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An anisotropic(Bianchi type ) cosmology is considered in the four-dimensional Neveu-Schwarz—Neveu-
Schwarz(NS—NS sector of low-energy effective string theory coupled to a dilaton and an axioHlifield
within a de Sitter—Einstein frame background. The general solution of the gravitational field equations can be
expressed in an exact parametric form in both Einstein and string frames. The study of the time dynamics of
this universe leads to the conclusion that in the absence of a dilaton field potential or a cosmological constant
the initial anisotropies do not decay and the time evolution of a pure dilaton and axion field filled Bianchi type
| space-time does not lead to an isotropic phase.
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I. INTRODUCTION _opn
g.,=¢ %g,,, 2

Pre-big-bang cosmological modélk], based on the ow- ha action(1) can be transformed to the so-called Einstein
energy limit of string theory, have been intensively investi-f3me as

gated in the recent physics literatyige-19| (for an extensive

recent review of string cosmology sg20]). Generically, in

these types of models the dynamics of the universe is domi- J d4x\/_[ R—k(V)2— —e 4‘Z’H[23]—U , (3
nated by massless bosonic fields. There are many massless

fields present in the pre-big-bang scenario, such as the dila-

ton, graviton and moduli fields. wherexk=6—«, U=e2?0, andH[B] denotes the square of
In the string frame, the four-dimensional Neveu- the antisymmetric field by, .
Schwarz—Neveu-Schwat®NS—NS effective action, which Intensive observational study of the cosmic microwave
is common to both heterotic and type Il string theories, isbackground radiatiofCMB) has shown that it seems to be
given by[21-23 almost isotropic. The significance of this isotropy for cos-
mology comes from the fact that, whatever the origin of this
0 radiation, it must have propagated freely toward us from a
4, [ _ A -2 2

S= f d'xy-ge ¢{ Rt &(V )= _H . (M distance of the order of Hubble radius. If there were any

large-scale inhomogeneities or anisotropies in the universe,
whereH ., = d,,B,,; is an antisymmetric tensor field is a thes_e would affect the _ra_diation and make _it appear aniso-
generalized dilaton coupling constant, afie=0(¢) is a tropic to us. If th_e radiation were _exactly isotropic to all
) ) Ao ! observers at all times, then the universe would have to be
dilaton potential. In additiorkij;) means the square of thé  completely spatially isotropic and spatially homogeneous
field with respect to the metngw The low-energy string and, consequently, it would be described by a Robertson-
action possesses a symmetry property, called a scale factalker mode[24]. Recent measurements based on an analy-
duality, which leads us to expect that the present phase of th&s of 42 type la supernovas discovered by the Supernova
Universe is preceded by an inflationary pre-big-bang phaseCosmology Project lead to data consistent with %0 iso-
Explicit dual solutions can be constructed for each Bianchiropic flat cosmology, with the cosmological constant value
space-time, except the Bianchi class A type VIII and IX comparable to the mass-energy dengy].
models[2]. Therefore a physically acceptable cosmological model
By means of the conformal rescaling must lead, in a large time limit, to an isotropic geometry and
also provide a mechanism for the disappearance of initial
anisotropies.
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the combined effects of the dilaton, modulus, two-form po- In this case the general solution of the gravitational field
tential, and central charge deficit, and using methods fronequations can be expressed in an exact parametric form. The
the qualitative theory of differential equatiofghase portrait existence of an analytic solution simplifies the study of the
analysi3, has been presented |B]. The effects of initial properties of the basic physical parameters of the model,
inhomogeneity and anisotropy on pre-big-bang inflationsuch as the mean anisotropy or the deceleration parameter,
were analyzed by Veneziandl]. Making the assumption of whose behaviors have not been explicitly investigated in the
small initial curvature, he showed that small amounts of in-Previous analysis of Bianchi type | mod¢®4]. The evolu-
homogeneity and anisotropy do not prevent the ultimate tranion Of these quantities gives a clear picture of the general
sition to the pre-big-bang inflationary phase and conclude@nysical evolution of an anisotropic space-time. As a general
that pre-big-bang inflation is robust. Analytic biaxigo res“_'t we find that in the _absence of a dilaton po_ter(twj
scale factors onlyBianchi type | geometry has been consid- equivalently, a cosmological constanhe mean anisotropy

e {3 for h case with monvanshig bt withouta 3 12 SO I b et s 2 consta i e
dilaton field potential, i.e.]J=0. Triaxial models with the 9 g

tral deficit ch trained t inth finitial anisotropies are not inflated away during the pre-big-
central deficit charge constrained to zero in the presence of g+ ey o1ution.

modulus field(representing the evolution of compact extra This paper is organized as follows. In Sec. Il we write
dimensiong have been analyzed [4]. The general Bianchi 4oy, the basic equations of our model. The general solution
type | space-time geometry for arbitrary dimensional dilatonys the field equations is presented, in an exact parametric

gravities, with vanishing antisymmetric tenddr,,, and in  form, in Sec. Ill. In Sec. IV we discuss and conclude our
the presence of an exponential type dilaton field potentialyesylts.

have been obtained in both the Einstein and string frames
[6]. . " . ) ) Il. FIELD EQUATIONS, GEOMETRY,

The initial conditions in the pre-big-bang scenario have AND CONSEQUENCES
been considered ifiL8]. The basic postulate of the pre-big-
bang Cosmo|ogy has been formulated as one of “asymptotic In the Einstein frame the field equations, which follow
past trivialities,” by which it is meant that the initial state is from variation of Eq.(3), are given by
a generic perturbative solution of the tree-level low-energy
effective action. The “string vacuum” is made of an arbi- R,,— kd,bd,d— lg U— Ee"“i’

. . . . . nv o v mv

trary ensemble of incoming dilaton and gravitational waves. 2 4
The pre-big-bang inflationary phase in the string frame is 1
equivalent to gravitational collapse in the Einstein frame and X | H yapH LB — _g,uvHZ =0, (4)
therefore the authors ¢f.8] conclude that initial conditions 3
for pre-big-bang inflation are as natural as those for gravita- 4 o
tional collapse. V(e P HE) =0, ®)

These investigations show, however, that in the absence
of the dilaton potential anisotropic pre-big-bang models
seems to favor anisotropic Kasner type geomg2@. The
qguestion whether the isotropy problem is naturally solved in
pre-big-bang models has been raised by Kunze and Durrévioreover, theH field must satisfy the integrability condition
[15] by analyzing the string frame behavior of the shear ten{Bianchi identity d;,H,,,;=0.
sor in Bianchi class A spatially homogeneous models, with In four dimensions, every three-form field can be dualized
dilaton and a perfect fluid as matter sources. According tao a pseudoscalar. Thus, an appropriate ansatz fa teld
their results for these type of models initial anisotropies dais [3]
not decay during pre-big-bang inflation.

It is the purpose of the present paper to consider, in the 1
framework of a four-dimensional Bianchi type | geometry, H”V”=—e4¢ef*”“ﬂaph, (7
the general effects on the dynamics, evolution, and isotro- -9
pization of the early universe of a nonvanishing antisymmet- N S ) .
ric field and of a string frame exponential type dilaton field Wheree*””=— 5615, 85 is the total antisymmetric tensor
potential. An exponential potential arises in the four-andh=h(t) is the Kalb-Ramond axion field. Then the field
dimensional effective Kaluza-Klein type theories from com-€duation(5) is satisfied automatically and the Bianchi iden-
pactification of the higher-dimensional supergravity or su-tity becomes
perstring theorief21]. In string or Kaluza-Klein theories the
moduli fields associated with the geometry of the extra di- d,(\—ge*a*h)=0. (8)
mensions may have effective exponential potentials due to
the curvature of the internal spaces or to the interaction oMoreover, we shall assume that in the string frame the dila-
the moduli with form fields on the internal spaces. Exponenion field potential is of exponential tyd@1,26¢
tial potentials can also arise due to nonperturbative effects R
such as gaugino condensati6]. U(p)=Ae 2%, 9

1 19U
Vip+ —e HHZ- — —

6k 2k 9 ©®
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with A a non-negative constafde Sitter space-timeThere-  leading to

fore in the Einstein frame the effect of the potential is iden- _

tical to that of a cosmological constamt($)=A. V(7)=Vgsinhr, (18)
In the Einstein frame the line element of a Bianchi type |

space-time, which is the anisotropic generalization of the flat (e cinh L o
Robertson-Walker geometry, is given by 8(7) =8y sinft ZCOSW 2! 1,23,
. (19
ds?=—dt?+ >, a(t)(dx)?. (100 where :=\3A/2(t—to) and ;" :=1/3+ \2/3AK;/V,. The
=1 mean anisotropy and the deceleration parameter are given by
With the ansatZ7),(9), the field equation$4),(6),(8) take oK2
the form A(7)=—;seckr, (20
N SOV |
30+Z’1 i+ k$p™+ 5€%h"=5A=0, (11 q(7)=3 sechr—1, (22)
whereK?=33_ K2,
1d 1 i
—(V6;)— =0, i=1,2.3,
V dt (12 I1l. GENERAL SOLUTION OF THE FIELD EQUATIONS
Equation(13) can be integrated to give
h+36h+4¢h=0, 13 .
¢ 13 h=Ce 4ov-1, (22
1 E(Vc'ﬁ)— Ee4¢h2:o, (14  with C=0, a constant of integration. Thus the dynamics of
K

the dilaton field in the Einstein frame is described by the

) following differential equation:
where we have introduced the volume scale factor

H _,8;, directional Hubble factor®, =a;la;, i=1,2,3, d C?

—4
and the mean Hubble facter=33 | 6;/3=V/3V. S'nhT_(S'nhT¢)_ VA g 23
. . . . 0

We also introduce two basic physical observational quan-
tities in cosmology: the mean anisotropy paramefer with the general solution
=33 ,(6,—0)%/30> and the deceleration parametey
—d0 l/dt—1. For an isotropic expansiok=0. The sign of 26(7)
the deceleration parameter indicates whether the universe in- €
flates. The positive sign corresponds to “standard” deceler-
ating models whereas negative sign indicates inflation. where we denotaw:=+/8¢y/3A/V, gogz JC?8k ¢y, and

By summing Eqs(12) we obtain $o>0 is a constant of integration. The antisymmetric tensor

field is given by

2 T T
= ¢5| tanft' > +tanh = |, (24)

: G (VO=5 A (15
v dt tankte — — 1
J_ 2
which, together with Eq(12), leads to h(7)=ho+ . (25
tanite = + 1
=0+K,\V'L =123, (16) 2
with K;, i=1,2,3, being constants of integration satisfyingw'th ho an arbitrary constant

The integration constants must satisfy the consistency

the condition=>_,K;=0. condition

It is worth noticing that, in this framework, the geometry
of the considered universe, which is describedabft), i K2=AVZ— ko, (26)
=1,2,3, is determined only by the existence of the cosmo-
logical constan\ and is “decoupled” from the matter fields which follows from Eq.(11).
¢ and H. (The effect of matter fields is presented in the |n the case of a vanishing cosmological constan0,
magnitude of the parameters, i.e., constants of integration. the general solution in the Einstein frame of the gravitational
From Eq.(15) we obtain the time evolution of the mean field equations for a Bianchi type | geometry with dilaton
Hubble factor, and Kalb-Ramond axion fields is given by

1
o(7)= \f% cothr, 17) o= 5. VD=V, 27)
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a(t)= ai0t1/3+ KiVo =123, (29 In the case of a vanishing cosmological constant the string
frame solution of the gravitational field equations with dila-
A=3K2V,2=const, g=2=const, (29)  ton and axion fields is given again in a parametric form by
20(t) — 2/t —a R .
e =gttt ), (30 t(t)=to+ (pof et (42)
h(t)=ho—M(t2“+ 1 (31 . .
c V(t)=Vot(t*+t~ )32, (43
together with the consistency condition
K2=§v§—f<¢o, (32 “0 2 i ®
where a=2/¢/ V. ai(t)=at P KiMote+t7e, i=1,2,3, (45
In order to find the general solution of the gravitational
field equations in the string frame with the line element K2 [qto—t-a 1| 2
s A= 5vz 2t“+t“+3) ’ 40
o|s2=—o|t2+2l a?(t)(dx)?, (33
=
_ , 1te—t @ a)
we must perform the conformal transformati@. To obtain al = + =
a simpler mathematical form of the equations we shall intro- Gt =2— Steptm 2 a7)
duce a new variabley=tanh#2, n<[0,1] and denote:}o q tr—t7e 1
:=8/3A ¢y. Then the string frame time evolution of the Bi- 2 e §
anchi type | space-time with dilaton and Kalb-Ramond axion
fields and an exponential type dilaton potential can be ex-
pressed in the following exact parametric form: R 2K\/¢TO B
h(t)=ho——5 (t2*+1)71, (48)
7+
o =t bo | =, (34)
e??M=a(tv+t~9), (49)
V(m)=Vo( n°+ 77*“’)3’2%, (35) IV. DISCUSSIONS AND FINAL REMARKS
1= In the present paper we have presented the exact solution
1- 2 3w pO— @ 14 2 of the gravitational field equations for a Bianchi type | space-
W)= — 7 SenmTm T , time with dilaton and axion fields in both the Einstein and
BoopVn®+ 7 ¢\ 2 9+ ¢ 1—47? string frames.
(36) In the presence of a cosmological constant the evolution
of the Bianchi type | universe starts in the Einstein frame
R . Nty © from a singular state, but with finite values of the mean an-
a(n)=ao————F5; =123 (37)  isotropy and deceleration parameter. In the large time limit
(1=7°) the mean anisotropy tends to zefo,~0, and the universe
72 ends in an isotropic inflationary de Sitter phase with a nega-
R 2K? [3w n°—n~° 1+9? tive deceleration parametar< 0. In the large time limit the
A7) = AVl 2 ey e + 1-2] (38 gilaton and axion fields become constants, ligh(t) =hg
0 e g =const, lim_..e??(V= 3= const. Moreover, in the Einstein
1— d frame, the dynamics and evolution of the universe is deter-
a( n):= —plo1= ’7 9 1-1, mined only by the presence of a cosmological constana
e+ d?? dilaton field potentigl and there is no direct coupling be-
(39 tween the metric and the dilaton and axion fields.
In the string frame the dilaton and axion fields are coupled
. K\/_ 7% to the metric, the character of the cosmological evolution
h(m)=ho+t —=—— (40)  being strongly dependent on both fields. The string frame
7 1 time variation of the volume scale factor of the Bianchi type
20— 20 s o | space-time for different values of the parameteis pre-
e " =ep(n”+ 5 "). (4)  sented in Fig. 1. Depending on the valueswofhere are two
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FIG. 1. String frame evolution of the volume scale factofor
different values of the parameter. »=0.1 (solid curve, ®=0.5
(dotted curvg, w=0.75 (short dashed curyeand «=0.9 (long

dashed curve We have used the normalizatidfy=1 andt,=0

FIG. 3. Dynamics of the deceleration paramegen the string
frame for different values ob: w=0.1(solid curve, = 0.5 (dot-
ted curve, w=0.75(short dashed curyeandw= 0.9 (long dashed
curve.

distinct types of behavior. In the first type of evolution, cor- the expansionary period, tends rapidly to zero. Hence in this
responding tow<2/3, the universe starts from a singular case the post-big-bang type expansionary evolution of the
state with zero values of the scale factoes(0)=0, i Bianchi type | universe starts with nonsingular scale factors
=1,2,3, and expands indefinitely. In the second case, wheand with maximum(infinite) anisotropy. Foro<2/3 the
w>2/3, the Bianchi type | universe starts its evolution with mean anisotropy of the Bianchi type | space-time monotoni-
infinite values of the scale factors and collapses to a bounceally decreases from a maximum finite value to zero.

state, corresponding to minimum finite nonzero values of the The variation of the deceleration parametgiis repre-
scale factors. From this nonsingular state the universe startented in Fig. 3. In the string frame and in the presence of a
to expand, ending in an isotropic inflationary era. The valueslilaton potential the large time evolution is generally infla-
of the physical quantities at the bounce correspond to théonary for all times and for all. For w< 2/3, the absence of

values of7 satisfying the equatiodV/dz=0 or the bounce state, the dilaton and axion field filled universe
starts its evolution from a noninflationary state and acceler-

(7°+ 75932 (3w p°— 9~ ° 1+ 72 ated expansion occurs only in the large time limit. For evo-

> R 5| =0. (50  lutions characterized by a minimum of the scale factors the

1-7 notn 1-7 deceleration parameter is zero at the initial stage of evolution

and decreases rapidly during the contracting phase, tending

The string frame evolution of the mean anisotropy paramto infinity in the moment when the universe reaches the
eterA is represented in Fig. 2. Independent of which type ofbounce state. During the expansionary phase the deceleration
evolution is classified by the value af, in the presence of parameter increases rapidly and in the large time limits tends
an exponential type dilaton potential and of an axion fieldito zero,q—0 for t—o. Thus in this case the universe ends
the Bianchi type | universe always isotropizes in the largeat the exact limit separating inflationary and noninflationary
time limit, A—0 for t—o. But the dynamics of the mean evolutions.
anisotropy factor is very different for the two types of evo- In Figs. 4 and 5 we have represented the string frame time
lution. For w>2/3, the mean anisotropy increases to an infi-

nite value during the collapse to the bounce and then, during 4 TS~
N ~ ~
n I: 3.
II |
2 ; " 3.
. n f «a
1.5 \\ :| il 3,
<« l: "
1 I 3:
1l
0.5 .

0 0.250.50.75 1 1.251.51.75 t

~

€ FIG. 4. String frame evolution of the Kalb-Ramond axion field

FIG. 2. String frame time variation of the mean anisotropy pa-h for different values ofw: w=0.1 (solid curve, w=0.5 (dotted
rameterA for different values ofw: w=0.1 (solid curve, «=0.5  curve, o=0.75 (short dashed curyeand »=0.9 (long dashed
(dotted curvé, w=0.75 (short dashed curyeand w=0.9 (long  curve. We have used the normalizatiopg=1, x2¢/C?=1, and
dashed curve We have used the normalizatioK 2/VZA=1. hy=3.
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+1)]1¥2*, For a>2/3 the scale factors and the volume ele-
ment collapse from an initial state with infinite values to a
nonzero minimum value from which the expanding universe
emerges. Fow<2/3 the Bianchi type | space-time indefi-
nitely expands from an initial singular state. In the large time
limit the mean anisotropy tends to a constant nonzero value,

A
3val2 3

K2 (a 1)2’

©
[
(o S L L N o W

0 0.2 0.4 0.6 0.8 1 1.2 1.4

¢ for t—o, hence showing that also in the string frame the

anisotropic Bianchi type | universe will never experience a
smooth transition to an isotropic flat Robertson-Walker type
phase. The deceleration parameter in both frames is positive
for all times and an inflationary evolution is also impossible.

In the string frame fot—c we haveq=4/(3a+2). In the
same limit the axion field tends to a constant value while the
dilaton field has a logarithmic dependence upon the string
. . o . _ frame cosmological timea(t) ~In(t).

evplulnonhofghﬁ dl!atonf ar?d axf|pr|1 df|e_lds,. rglspectn;]erI.E_QuaI]- Recently, several open problems of the pre-big-bang cos-
tatively the behavior of these fields Is similar to the EInsteiny, ,,qical scenario have been pointed out. One measure of

frame evolution; in both frames in the large time limit the he natyralness of a cosmological scenario is its sensitivity to
axion and the dilaton become constants. In the string framjtia| conditions. The effect of spatial curvature in pre-big-
the general character of the evolution is independent of thgang inflation has been analyzed [7]. They have shown
value of  and of the presence or absence of the bouncgnhat in this model the end of inflation is fixed, while its
state. As a result of the coupling between the dilaton angeginning is delayed by the curvature. Too much curvature,
axion fields, the string frame evolution of this model is of either sign, shortens the duration of the inflationary era to
strongly influenced by the presence of the axion. For a vanthe point that the flatness and horizon problems are not
ishing axion field,h=0, the dilaton field equatior{14) solved. Thus, pre-big-bang inflation requires fine-tuning of
gives e??(D=g2tant’(7/2), with w; a non-negative initial conditions to solve this basic cosmological problems.
constant. The presence of the axion field funda-In the generic case of the pre-big-bang scenario, inflation
mentally modifies the small time behavior of the dilaton field Will solve cosmological problems only if the universe at the
and, consequently, the string frame evolution of the geomonset of inflation is extremely large and homogeneous from
etry. In the presence of the axion for-0 we havee?*(? the very beginning, W|th the size of the homogenegus part
— while for h=0, 2?(_0. In the large time limit in greater than 161 and with the total mass of the inflationary

both cases the dilaton tends to a constant value. In the strifgPMmain g[elater than 1M, ‘wherel, is the stringy length
andM¢~1_ ~ [28]. Also a regime of eternal inflation does not

FIG. 5. Variation of the dilaton field as a function of string
frame cosmological time for different values of «=0.3 (solid
curve, w=0.5 (dotted curvg »=0.75 (short dashed curyeand
»=0.9 (long dashed curye We have used the normalizatiogs
=1 and@3=3A/8.

frame the scale factor is given ly=e%a;, i=1,2,3. For > .

. g++w/2m‘ ' -l _ occur in this model. Therefore, as the authorq 28] con-
h=0 we obt.am ai~.sn."|h“| ¥5(r/2)costi ~“r(7/2), ! clude, “the current version of pre-big-bang scenario cannot
=1,2,3, and in the limitr—0 we always havea;—0, i replace usual inflation even if one solves the graceful exit
=1,2,3, since alky; and w, are non-negative constants. For problems.”

h#0 the string frame scale factors behave like The results of the present paper strongly support these

~Jmsinﬁ‘f*“”z(7/2)costﬁ’f+w’2(7-/2), i=123. conclusions, obtained by using other methods and consider-
) A i ,_ ing the effects of the dilaton field only. If the pre-big-bang
In the small time I!m|tai:smh“| (7/2), 1=1,2,3, and  gcenario cannot solve the isotropization problem, even with
depending on the sign af; — /2 we obtain the two distinct  the inclusion of theH field in the model, then it requires a
types of evolution already mentioned. Therefore the string,ery special initial state in which the universe is already
frame small time evolution and the character of the i”itialhomogeneous and isotropic. The dilaton and the axion field
s_ingularity in this frame essentially depend on the aXiondecoupIe from the geometry in the case of a Bianchi type |
field. _ _ geometry and the dynamics of the universe is determined by
~ In the absence of a cosmological constant or a dilatoRhe dilaton field potential only. These difficulties can be
field potential the universe does not isotropize. In this casgced back to the deficiencies of the basic physical model
the Einstein frame mean anisotropy is constant for all times&sed, based on the zeroth orderdn (the inverse string
and the evolution is anisotropic, of the well-known Kasnertensjon parametgttruncation of the string energy effective
type, with an initial singularity at=0. In the string frame  action. The inclusion of the first order termsdr in the field

the evolution of the scale factors and of the volume elemengqyations can lead to a quite different model of the evolution
of the universe is qualitatively similar to the#0 case, with  of the very early universe.

the presence of a bounce state, corresponding to values of the Therefore string cosmological models involving only pure
parametert so thatdV/dt=0 andt,;,=[(3a/2—1)/(3a/2  dilaton and axion fields resulting from the zeroth order of the
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low-energy string effective action do not have, at least in the

case of Bianchi type | anisotropic geometries, the ability of
providing realistic cosmological models. To obtain a transi-

PHYSICAL REVIEW D 63 064002
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