). and Janbu (1973). In
principle. all these conventional methods of slices could ac-
commodate anchor loads or other types of concentrated
forces acting upon the slope. The most straightforward treat-
ment of concentrated forces is to include them as external
torces acting on corresponding slices (Hutchinson 1977:
Fredlund and Krahn 1977: Zhu et al. 2001). However. such a
treatment will lead to an unreasonably abrupt increase in
normal stress on the base of the associated slices (Krahn
2003). This means that the contribution of anchor loads to
the increase in shear resistance is solely related to the shear
strength of that associated segment on the slip surface. as
will be shown later in this paper. This is evidently unreason-
able from both theoretical and practical points of view, as
the normal stresses on the slip surface induced by an anchor
would not be concentrated on a narrow segment. Thus. ques-
tions are raised on the reasonableness of directly using con-

ventional methods of slices for analysing the stability of

anchor-reinforced slopes.

Notwithstanding the above limitation. the methods of

slices are generally accepted as a reliable analytical tool for
slope stability, as they have been found to give approxi-
mately equal factors of safety (within 15% tolerance) as long
as they satisty the complete equilibrium conditions for the
whole sliding body. The commonly used rigorous methods
of slices generally assume continuous (and often rather
smooth) distribution of the inclinations of interslice forces
(Morgenstern and Price 1965: Spencer 1967) or continuous
location of the line of thrust across the sliding mass (Janbu
1973). thereby resulting in continuous distribution of normal
stresses along the slip surface. Such assumptions of continu-
ity approximately reflect the real characteristics of those
slopes subject to gravity, pore-water pressures. and seismic
forces. However. when the slope 1s acted upon by a concen-
trated load at the ground surface. both the inclinations (and

the magnitude) of the interslice forces and the location of

the line of thrust are no longer continuous across the sliding
body. but the normal stress distribution along the slip surface
should still remain continuous. Thus. if the conventional as-
sumptions are made in this case. the resultant characteristics
of the interslice forces and the normal stresses on the slip
surface would be reversed and contrary to reality. To over-
come this inherent shortcoming of the conventional methods,
we propose an alternative based on the assumption of con-
tinuous normal stress distribution along the slip surface. Be-
tore the application of anchor loads. the normal stresses on
the slip surface are assumed to be those calculated by the
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conventional rigorous methods of slices (e.g.. the Morgenstern—
Price method or the Spencer method). The normal stresses
induced by the anchor load are approximately obtained from
an elastic solution. The linear combination of these two parts
constitutes the distribution of normal stresses on the slip sur-
face of the anchor-reinforced slope. Solving the complete
equilibrium equations for the sliding body vields the factor
of safety for the slope with given anchor loads or the magni-
tude of the anchor load required to stabilize the slope with a
specified value for the factor of safety.

Basic formulation

A typical slope with anchor loads (A, Py, A, P.. with A,
as the load factor) is shown in Fig. 1a. For general purposes.
the slip surface is of arbitrary shape. In addition to the an-
chor loads. the slope body is subject to self-weight (y). hori-
rontal seismic force (k.y) and pore-water pressure u (not
shown in the figure). Without the action of anchor loads. the
factor of safety can be calculated by using any method of
slices accommodating the general-shaped slip surface. The
Morgenstern—Price method (Morgenstern and Price 1965).
with an interslice force of constant inclination. 1s suggested
for this purpose. The distribution of normal stresses (G, in
terms of total stress) can be obtained as a by-product of the
computation process.

In response to the action of anchor loads. an additional
normal stress distribution ()\pcp) is induced along the slip
surface. Consider a single anchor load. P. acting at point
(X, ¥p) on the slope at an angle of 7 to the horizontal. as
shown in Fig. 1bh. The induced normal stress on the slip sur-
face is denoted by o,. Because the analysis is within the
framework of limit equilibrium, the normal stress on the slip
surface 1s not required to be theoretically exact. Thus. tor
practical purposes. G, 1s assumed to be the elastic stress as-
sociated with an infinite wedge with its two edges connect-
ing the point of action of P and the two ends of the slip
surface. Fortunately. the analytical solution to ¢, is available
from the mechanics of elasticity. As shown in Fig. 2, a pair
of forces. Py (horizontal) and Py (vertical) act at the apex of
an infinite wedge with its symmetrical axis in the horizontal
direction and its edges lying at angle of B to the horizontal.
According to the mechanics of elasticity (Timoshenko and
Goodier 1970). the stresses at a point with polar coordinates
(r. 6) in the wedge are

Py cos@

Py-sinB
—_ +
r(B + 0.5 sin 2PB)

r(B - 0.5 sin 2B)

[la] o©

r

[1h]  Gy=0
[le]  Tu=0

where o, is the radial stress: 6y is the circumferential stress:
and T4 1s the shear stress.

Now consider the corresponding wedge shown in Fig. 1b.
with its lower and upper edges extending at angles of B, and
B, to the horizontal. respectively. The concentrated force P
lies at an angle of @ with the symmetrical axis MM’ The
polar coordinates of the point considered are (r. 6”). corre-
sponding to (r. 0) in the coordinate system in Fig. 2. From
the geometrical relation. we can see that
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Fig. 1. Diagram of an anchor-reinforced slope. (a) Slope with
normal stresses on the slip surface induced by self-weight and
anchor loads, respectively. () Geometry for computing normal
stresses on the slip surface purely induced by an anchor load.

® (xc, ye)

(a)

[2a] B =

20] 0=0+B,-PrrB_g BB

(2¢] w=0_0_j=Pi=B_;
2
Thus

[3a] Py =Pcosw :Pcos(—B] ;Bz —ij

(3b] Py =—Psino = - Psin(—B' = _,-J

Substituting eqgs. [3a] and [3b] into eq. [la] gives

Can. Geotech. J. Vol. 42, 2005

Fig. 2. Stress distribution in a wedge with concentrated forces at
its apex.

Pv
Py B

O

e

By + By +sin(B; +B,)

2
BI +B5 —sin(B, +B,)

sm[@ - ij sin (e/ _Bl_—B_zj

The circumferential and shear stresses are still zero.
The normal stress 6, on the slip surface with an inclina-
tion of o to the horizontal is obtained from static analysis as

[5] 0, =G, sin” (8" + o)

If more than one anchor load is acting on the slope, o, is
taken as the sum of their individual contributions.

Usually, the prestressing of an anchor is accomplished
over a short duration, and some cohesive soils are, to some
degree, in an undrained condition. This will lead to a change
in pore-water pressure (Au) within the sliding mass. Accord-
ing to Skempton (1954). Au is related to changes in the prin-
cipal stresses in the soil by the following relationship:

[6] Au = B[AG; + A(AG, — AGy)]

where A and B are pore pressure parameters; and A6, and
Ao, are changes in major and minor principal stresses re-
spectively.

The pore pressure parameters A and B can determined by
laboratory tests. For saturated soils, B approaches unity. The
value of A varies with the degree of overconsolidation of the
soil, being positive for normally consolidated soils (in the
range of 0.5-1.0), and in contrast, being negative for heavily
consolidated soils (in the range of —0.5 to 0.0).

© 2005 NRC Canada
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As is shown in egs. [la]-[lc¢], if only one anchor load
acts, the changes in major and minor principal stresses
would be

[7a] Aoy = A0,

(7] Ao,

3

=0
Thus
(8] A = 1_37\.[‘6,

where B = BA.

However. it two or more anchor loads act. the soil in the
slope will no longer be under uniaxial stress. Because we are
attempting to only approximately evaluate the eftect of the
degree of drainage on slope stability, AG, is herein assumed
to be the simple algebraic sum of ¢, caused by individual an-
chor loads.

Before the application of anchor loads. we can calculate

the factor of safety for the slope with existing methods of

slices and obtain the normal stress on the slip surface 6. Af-
ter the anchor loads are applied. the factor of safety for the
slope would change and would need to be recalculated.
Rather than using the conventional methods of slices. which
make assumptions about the interslice forces, we apply the
principle of the newly proposed procedure (Zhu et al. 2003)
by modifying the normal stress on the slip surface and using
it to compute the stability of the anchor-reinforced slopes.
Because there are three equilibrium conditions for the

whole sliding body. and one unknown (i.e.. the factor of

safety, F) is to be determined, we can assume normal stress
(o) on the slip surface. with two auxiliary unknowns. Natu-
rally. the normal stress () is contributed by two parts: g,
and A o, To render the problem determinate. we assume
that

[9] ¢ =n6, + nl)\pcp

where 1, and N, are the auxiliary unknowns.

A constant factor of safety (F) is assigned to the whole
slip surface. The shear resistance along the slip surface is
determined by the Mohr-Coulomb failure criterion and the
principle of effective stress:

[10] I:LI(G~11~Au)um¢'+("]
A

where ¢ and ¢’ are the effective internal triction angle and
cohesion. respectively.

For simplicity. suppose that
(11 yw=tan ¢ ¢ = ¢’
From eqs. [10] and [11]. it follows that
[12] T:%[(0—1{)W+(‘]—%[_3K],A0,lu

. .
From the horizontal and vertical force equilibrium and the

moment equilibrium with respect to an arbitrarily specified
point (x.. y.). one obtains

b
113a) [=os+ 1=k dv = -4, Y P,
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b
[13b] J (0+ Ts" —w)dy = XPZP\.

b
|13¢] L(—Gs' O ) HO TS —w) (v — )

— kar(y, — 0.55 — 0.52)] dx
= )\'pzl)\(.\'p - .\‘c) + )\pz P\('\‘p - .\'L.)

where P, (positive to the right) and P, (positive downwards)
are horizontal and vertical components of anchor load P
(the suffix identification is omitted for simplicity): s(x) and
£(x) denote the curves of the slip surface and the ground, re-
spectively: w{x) denotes the self-weight of a slice of unit
width: and s’(x) is the inclination of the slip surface (i.e..
s = tan o).
Assuming that

h
[14al F =] kardy

b
[14b] F, :j e dy

1

h
[T4el M= [ Thav (e, = 055 = 0.59) +wix - ) d
(L4d] D M, =S Py, —vo+ Y Py, = x)
[Ide] rgv)=—s"(v, —5)+x—x,
(141 ri) =y, —s+s(x —x)

and considering eqgs. [9] and [12]. egs. [13a¢]-{13¢] are re-
written as

b
[15a] _[ (N6, + N2 ,0,) [—.s" +\u%]d\-

=F - )\I,ZP\ +%J.f(u\u —o)dy

}\'[‘ bh—
+ TJ' BAc, vy dx

N

b
| 15h] j(l('1|0() + ‘]3}‘1»01») (] + -V/\V%]dV

«

. 1 e,
=F + XPZP\ + ?J.l.v (tey — o) dy

}\'p b '
+7L s"BAG,ydy

~

b
[15¢] ‘[I(ThGo + nl;\'hch) ["0 + W[_L]d\

| b
=M.+ }‘1‘2 M, +7J-“ reuey = o) dv

}‘[7 b —
p j r.BAG, Y dv

N

+

Solving egs. [15q¢]-[15¢] simultaneously will yield solutions
to the factor of satety (F)—or the load factor (?\[,) it F_is
prescribed—and the auxiliary unknowns (A, and A>) as well.
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Solution to the factor of safety

If the magnitude of the anchor loads is given, the solution
to the factor of safety of the reinforced slope is derived in
this section. Assuming

[16]  ©. =uy—c+A,BAc)y
eqs. [15a]-[15¢] are rewritten as
(7 b P 1 dx h)\, B 1 dr
[17a] n,J‘“oO —s HVF.» +nzj” oOp| =S +\yFS

S

=F A, P, +%J‘:mcdx

b , | . b o 1
[175] mjucso[Hs ijdxﬂ”lzj“?»pﬁp[”b ijdx

s s

1 ¢p,
= F,+A,) P, +EL s’ o dx

[17c) F, =
b b b
n ,L owr.dx+mn 2‘[1 Ao Wr. dx — L re®.dx

b b
—nIL Gyrs dx — nz_[l MOl dx + Mo+ 1, Y M,
The above equations are rearranged as

I, 1, 1,
[18a] nl[Al+FA|]+n2[A2+FA2]:A3+FA3

S S S

1 ’ l 7 1 4
[18b] m, [B, +FBI]+T]2[32+F32]:B3+FB3

S S S

_Dmy +Dom, + Dy

[18c] F
Eny + En, + B

in which

b, , b
[194] A, = —j“ 5" Godx: = Lwcodx

b b
[196] Ay =-['s’hopdvs Ay =] yhod
b
(19¢] Ay = F =X, > P Ay = | o.dx
b , b,
(19d] B, = [ 6,dx; B = |'s'yodx
b b
[19¢] B, =| A,0,dx; B, :J 5"y ,0,dx
b
1191 By=F+h, > P By=] s'odr
h b
[19g] D, :j Gy rdx; D, :j A O W red;
a a

b
D; = —J r.dx
«

Can. Geotech. J. Vol. 42, 2005

b

E,=- ) A0 rodx:

b
[19h] E, :_J. G Iodx;
Ey=M.+X,> M,

Equations [18a]-[18¢] can be analytically resolved, resulting
in an explicit solution to the factor of safety (F,) as follows:

2 3
20 F=0243-494 |4 +[I_’j
T3 2 2 3

2 3
b 1) N
2 2 3
where p, ¢, and 1 can be computed with the parameters

shown in eqs. [ 19¢]-{19A]. The brief derivation of eq. [20] is
presented in Appendix A; for details, see Zhu et al. (2003).

Solution to required anchor loads

In the design of measures for stabilizing failed slopes or
slopes having unacceptable stability conditions, the magni-
tude of the required anchor loads is often needed. In this
case, the magnitude of the required anchor loads can be cal-
culated by trial and error using eq. [20] until the slope at-
tains the specified factor of safety. It can also be directly
computed using another explicit expression, the derivation of
which is given below.

Assuming

2lal o, = -5 +y—: o, =1+ Y

S S

1
W, =75+ Y —

S

1 1 —
21b6] o, = — @y -o); ®w, = —BAc
[21h] F( Y -0 b= v

S B

eqs. [15a]-[15¢] are written in matrix form as

ap  dp dap Ul €
[22] dy; Ay dn||A Ny =0

a3y dy A Ay 3
in which

b b
[23a] ay :j Gy, dx, ap :j 6,0, dx,
« a

b
az=—| ode+ Y P
13 Ju b Z ¥

b b
[23b]  ay, :J. Cyw . dx, U :J- G,0.dx,
« N [ i

b
—_— 4 _
asry = f“ s o dx E P,

b h
[23¢] ay, :j”cs()co,.dx, a =j“c,,m,.<1\-,

b
Uz3y = —Ju r@pdy — z M,
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;

b )
23d] ¢ = F +J‘ m,dx. o= F, +J s’o,dx,

a

b
=M. +L rm,dy

The solution to eq. [22] follows the Cramer rule. with

[24a] A, = A
A

A

[24b] 7, = 2L
n A

[24c] m, =22
A,

in which
ayy dypy dyy

25a] A=|ds, d»  a-s

)
to

~
20

(¢ ap» ayy

[25b] A, =

|
~
~

(2 dnxy

Cy dxy A3y

dyp G Ay

a3 Cy  d3x

[25d] Ay =lasy axn

3

Illustrative examples

Example 1

A slope with a height of 1S m and an inclination of 45° is
shown in Fig. 3a. The slope mass consists of two types of
soils, whose parameters are presented in Fig. 3a. The anchor
is to be applied at the half height of the slope with an incli-
nation of 30° to the horizontal.

Before the anchor is applied. the factor of safety for this
slope is 0.998. calculated with the Spencer method. When an
anchor load of 300 kN per unit length is applied to the slope
and a drained condition is assumed (i.c.. B = 0). the factor of
safety of the slope is increased to 1.286 in the present ap-
proach. The normal stress distribution over the slip surface
after the application of the anchor load is shown in Fig. 3b.
It can be seen that under the action of the anchor load. the
normal stress on the slip surface is continuous and fairly
smooth in shape. with a maximum value of 103 kPa occur-
ring in close proximity to the point of action of the anchor
load. It a minimum factor of safety is required for the slope.
then the minimum anchor load can be directly computed by
using eq. [24a| with a value of 485 KN/m.

For comparison purposes. the Spencer method. with con-
ventional treatment of anchor loads. is also used in this ex-
ample. and the corresponding results are shown in Fig. 3a.
In this case. the factor of safety for the slope with the anchor
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Fig. 3. Slope profile and normal stresses on the slip surface for
example 1. (a) Slope profile and soil parameters. (h) Normal
stresses on slip surface computed by conventional and present
methods. GWL. groundwater level.

(a)
Layer @
vy = I8KN/mM' y = I8 KN/m'

Layer @ 15.0m

c=15kPa c=15kPa
o =28 o'=42
P=0 Fo=0.998
P =300 kN/m F_=1.286 GWI
. N
(F.=1.357. Conventional) -7 =
Fo=15 P=486kN/m
0.0m
0
(b} "
o (kPa) -390 kPa
125
100
prL'\L'l“

0 1 T T T Ll
0 N 10 IN 20m

load of 300 kN/m 1s 1.357. which is 6% larger than that pro-
vided in the above solution. From the practical point of
view. such a difference is rather small. The associated nor-
mal stress distribution on the slip surface is also shown in
Fig. 3h. It can be seen that the normal stress on the slip sur-
face increases abruptly at the point immediately under the
point of action of the anchor load. This is quite unreasonable
from the static point of view. and thus one cannot ensure
that the conventional procedure is valid for anchor loads in
all cases (Krahn 2003).

Example 2

The slope profile of another example and the soil parame-
ters are shown in Fig. 4. Three anchors are to be applied to
stabilize this slope. For a slope without a predefined failure
surface. the stabilization measure should ensure that all po-
tential slip surfaces have factors of safety greater than a
specified value, say 1.2 for this example. All local critical
slip surfaces with factors of safety of <1.2 are located by us-
ing the critical slip field method (Zhu 2001). A total of 11
critical slip surfaces are plotted in Fig. 4. The values of fac-
tors of safety (F ) corresponding to these slip surfaces with-
out anchor loads are presented in the second column of
Table 1. To evaluate the effect on slope stability of possible
excess pore-water pressure induced by abrupt application of
the anchor load. we assume that the pore pressure parameter
(B) varies between 0 and 1.0,

The factors of safety with anchor loads (P, = P = Py =
1000 kN/m) and the load factors required by the specified
factor of safety of 1.2 are presented in Table 1 tor B = 0.00.
0.25.0.50. 0.75. and 1.00. It can be seen from Table | that

©3 2005 NRC Canada
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Fig. 4. Slope profile and soil parameters for example 2.

Layer © Layer @

vy=18kN/m’ vy =19kN/m'

c=10kPa c=0kPa

¢"'=33 ¢ =20 AP

Py = P, = Py = 1000 kN/m
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— 40

=" |- 20

o

—-20

| I | 1 T | | ! T 0
-80 -60 -40 20 0 20 40 60 80 100
Table 1. Values of factors of safety and required load factors.
B =0.0 B =025 B =05 B =075 B=10
Slip surface Fa F, Ay F, Ay F, A, F, A, F, Ay
1 1.173 1.331 0.182 1.307 0.215 1.283 0.260 1.258 0.332 1.234 0.456
2 1.147 1.306 0.352 1.281 0.413 1.257 0.502 1.232 0.637 1.208 0.874
3 1.093 1.254 0.634 1.228 0.805 1.203 0.977 1.177 1.244 1.152 1.712
4 1.081 1.239 0.770 1.214 0.903 1.189 1.091 1.165 1.377 1.141 1.867
5 1.071 1.229 0.832 1.204 0.971 1.180 1.164 1.156 1.453 1.133 1.934
6 1.058 1.218 0.897 1.193 1.048 1.168 1.261 1.143 1.582 1.119 2,122
7 1.026 1.205 0.977 1.178 1.129 1.151 1.339 1.125 1.643 1.099 2.127
8 1.031 1.229 0.868 1.201 0.996 1.173 1.167 1.145 1.410 1.118 1.781
9 1.059 1.289 0.641 1.259 0.729 1.229 0.845 1.199 1.006 1.169 1.241
10 1.055 1.343 0.537 1.306 0.612 1.268 0.712 1.230 0.850 1.192 1.054
11 0.996 3.069 0.134 2.308 0.212 1.515 0.499 0.439 -1.383 0.519 -0.29

the most critical slip surface is a shallow surface (No. 11)
passing through the toe of the slope. However, in the case of
B = 0.00 (i.e., drained condition) for this shallow slip sur-
face, the increased factor of safety is the largest, and the re-
quired load factor is the least. In other words, this most
critical slip surface without anchor load is the least critical
after the application of anchor loads. If the slope is to meet
the prescribed stability conditions, the anchor loads should
be designed with due consideration to the second most criti-
cal slip surface (No.7), which passes below the toe of the
slope: it is associated with the lowest factor of safety for the
given anchor loads, and it also requires the largest anchor
loads to attain the specified factor of safety. It is evident
from Table 1 that with an increase in pore pressure parame-
ters (B), the factor of safety decreases and the required load
factor increases. It should be noted that the locations and in-
clinations of the anchors shown in Fig. 3 are selected only
for the purposes of illustration. In practical application, it is
recommended that an optimization process be performed to
determine an optimum combination of anchors. The proce-
dure proposed here would serve as a useful tool for this pur-
pose.

Conclusions

The limit equilibrium methods of slices have been widely
used for analysing the stability of slopes without the action

of concentrated forces. Although the extension of the
conventional methods to include anchor loads is straightfor-
ward, an unreasonable normal stress distribution on the slip
surface would arise as a result. An alternative procedure is
proposed in this paper for a more rational analysis of
anchor-reinforced slopes. With this procedure, the normal
stress on the slip surface is assumed to be a linear combina-
tion of two parts involving two auxiliary unknowns: one part
corresponds to the unreinforced slope obtained using con-
ventional methods; the other part is induced solely by the
anchor loads, with an approximate closed-form solution.
Solving the three equilibrium equations yields explicit solu-
tions to the factor of safety with given anchor loads and to
the required anchor loads with a specified factor of safety.
The disadvantages of conventional procedures in dealing
with anchor loads can thus be overcome. This method can
serve as a promising tool for the design of stabilization mea-
sures involving anchors or soil nail and geotextile reinforce-
ments for failed slopes and for those having unacceptable
stability conditions.
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Appendix A. Solution for the factor of safety

Solving egs. [18«¢] and [18b] for 1, and n,. one obtains

T‘()+L_7‘] + fl_w T:

[Ala] W, = : 3
Gy+—G, +—G,

I F3
. 1 . |
Si+—8+—35,

[Alb] 1, = 'l ’]\
Gy+—G +—G,

£ <

where

[A2a] T, = AB, — A,By:
T = A\BYt ALBy — AB, — A'By:
T, = A\B, — ALB
[A2b] Sy = AB, — AB:
S = AB,+ A\By — AB, - A'B:
S, = AR, — ALB,
[A2¢] Gy = AB, — AB:
Gy = ABY+ A\By— AB) — A\B:
G, = A1BY - ALB;

Substituting eqs. [Ala] and [Alh] into eq. [18¢] and rear-
ranging yields a cubic function of F_, as tollows:

(A3]  Fl4+6LFI+0F+1,=0

where

[Ada] 1, = - DT, + DS, + DG,
! EI Tl) + E:S(, + E}(j‘”

[A4Db] 1 = ETh+ E3S, + ExG, = DTy = DS, — DG,
| El l.() + E: S(, + E}G“

[Adc] 15 = ETy + ENS + EG) - DTy — DSy — DGy,

ETy + EsSy + EG,,

Equation |A3] is rewritten as:

3

.1 .1,
[AS (I‘“~~J +)( \4]+z:()
| b ! AR

where
[Abu] p:—f—5+f|

3

|
A6D] g =——15 — =11~ +1t
[ I ¢ 57" 3 (U] 0

Solving ¢q. [AS] gives the expression for the factor of safety
F_asin ¢q. {20].

© 2005 NRC Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



