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The paper investigates the hypothetical assumption of neglecting transverse normal stress in
vibration analysis for cantilevered thick plates and rectangular parallelepiped. The analysis solves
the three-dimensional elasticity energy functional including, as well as excluding, transverse normal
stress and obtains free vibration solutions for a cantilevered parallelepiped. Although it is widely
accepted, the omission of transverse normal stress is well justified in Kirchhoff-Love thin-plate
theory and higher-order thick-plate models; the transverse normal stress effects and thickness extent
to which the thick-plate models apply as the thickness increases are practically unknown. The
inconsistency of assuming constant transverse normal displacement through thickness for
thick-plate models is also addressed. The paper concludes that for a rectangular parallelepiped with
thickness exceeding a certain limit, there is considerable discrepancy if transverse normal stress is
neglected. ©1999 Acoustical Society of Amerid&50001-496@9)02312-7

PACS numbers: 43.40.D)CBB]

INTRODUCTION correction factor. Perhaps the most remarkable work on the

For decades, the analysis of thick plates has neglectettgl_ird-order shear deformation thgory for thick plates was at-
the effects of transverse normal stress. The ReissnertfPuted to R‘?d‘?'y and his aSSOC|a(é$84a, b, 1985’, 19,89
Mindlin first-order plate theory(Reissner, 1945; Mindlin, P°2s€d on a similar approach as Levingd880), resulting in
1951 extended the classical Kirchhoff-Love thin-plate & parabollc transverse shear strain d|§trlbut_|on in th|ckness_.
theory to analyze plates with considerable thickness. TransLiS @pproach had been extended to investigate the numeri-
verse shear deformation was considered by including tran&@! @spects and effects of various boundary conditions on
verse shear strain effects in the analysis. The first-ordef€@ Vibration of thick plateglim et al, 1998a,b and singly
theory assumes constant transverse shear strains through ff¢fl doubly curved shallow shelldim and Liew, 1995;
plate thickness and renders a paradoxical implication that thei€w and Lim, 1996. _ _
transverse shear strain components do not vanish on the top Similar to the hypothesis of Kirchhoff-Love plate
and bottom surfaces. A shear correction facter=(r?/12)  theory, the Reissner—Mindlin first-order and Levinson—
was therefore derived by Reissr@@45 to account for this Reddy higher-order plate theories do not consider transverse
deficiency. Using this first-order theory, accurate vibrationhormal stress. Some authors have expressed concern over the
formulation and solutions have been reported for laminatedalidity of this hypothesis. Goul1988 suggested that the
curved beams(Qatu, 1993 and plates(Bert and Chen, concept of transverse inextensibility&Ew,) must be re-
1978. viewed in analysis of thick plates and shells with transverse

The inadequacy of the first-order shear deformatiorshear flexibility. He expressed that the inclusion of trans-
theory to overcome the nonvanishing shear strain effect¥erse shearing strains to extend the bounds to include some-
stimulated the development of research in thick plates withvhat thicker plates and shells is difficult to quantify since a
various formulations of higher-order theories. One of the eartrue thick-plate or shell theory should account for transverse
liest attempts was initiated by Sol€t968, who expressed normal stress as well.
all dependent variables including displacement and stress The transverse normal stress is considered in three-
components in Legendre polynomials. Other developmentdimensional elastic analysis of solids. However, such three-
in the higher-order plate theory include Whitney and Sundimensional elastic solutions are particularly scarce. Some of
(1973 with quadratic and linear distributions for in-plane the investigations are concerned with rods and beams
and transverse displacements; Whitney and @974 with ~ (Hutchinson, 1971; Hutchinson, 1981; Leissa and So,
linear and quadratic distributions for in-plane and transvers@ 9953, parallelepipedFromme and Leissa, 1970; Hutchin-
displacements; and lyengaet al. (1974 and Lo etal. son and Zillmer, 1983; Leissa and Zhang, 1983; Lival,,
(1977a,b with cubic and quadratic distributions for in-plane 19953, solid and hollow cylinders(Hutchinson, 1967;
and transverse displacements. Washi@80 expressed the Hutchinson, 1980; Leissa and So, 1995b; Liewal., 1995b;
in-plane displacement in a power series of transverse cooSo0 and Leissa, 199,/truncated hollow coned.eissa and So,
dinate @) and simplified the function to a first-order expres- 19959, and open shellgLim et al, 19989.
sion. By imposing zero transverse shear-stress conditions at To the author’'s knowledge, direct comparison of three-
the free surfaces, Levinsof1980 developed a third-order dimensional elasticity solutions including and excluding
plate theory with cubic in-plane displacement and constantransverse normal stress is only available in Hutchinson
transverse displacement without the requirement of a she&t979, 1984. In these two papers, Hutchinson analyzed the
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vibration of thick, free circular plates using the Mathieu se- €,7=—, (3¢
ries solution and modified Pickett method to obtain exact 9z
solutions. The approximate solutions were obtained by the
L . . . . ov  ow
Mindlin thick-plate model including shear deformation and Y=+ = (3d)
rotary inertia. These analyses concluded that, for thick, free Jz  ay
circular plates, the approximate solution yields frequencies
of sufficient accuracy for most engineering application 7ZX:‘9_W &_u' (39
within the range of applicability of the approximate theory. X 9z
However, results are not available for thick rectangular
plates. It is the key objective of this paper to address the y :‘7_“+ ﬁ_V (3f)
validity of the hypothetical neglect of transverse normal Yoay o ox”
stress and transverse inextensibility in the specific case of S .
free vibration of a cantilevered rectangular parallelepiped. The kinetic energy is
The assumption of transversely inextensible displacement P ou\2 [ov\2 [ow\2
through thickness will also be examined. This paper also T= Ef f fv (E +(E + E) dv, 4

intends to determine to what extent the omission of trans-

verse normal stress in the Kirchhoff—Love thin-plate theorywherep is the mass density per unit volume

is applicable to cantilevered thick-plate vibrations.

For small deformation vibration, the displacement com-

ponents assume temporal simple harmonic functions in the
forms of

|. FORMULATION
A. Basic definition

An isotropic parallelepiped of length, width b, and
thickness is illustrated in Fig. 1. With respect to a Cartesian
coordinate system with origin located at the center of the
body, a point within the body is designated by ¢, z). The
parallelepiped is clamped at a surface —a/2 with all other
surfaces free.

B. Three-dimensional strain and kinetic energy
expressions

For linear, elastic free vibration, the strain energy of a
three-dimensional solid is

1
U= Ef f fv[(A+2G)(e§X+ €0yt €5,) T 2A (exxeyy

+ €yy€rrt €260 T GV, Vaxt Viy)] dx dy dz

u(x,y,z,t)=U(x,y,z)sin wt, (5a)
v(X,Y,z,t)=V(X,y,z)sin wt, (5b)
w(Xx,Y,z,t)=W(X,y,2z)sin wt, (50

whereU, V, W are the displacement amplitude functions,
is the angular frequency of vibration, and

— X
— Yy
Y=p (6b)
_z
z=:, (60

are the nondimensional coordinates.

(1) For a nondissipative system, the total energy in a vibra-
whereV is the volumeG is the shear modulus and tion cyclle is conserved: The maximum strain and .kinetic
energy integral expressions,,,, and T2« can be derived
A vE (2a) easily by substituting Eqg5a—(5¢) into Egs. (1) and (4)

T (1) (1-2v)°
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and kuu kUV kUW
w’abc o K= ky k 14
Tt f f f (U2+V2+W?) dxdydz (8) v (14
2 v sym Kuw
C. Three-dimensional energy functional and my, [0]  [0]
eigenvalue equation M= m,, [O] |, (15)
The displacement amplitude functions for a vibrating sym Myw
parallelepiped can be expressed by a set of three- dlmensmngl]d the vector of unknown coefficients is
(3D) p-Ritz functions. These functions are the products of
2D p-Ritz functions ¢,(X,y), ¢y (X.y), éu(x,y) for the {Cu}
midsurface deformation, and 1P-Ritz functions i,(z), c=4{C/} ;. (16)
#(2), ¥.(2) for the thickness deformation. The displace- {Cu}
ment amplitude functions are ) ) ]
- The elements in the stiffness submatrix are
U(X,y,Z):Zl Zl Clal(x,y) ¢(2), (99 kil = 17 v j1010000 % a z 0000; 11
T w =1, ol T 3| ) Tl
m n
_ j
Vixy. =2 2, CUL0y) (), (9b) o2 orong00 | (173
b ¢UU l’bUU
m n
W(X,Y,2) (X i(7 oc ikjl __ Y & 1001,00 0110,00
(xy.2)=2 2 ClouxY)¥h(2), (90 e b'¢LkVJ¢"+2b'¢Lka¢"v’ (17b)
in which C!}, C!I', andC! are the unknown coefficients. v a
. . . . ikjl _ 1000401 0010410
An energy functional is defined as the difference of the ki, =12, ¢ |¢|k Jwﬂ + 5= °C |¢|k Jyil (179
maximum strain and kinetic energy components e
_ 2 2
1= U T 0 g (3 o 28
. . . . w 1-2v\b ¢ lﬂ 2/\c ¢vv wvv
Numerical frequency solutions can be obtained by minimiz-
ing this energy functional with respect to the unknown coef- 1010-00
ficients in accordance with the Ritz procedure i o J;//J'V ’ (179
all v a2 a2
— — ikij 0100401 0001410
o a=u, v, andw, (11 Kkl = =37 be' o Jui +2b Ly Ty (179
which leads to the governing eigenvalue equation il 1—vp a 2 OOI?OJ11| L1 1 (E>2 0101500
(K—=A2M){C}={0}, (12 WW1—2vic) uw Y 2|\ b ¢'WW Pow
where
G |, (179
p(1+v) "
N=wa (13 . :
E and the elements in the mass submatrix are
is the dimensionless frequency parameter. The derivatives of =~ mki! _|°?E°J°‘J), , (183
U nax @nd T4 With respect to the unknown coefficients are Su
presented in Appendix A. mikil — | 0000500 180
The stiffness and mass matrices are W el Ty (18
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Faay)=2 2 X7y, (22)
in which L
in which p,, is the highest degree of the two-dimensional
polynomial in the admissible functions and=(py,+1)

P PPuxy) HBxY)
abcd__ a B
I :

|¢{jﬁ - = xR iy xdy, (193 X(pxyt2)/2 is the number of the 2D terms.
Similarly, the one-dimensional thickness admissible
o ae%(;) aflplg(;) B functions ¢,(2), ¢,(z), and ,,(z) are the pLoducts of sets
= J, — dz, (199 of one-dimensional polynomial functiorfs,(z) and appro-
“ ¢ 9z 0z 2\ 2\

priate basic functions/xﬂ(z), z,b\t,’(z), and w\‘,’v(z). For a can-
where «,f=u,v,w; i,k=1,2,...m, and m is the total tilevered parallelepiped clamped at=-0.5, the one-
number of terms employed in the two-dimensiopaRitz ~ dimensional thickness deformation admissible functions are
shape functions for planes parallel to thg-midsurface; — —

j,1=1,2,...n, andnis the total number of terms employed hu(2)=Fy(2), (233

in the one-dimensiongb-Ritz shape functions in the thick-

nessz-direction. The normalized midsurface area is denoted W(2)=Fy(2), (230
asA and the normalized thicknessds Yw(2)=F 4(2), (230
where
Pz
D. Boundary conditions and  p-Ritz admissible S N B
functions Fy(2) iZO z, (24)

In the Ritz method, we ensure the satisfaction of geoin which p, is the highest degree of the one-dimensional
metric boundary conditions such as displacements and rotgolynomial in the admissible functions amd=p,+ 1 indi-
tions at the boundary surfaces. Although satisfaction of natucates the number of 1D terms.
ral boundary conditions such as shear forces and moments is
not required at the outset, accurate computation shows thﬂt
stresses at the free boundaries approach zero if accurate fre-
quencieg(for vibration) or buckling loads(for buckling are ~ A. Mode classification and convergence of
obtained. For a parallelepiped, no geometric boundary corfigenvalues

dition is required for a free boundary surface. For a clamped 7o improve computational efficiency without sacrificing
boundary surface at=—0.5, the geometric boundary con- numerical accuracy, classification of vibration modes is pos-

ditions are sible by grouping terms with odd and even powersxpfy
UXY,2) e —05= VLY, 2) [z - 05= WX, Y, 2) [z — 0.5= 0. e}ndz in F_¢,(x,y), andF ,(z) in Egs.(22) and(24), respec- _
(200  tively. This tremendously reduces the number of terms in
. — each series and thus the determinant size of the eigenvalue
_ The displacement components denoted W{x,y,z),  equation is considerably smaller. Huge computational effort
V(x,y,z), andW(x,y,z) are truncated finite series expressedcan be saved without affecting the numerical accuracy be-
in Egs. (58—(5¢). The two-dimensional deformation admis- cayse the odd and even termsxofy, andz only contribute
sible functions¢,(x,y), ¢,(x,y), and ¢,(x,y) are geo- to specific modes and they are trivial in other modieisn
metrically compliant polynomial functions derived such thatet al, 1998a.
the geometric boundary conditiorf20) are satisfied at the Classification of vibration modes depends on symmetry
outset(Lim et al, 1998a. They are composed of the product of geometry and boundary conditions. Eight mode classes
of a series of simple two-dimensional polynomi&g(x,y) are possible for a parallelepiped with perfect symmetry in
and boundary-compliant basic functiodz@(ry), ¢5(Ty), geometry and boundary conditions. For a cantilevered paral-
andd)ﬁ,(ry). The basic functions are geometric expressionﬁelep'ped' mode_classmcatlon_ can be referred toxjreand
of the parallelepiped boundaries raised to an appropriate b&ZPlanes(see Fig. 1 perpendicular to the clamped surface
sic power in accordance with various boundary constraint§t X=—0.5. Four mode classes exist as the symmetric—
(Lim etal, 1998a. For a cantilevered parallelepiped Symmetric  (SS,  symmetric—antisymmetric (SA),
clamped atx=—0.5, the two-dimensional deformation ad- @ntisymmetric—symmetric (AS), and antisymmetric—

missible functions are antisymmetricAA) modes.
Convergence of eigenvalues presented in Table | for a

RESULTS AND DISCUSSION

Bu(x,y)=(x+0.5F 4(x,y), (219  cantilevered cube is investigated with respect to increases in
- _ p, andp,, for the 1D and 2D polynomial functions, respec-
du(X,y) = (X+0.5F 4(x,y), (21D tively, in accordance with various symmetry classes. The

— = A polynomial degrees are increased from 7 to 10dgy and
Pu(Xy)=(x+0.9F4(xy), (219 from 7 to 9 forp,. As observed in Table |, downward con-
where vergence is obvious. It is a uniqgue numerical feature of the
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TABLE |. Convergence ofA =wayp/E for a cantilevered cube with mary objective of this paper to address the importanqezgf
=0.3. and the consistency of a thick-plate model with nonlinear
To simulate a thick-plate model neglecting,, Eq.(25)

Symmetry Mode number . > - . -
Class Py X P2 VT Vi N3 Vid is substituted into Eq(1) to derive the strain energy as
ss X7 15977 25805 29126  3.0508 1 s . 2 2vE
8x7 15972 25805 29123  3.0508 =35 1= 2 St Yt TS Gy
9x7 15969 25804 29120  3.0507 v v
10x7  1.5967 25803 29119  3.0507
10x8  1.5965 25803 29118  3.0507 2, 2.2
10x9 15965 25803 29118  3.0507 TG(7yzt vaxt viy) | dx dy dz (26
SA 7X7 066851 17671 27523  3.0578

8x7 0.66834 17670 27523  3.0575 while the kinetic energy expressiod) is still valid. The
1%><; g-ggg ig 1-;223 ;;g;g 282;3 maximum strain energy is presented in Appendix B. The
~ : : : : formulation from Eqgs(5a—(16) is repeated to obtain a cor-

10x8 066796 17668 27521  3.0567 _ , _ . .
10x9 066796 17668 27521 3.0567 ‘responding eigenvalue equation. The stiffness matrix ele-

AS 77 0.67102 1.7696 2.7529  3.0670 Ment expressions for a parallelepiped neglectingare pre-
8x7 0.66993 17679 27525 3.0629 sented in Appendix C.
9x7 066927 17675  2.7523  3.0597 For the purpose of comparison and to simulate constant

10X 7 0.66885  1.7672  2.7523  3.0589 : : : - -

Lo s 066885 17672 27503 30589 W through thickness in Re|siner—MLndI|n and Levinson—

10x 9 066881 17672 27522  3.0589 Reddy thick-plate models/,(z)=F,(z)=1 is set in Eq.
AA X7 090909 21790 26909 27474 (230 for solutions witho,~0 such that the transverse nor-

9x7 0.90832 21786  2.6870  2.7465

10X 7 0.90821 21786  2.6865  2.7464 m

10X 8 090821  2.1786  2.6865  2.7464 W(X,y,2)=W(X,y) 2 Cllol(x,y) (27)

10X 9 0.90815  2.1786  2.6863  2.7463 =

in Eq. (9¢) is independent of.

A comparison of free vibration frequency solutions with
the results of Leissa and Zhari983 (denoted by A is
8resented in Table Il for parallelepipeds with various aspect
atios. The vibration frequencies are classified into four sym-

Ritz procedure which overestimates vibration frequency and
buckling load and underestimates bending deflection. Con
vergence of eigenvalues can be ensured by including an a
equate number of terms in the admissible shape function’

As seen in Table I, the eigenvalues are converged to at lea etrytcldasl;ses t\)N ith lre.spetcht t?/”"’t‘r?d xz(-jplanes.. Sollutlons
three significant figures and in most cases more than thre enoted by B by solving the full three-dimensional energy
significant figures functional using the Ritz energy approach as governed by

Eqg. (12 are presented. In addition, solutiofdenoted by ¢
neglectingo,, and assuming constamt through thickness
with reference to Eqg26) and(27) are also included. Over-
As described in the Introduction, the Kirchhoff-Love all, excellent agreement of solutions between A and B is
thin-plate theory and most of the existing thick-plate modelsobserved, while the agreement with respect to C is generally
neglect transverse normal stress,. Although the omission satisfactory. The excellent agreement of A and B solutions is
of o,, for thin-plate theory has been examined and verifiedexpected, as Leissa and Zha(iP83 also solved the full
in many publicationgLeissa, 1969 it is rather hypothetical three-dimensional energy functional. The most obvious dis-
in Reissner—Mindlin and Levinson—Reddy thick-plate mod-crepancy between solutions of A and C or B and C happens
els and has been questioned by a number of researchers suahthe SS modes for a cantilevered parallelepiped \aith
as Gould(1988. These thick-plate models further assume=0.5 ando/c=1. One of the reasons the largest discrepancy
constant transverse normal displacemew) ¢hrough the s observed in this case is because this parallelepiped has a
thickness, or transverse inextensibility. It is easily verifiedthickness twice the lengthc(a=2) and the effect ofr,, is

B. Comparison of solutions

that a trivial o,, implies expected to be more obvious as the thickness increases. The
v other parallelepiped configurations has/@ either 0.5 or 1.
€,,=— E(Exx-i- €yy), (25 ¥Ve will see the effects ofr,, more closely in the next sec-
ion.

in accordance with the generalized Hooke’s law. Therefore,
to neglecto,, and at the same time keepconstant through
the thickness(transverse inextensibilifyis an inconsistent
thick-plate model. Although some early higher-order thick- A set of first-known solutions for examining the effects
plate modeldWhitney and Sun, 1973, 1974; lyengetral,, of o, for various parallelepiped configurations is presented.
1974 and Loet al,, 1977a,b had suggested nonline@ua-  Figures 2—5 present the nondimensional vibration frequency
dratic and cubit expressions fow, these models had not parametera with varying thickness ratio/b in four distinct
gained much popularity over the Reissner—Mindlin andmode classes for a cantilevered rectangular parallelepiped
Levinson—Reddy thick-plate models. It is, therefore, the pri-with aspect ratica/b=0.5.

C. Effects of transverse normal stress o,
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TABLE Il. Comparison of\ = wa+/p/E for cantilevered rectangular parallelepiped=(0.3) with xy- andxz-symmetric planes.

Aspect ratios Mode frequencies

a/b b/c  Sources SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AS-1 AS-2 AS-3 AA-1 AA-2 AA-3

1 1 A 1.6000 2.5812 29154 0.67087 1.7695 2.7562 0.67087 1.7695 2.7562 0.90930 2.1801 2.7011
B 15965 2.5803 29118 0.66796 1.7668 2.7521 0.66881 1.7672 2.7522 0.90815 2.1786 2.6863
C 15800 2.8160 3.2228 0.66226 1.7595 2.7518 0.65893 1.7726 3.0386 0.90942 2.1982 2.7132
2 1 A 15938 4.5811 5.0646 0.44371 1.6711 3.7237 0.44371 1.6711 3.7237 0.90402 2.7191 4.1787
B 1.5888 4.5496 5.0520 0.44021 1.6612 3.4626 0.44072 1.6629 3.4654 0.90208 2.7012 4.1711
C 15778 45898 52746 043672 1.6516 3.4475 043504 1.6592 3.4757 0.90254 2.7082 4.1953
1 2 A 15962 2.7974 3.1994 044733 1.6642 22777 0.66744 17744 3.0680 0.78831 2.2196 3.4387
B 15920 2.7959 3.1946 0.44413 1.6551 2.2733 0.66496 1.7721 3.0436 0.78586 2.2094 3.4007
C 15800 2.8160 3.2228 0.44030 1.6455 2.2634 0.65893 1.7726 3.0386 0.78453 2.2063 3.3960
0.5 1 A 1.4670 1.5623 1.7967 0.83004 15317 1.7647 0.83004 1.5317 1.7647 0.91636 1.3550 1.9061
B 14679 1.5588 1.8423 0.82732 15293 1.7628 0.82831 15289 1.7629 0.91485 1.3530 1.9052
C 15281 1.6889 2.0438 0.82618 1.5281 1.7523 0.81863 1.6839 2.3306 0.91870 1.3646 1.8903
0.5 2 A 15325 1.6835 2.0337 0.67484 1.3538 1.8070 0.82712 1.6911 23128 0.82131 1.7307 2.1420
B 15300 1.6812 2.0282 0.67200 1.3507 1.8037 0.82531 1.6892 2.3020 0.81937 1.7284 2.1363
C 15208 1.6889 2.0438 0.66572 1.3496 1.7933 0.81863 1.6839 2.3306 0.81829 1.7263 2.1193

4 eissa and Zhan¢1983.
bPresentincluding o).
‘Presentexcludingo,, and assuming constant through thickness

Frequency solutions for the first four SS modes with sess more nodal lind&im et al,, 1998h for plates; or more
ranging from 0.2 to 2.0 are presented in Fig. 2. As expectedhodal surfaces for parallelepipeds. A nodal lisarfacg is a
excellent agreement for solutions including and excludingdine (surface with zero vibration amplitude. We may treat a
o,, (constantw through thicknegsis achieved for small nodal line(surface as a boundary linésurface with certain
thickness ratio. The discrepancy of solutions becomes moreonstraints which should not be seen as a simply supported
apparent as/b increases. The onsets of distinct discrepancyor clamped boundary constraints. As a result, the effective
between the solutions are associated with smallér for  region is smaller for higher vibration modes with more nodal
higher vibration modes. For instance, distinct discrepancy ofines (surface$ or, equivalently, the effective thickness ratio
SS-1 solutions can be observed db>0.9, while for SS-4  becomes larger than the overall thickness rafio. Conse-
the onset reduces wWh=~0.4. The physical implication is as quently, the onset of distinct discrepancy between solutions
follows. It is widely known that higher vibration modes pos-

3.5 —————1————T———TT"
3.5 T ; :
- . : including o ]
[ _SS-4 ] 30 tncluding 0z ]
30 =24 - ~ I . 1
s - Rt excluding o ,, i
; . 25 sA-4 .
[ _ ~< I 1
~ 25} ] N\ i ]
8 [ ] 5 [ ]
g E 20 -
E 20 = s L [ GA-3 llTmeeeeeeeeieeeeeeeo
s L ] s |
5 [ | o -
Q. L > -
> s g 151
Q 15[ = 8 I
o - 1 S -
= R 4 [~ |
g L 5 g [
= - 1 L 10
W 10} ] -
[ including o, i i ]
- . 1 05} -
os5F  ------- excluding o, — L -
L 'I T 0.0 PSS RS S S S T T W SR ST S !
0.0 0.0 0.5 1.0 15 2.0
00 0.5 1.0 1.5 2.0

Thickness Ratio c/b Thickness Batlo c/b

FIG. 2. Effect of thickness ratio on the SS frequencies for a thick cantile-FIG. 3. Effect of thickness ratio on the SA frequencies for a thick cantile-
vered rectangular parallelepiped wiitx 0.3 anda/b=0.5. vered rectangular parallelepiped witt¥ 0.3 anda/b=0.5.
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FIG. 5. Effect of thickness ratio on the AA frequencies for a thick cantile-

FIG. 4. Effect of thickness ratio on the AS frequencies for a thick cantile- ‘ 5
vered rectangular parallelepiped wiit+ 0.3 anda/b=0.5.

vered rectangular parallelepiped witt+ 0.3 anda/b=0.5.

. . . lll. CONCLUSIONS
with respect toc/b becomes smaller for higher vibration

modes. The effects ofr,, on other classes of vibration New solutions and benchmarks for examining the effects
modes are illustrated in Figs. 3-5. of transverse normal stress, in the context of vibration of
It is also noticed that solutions considering, are al-  a cantilevered parallelepiped are presented and analyzed. The

ways lower when the effect af,, becomes significant for hypothetical assumption of neglecting, while maintaining
largec/b. Althoughe,,#0, as determined by E25), even  constant transverse normal displacemeniirough thickness

if o,,is neglected, the consideration®f, allows transverse N existing thick-plate models is investigated by solving the
extensibility not governed by E25), thus providing a fur- full three-dimensional energy functional. The extent to
ther degree of flexibility in the transverse normal direction, WNich the assumption is applicable is verified.

Vibration frequency is smaller iér,, is considered because . }?/hent ]Ehe leﬁecttr?f l(transver?e nqgme;l strfess becomes
flexibility reduces the structural stiffness for the parallelepi-Slgnl icant for large thickness ratio, vibration frequency 1

ped always lower when transverse normal stress is considered

In Fias. 2—5 L di £ soluti ¢ because transverse extensibility provides a further degree of
N FIgs. 2=, more apparent discrepancy of solutions OIﬂexibility in the transverse normal direction and thus reduces

Fhe SS modes compared to the other ques is ob.se.rv'ed. Tm§e stiffness of a parallelepiped. For higher vibration modes,
is true only for a cantilevered parallelepiped and it is incon-ne onset of significant contribution of transverse normal

clusive for other parallelepiped configurations as the signifistress is associated with a lower thickness ratio.
cance and effects af,, depend not only on geometry but

also boundary conditions. However, it is reasonable to con-

clude that the effect of-,, for c/b<<0.5 is rather insignificant

for some lower modes in the aspect of free vibration of thickACKNOWLEDGMENT

plates and parallelepipeds. Such conclusion was also reached . ]

by Hutchinson(1979, 1984 in analyzing vibrations of thick, A research fellowship for the author from The Univer-
free circular plates using exact and approximate method$'Y of Hong Kong is gratefully acknowledged.

These analyses concluded that, for thick, free circular plates,

the approximate solution yields frequencies of sufficient ac-

curagy fc.)-r most engineer?ng application within the range OfAPPENDIX A

applicability of the approximate theory. Based on the conclu-

sions, accurate solutions employing the Levinson-Reddy The derivatives of strain and kinetic energy integrals
higher-order plate theory have been repofigdw and Lim,  with respect to the unknown coefficients for E¢1) are as
1996; Lim and Liew, 1995, 1996; Liret al., 1998a,b. follows:
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where the integral notation%?de and.JewL are given in Eqs.
ap af

(199, (19b).
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APPENDIX C

The stiffness matrix element expressions for a parallel-
epiped neglectingr,, are as follows:
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