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Abstract—This paper revisits the problem of mixed 2

filtering for polytopic discrete-time systems. Differing from pre-
vious results in the quadratic framework, the filter design makes
full use of the parameter-dependent stability idea: Not only is the
filter dependent of the parameters (which are assumed to reside
in a polytope and be measurable online), but in addition, the Lya-
punov matrices are different for the entire polytope domain, as well
as for different channels with respect to the mixed performances.
These ideas are realized by introducing additional slack variables
to the well-established performance conditions and by employing
new bounding techniques, which results in a much less conserva-
tive filter design method. A numerical example is presented to illus-
trate the effectiveness and advantage of the developed filter design
method.

Index Terms—Discrete-time systems, linear matrix inequality,
mixed 2 filtering, polytopic systems.

I. INTRODUCTION

I T is well known that state estimation of dynamic systems
with both process and measurement noise inputs is a very

important and challenging problem in engineering applications
[1], [19]. The celebrated Kalman filtering (also called
filtering) [12], [27] has found many applications in aerospace
[20], economics [16] etc., which minimizes the norm of
the filtering error transfer function under the assumption that
the noise processes have known power spectral densities. In
many practical situations, however, we may not be able to
have exactly known information on the spectral densities of the
noise processes. In such cases, an alternative is to reformulate
the estimation problem in an filtering framework, which
has been well addressed for different systems through different
techniques during the past decade (see, for instance, [6], [8],
[10], [15], [28], and the references therein). It is noted that
although filtering offers much better robustness in perfor-
mance than filtering, filtering may be very conservative
and may lead to a large intolerable estimation error variance
when the system is driven by white noise signals. Therefore, to
capture the benefits of both pure and filters, the mixed

filtering problem, which simultaneously takes into
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account the presence of two kinds of exogenous signals (that
is, the energy-bounded disturbance input and the stochastic
disturbance input with known statistics), was introduced in [3].
An important application of the mixed filtering in
aerospace can be found in [21].

The mixed filtering problem consists of the mini-
mization of an upper bound of the norm of the filtering error
system while a prescribed attenuation level is guaranteed,
allowing us to make a tradeoff between the performance of
the filter and that of the filter. Up until now, several
approaches have been proposed to solve the mixed
filtering problem: Bernstein and Haddad solved this problem
by transforming it into an auxiliary minimization problem, on
which by using the Lagrange multiplier technique, an upper
bound on the filtering error variance was given by solving
a set of coupled Riccati and Lyapunov equations [3]; a time
domain game theoretic approach was proposed to solve the
mixed filtering problem through a set of coupled
Riccati equations in [4] and [24]. In [13] and [21], a convex
optimization approach to obtain the solutions via affine sym-
metric matrix inequalities was used.

Very recently, the mixed filtering problem has also
been considered for systems with parameter uncertainties,
which are inherent to physical systems and must be taken into
consideration in a realistic design. For norm-bounded uncertain
systems, solutions to the mixed filtering problem have
been given for both continuous- and discrete-time systems
by using Riccati-like approaches [25], [26]. In addition, for
polytopic uncertain systems, Palhares and Peres [17] presented
a linear matrix inequality (LMI) approach to solve the mixed

filtering problem in the discrete-time case, where
admissible filters can be found by solving a set of LMIs. It
is worth emphasizing that most of the aforementioned results
are based on the quadratic stability notion, reflected from the
following two aspects.

1) A single Lyapunov matrix is used for different perfor-
mance channels.

2) The Lyapunov matrix remains fixed for the entire uncer-
tainty domain.

The quadratic stability has been largely used for robust anal-
ysis and synthesis in the past decades. Although being specially
adequate for arbitrarily fast time-varying parameters, methods
based on quadratic stability can produce conservative results
since the same parameter-independent Lyapunov function must
be used for the entire uncertainty domain. One well-recognized
way of overcoming this conservativeness is to consider a param-
eter-dependent Lyapunov function. An example of a less-con-
servative stability condition based on parameter-dependent Lya-
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punov functions can be found in [18]. This idea has been subse-
quently applied to the filter designs in a few contexts [9], [11],
[23]. The parameter-dependent stability has been proved to be
not only suitable for dealing with uncertain parameters but also
very useful for multiobjective synthesis problems [2].

To reduce the conservativeness mentioned above, in this
paper, we revisit the mixed filtering problem. More
specifically, we present a new approach to solve this filtering
problem for polytopic discrete-time systems. Differently from
previous results in the quadratic framework, the filter design
makes full use of the parameter-dependent stability idea: Not
only is the filter is dependent of the parameters (which are
assumed to reside in a polytope and be measurable online),
but in addition, the Lyapunov matrices are different for the
entire polytope domain, as well as for different channels with
respect to the mixed performances. These ideas are realized by
introducing additional slack variables to the well-established
performance conditions and by employing new bounding
techniques, with the result of a much less conservative filter
design method. A numerical example is presented to illustrate
the effectiveness and advantage of the developed filter design
method.

Notations: The notations used throughout the paper are
fairly standard. The superscript “ ”stands for matrix transposi-
tion; denotes the -dimensional Euclidean space, is
the set of all real matrices of dimension , and the notation

means that is real symmetric and positive definite. In
symmetric block matrices or long matrix expressions, we use
an asterisk to represent a term that is induced by symmetry,
and diag stands for a block-diagonal matrix. Matrices, if
their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations. is the space of
square-summable vector functions over .

II. PROBLEM DESCRIPTION AND PRELIMINARIES

A. Problem Description

Consider the following stable discrete-time linear system:

(1)

where is the state vector; is the measured
output; is the signal to be estimated; and

are disturbance inputs. As in previous mixed
problems [13], we use and to represent two

different classes of noises:

white noise processes
energy bounded input signals.

In addition, , and
are appropriately dimensioned matrices. It is assumed that

where is a given convex bounded polyhedral domain de-
scribed by vertices:

and denotes the th vertex of
the polytope. It is also assumed that does not depend explicitly
on the time variable but can be measured online. The parameter

can vary slowly due to changes in temperature, wind, pressure,
humidity, atmosphere, or operating points [14].

Here, we are interested in estimating the signal by a pa-
rameter-dependent filter of general structure described by

(2)

where is the filter state vector, and
are appropriately dimensioned

parameter-dependent filter matrices to be determined.
Augmenting the model of to include the states of the filter,

we obtain the filtering error system

(3)

where , and

(4)

Then, similarly to [17], the mixed filtering problem
to be addressed in this paper can be expressed as follows.

Mixed Filtering Problem: Given system
in (1), determine the parameter-dependent matrices

of the filter in (2), such that
the filtering error system in (3) is asymptotically stable,
and is a good estimation of in the sense of the
performance with respect to the white noise and the
performance with respect to the energy bounded noise .
More specifically, the aim of mixed filtering is to find a
stable filter in the form of (2) such that
and are assured, where denotes
the operator from to , and denotes the operator
from to , respectively. Filters satisfying the above
conditions are called parameter-dependent mixed
filters.

Throughout the paper, we make the following assumption.
Assumption 1: System in (1) is asymptotically stable for

any .
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B. Preliminaries

To solve the mixed filtering problem formulated
above, we need some preliminary results.

Lemma 1: Supposing that system in (1) and filter in (2)
are given, the filtering error system in (3) is asymptotically
stable with if and only if there exists a matrix
function satisfying

tr (5)

(6)

Lemma 2: Supposing that system in (1) and filter in (2)
are given, the filtering error system in (3) is asymptotically
stable with if and only if there exists a matrix
function satisfying

(7)

The above two lemmas characterize the and perfor-
mances for discrete-time systems by using LMI representations.
For synthesis purposes (to keep the filtering synthesis problem
tractable), based on these two lemmas, and by following similar
arguments as in [17], the following lemma can be used to solve
the mixed filtering problem.

Lemma 3: Supposing that system in (1) and filter in (2)
are given, the filtering error system in (3) is asymptotically
stable with and if there exists
a matrix function satisfying (5) and

(8)

Remark 1: It can be easily seen that Lemma 3 actually com-
bines Lemmas 1 and 2 by setting , with the result
that condition (6) is embedded in (8). In such a way, the system
matrices involve only one positive definite
matrix variable , and therefore, by partitioning , we
can readily solve the mixed filtering problem by fol-
lowing the linearization procedure presented in [22]. This is the
main idea used in [17] for solving the robust mixed
filtering problem. However, it is worth mentioning that the fil-
tering result developed in [17] has introduced some overdesign,
which comes from the following two aspects.

1) The mixed performance condition used in [17] (i.e.,
Lemma 3) is conservative due to the imposition of

.
2) In solving the filtering synthesis problem, the final result

is based on the quadratic stability idea (that is, a fixed
Lyapunov matrix has been used for the entire
polytope domain).

In the following, we will present a new approach to solve the
mixed filtering problem formulated in the above sub-

section. This approach reduces the conservativeness of the pre-
vious result from both of the above two aspects to some extent.

III. FILTERING RESULTS

A. New Mixed Performance

In this subsection, we present a new mixed perfor-
mance. The following lemmas play an important role, which can
be proved by following similar lines of arguments as in [5].

Lemma 4: Supposing that system in (1) and filter in (2)
are given, the filtering error system in (3) is asymptotically
stable with if and only if there exist matrix
functions , and , satisfying

tr (9)

(10)

(11)

where .
Lemma 5: Supposing that system in (1) and filter in (2)

are given, the filtering error system in (3) is asymptotically
stable with if and only if there exist matrix
functions and satisfying

(12)

where .
The above two lemmas present improved versions of and

performances for discrete-time systems. An important fea-
ture of Lemmas 4 and 5 lies in the fact that the conditions in
these lemmas do not contain product terms between the Lya-
punov matrices and the system matrices. This fea-
ture will enable us to obtain an improved mixed per-
formance as follows.

Proposition 1: Supposing that system in (1) and filter in
(2) are given, the filtering error system in (3) is asymptotically
stable with and if there exist
matrix functions , and
satisfying (9)–(11) and

(13)

where .
Remark 2: Proposition 1 presents an improved version of the

mixed performance. Differently from Lemma 3, where
we set for different performance objectives, here,
we set (note that and are matrices
without any structural restriction). In addition, if we impose the
extra condition in Propo-
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sition 1, we readily recover Lemma 3, which means that the
condition in Proposition 1 is weaker than that in Lemma 3 (in
other words, Proposition 1 is potentially less conservative than
Lemma 3).

The following development will be based on Proposition 1.

B. Mixed Filtering Result

An improved version of the mixed performance
has been formulated in Proposition 1. It is noted that if the
filter matrices are given, the condi-
tions in Proposition 1 are linear matrix inequalities over the
decision variables , and for fixed .
However, since our purpose is to determine the filter matrices

, the above conditions are actually
nonlinear matrix inequalities. In addition, to test the feasibility
of these conditions is an infinite-dimensional problem in terms
of the parameter . Our main objective hereafter is to transform
them into finite-dimensional LMI conditions. The following
proposition presents a preliminary result.

Proposition 2: Given system in (1). There exist
filter matrices and matrices

, and satis-
fying (9)–(11) and (13), if and only if there exist ma-

trices

, and

satisfying (9) and (14)–(16), shown at the bottom of the
page, where

Moreover, under the above conditions, the matrix functions
for an admissible parameter-dependent mixed filter are
given by

(17)

Proof (Necessity): Suppose there exist filter matrices
and matrices

, and satisfying (9)–(11) and (13). Let the
matrix functions , and be partitioned as

(18)

First, (13) implies and ,
and then, we have ; thus, is nonsin-
gular, which leads to the nonsingularity of . Due to the
strict nature of the LMI constraints and by invoking a small per-
turbation if necessary, we can assume that is nonsingular
without loss of generality [2]. Define the following invertible
matrix functions:

diag

diag

diag (19)

and define

(20)

(14)

(15)

(16)
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Then, performing congruence transformations to (10) by
, to (11) by , to (12) by , together with the

consideration of (4) yields

(21)

(22)

(23)

where we have the first equation at the bottom of the page. By
defining

(24)

(25)

(26)

(27)

(21)–(23) are equivalent to (14)–(16), respectively, and the ne-
cessity is proved.

Sufficiency: Supposing that there exist matrices
,

and satisfying (9) and (14)–(16), we will prove that there
must exist filter matrices , and matrices

, and satisfying (9)–(11)
and (13).

First (15) implies , and then,
we know that is nonsingular due to . Thus, one
can always find square and nonsingular matrix functions
and satisfying (26). Now, introduce the matrix functions

, as defined in (19) and

(28)

Then, we have and . Now, by some alge-
braic matrix manipulations, it can be established that (14)–(16)
are equivalent to (29)–(31), shown at the bottom of the page.

Now, performing congruence transformations to (29) by
, to (30) by , and to (31) by yields

(10), (11), and (13), and the sufficiency proof is completed.

(29)

(30)

(31)
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Proof of Second Part: If the condition in Proposition
2 has a set of feasible solutions

, from the above proof,
we know that the filter with a state-space realization

defined in (28) guarantees the filtering
error system to be asymptotically stable with

and . Now, denote the operator from
to by ; then,

we have that is equivalent to by similarity
transformation, where

By substituting the matrices with (28) and by considering the
relationship (26), we have

Therefore, an admissible filter can be given by (17), and the
proof is completed.

Remark 3: Proposition 1 is a preliminary result for solving
the mixed filtering problem. It casts the nonlinear
matrix inequality condition in Proposition 1 into an LMI
condition by using linearization procedures on which desired
filters can be constructed by using the obtained matrix func-
tions ,
and . However, these LMI conditions still cannot be
implemented since they are not convex in the parameter . It is
noted that if we set

, and
, we will readily obtain a robust mixed

filtering result in the quadratic framework similar to that ob-
tained in [17].

To obtain less conservative results than [17], in the following,
we will introduce new techniques that help convexify the matrix
inequalities in Proposition 1, leading to LMIs that depend only
on the vertices of the polytope . Then, we have the main fil-
tering result in the following theorem.

Theorem 1 (Mixed Filtering): Given system
in (1), an admissible parameter-dependent mixed
filter in the form of in (2) exists if there exist ma-

trices

, and satisfying

tr (32)

(33)

(34)

(35)

. . .
...

(36)

. . .
...

(37)

. . .
...

(38)

where we have the equation at the bottom of the page.
Moreover, under the above conditions, the matrix functions

for an admissible mixed filter in the form of (2) are
given by

(39)

Proof: From Propositions 1 and 2, an admissible param-
eter-dependent mixed filter in the form of in (2) ex-
ists if there exist matrix functions

, and satisfying (9)
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and (14)–(16). Now, assume that the above matrix functions are
of the following form

(40)

Then, with (40), it is not difficult to rewrite , and
in (14)–(16) as

(41)

(42)

(43)

On the other hand, (33)–(35) are equivalent to

(44)

(45)

(46)

Then, from (41)–(46), we have

where . Inequalities (36)–(38) guar-
antee , and . In addition, (32) is
equivalent to (9), and the first part of the proof is completed.

By substituting the matrices defined in (40) into (17), we
readily obtain (39), and the proof is completed.

Remark 4: The idea behind Theorem 1 is to use convex com-
binations of vertex matrices in the form of (40) to substitute the
matrix functions in Proposition 2. With the introduction of these
matrices, and by means of the bounding technique used in the
Proof of Theorem 1, the infinite-dimensional nonlinear matrix
inequality conditions in Proposition 2 are cast into finite-dimen-
sional LMI conditions, which depend only on the vertex ma-
trices of the polytope and, therefore, can be readily checked
by using standard numerical software [7].

Remark 5: From the Proofs of Proposition 2 and Theorem
1, it is not difficult to see that in solving the mixed
filtering problem, we actually define multiple Lyapunov func-
tions for each performance objective, that is, takes the
form of , and takes the form

. The filter design based on parameter-dependent
Lyapunov functions has been investigated in [9] and [23], where
parameter-dependent idea is realized at the expense of setting
an additional slack variable to be constant for each vertex of the
polytope. Notably, here in Theorem 1, we do not set any ma-
trix variable to be constant for the whole polytope domain, and
therefore, Theorem 1 has the potential to yield less conserva-
tive results in applications where the parameters involved can
be measured online, which will be illustrated via a numerical
example in the next section.

Remark 6: Note that the conditions in Theorem 1 are LMIs
not only over the matrix variables but also over the scalars
and . This implies that the scalars and can be included as
optimization variables to obtain a reduction of the attenuation
level bound. As in [17], it is usually desired to design filters with
minimized performance and prescribed performance

, which can be readily found by solving the following convex
optimization problem:

Minimize subject to (32)–(36) for given

IV. ILLUSTRATIVE EXAMPLE

Consider the following numerical example borrowed from
[17] with small modifications:

(47)

where satisfies . This system can be modeled with a
two-vertex polytope.

First, consider the nominal system (corresponding to ).
Fixing the performance , by Theorem 1, the ob-
tained minimum performance of admissible mixed
filters is , and the associated matrices for filter (2)
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TABLE I
MINIMUM H PERFORMANCE FOR DIFFERENT CASES

are given by (note that for the nominal case, the filter matrices
are constant)

The actual calculated performances of the filtering error system
by connecting the above filter to the original system are given
by and , which are
below their corresponding prescribed values, showing the effec-
tiveness of the filter design method. In addition, by [17, Corol.
1], the obtained minimum performance of admissible mixed

filters is for prescribed performance
, which is higher than that obtained by our method,

showing the lesser conservativeness of the filter design method
developed in this paper. As analyzed previously, the lesser con-
servativeness comes naturally as a result of the introduction of
different Lyapunov matrices for different performance channels.

Now, consider the case . Assuming and fixing
the performance , by Theorem 1, the obtained
minimum performance of admissible parameter-dependent
mixed filters is , and the associated ma-
trices needed for the calculation of (39) are given by

(48)

By calculation, it is found that the maximum norm of the fil-
tering error system for different by connecting the above filter
to the original system is 0.0276, and the maximum norm
is 0.1984, which are all below their prescribed values. By [17,
Corol. 1], the obtained minimum performance of admissible
robust mixed filters is for prescribed
performance , which is higher than that obtained by our
method, showing again the lesser conservativeness of the filter
design method developed in this paper for applications where

the parameter is measurable online. The filter matrix func-
tions with respect to the value of can be given explicitly by

In order to provide relatively complete information, Table I
presents a comparison between minimum performance ob-
tained by using Theorem 1 and [17, Corol. 1] for different cases.
From the table, it can be seen that the filter design method pre-
sented in this paper produces much less conservative results.
Notably for , where the previous method fails to find
feasible solutions, Theorem 1 is still able to provide desired fil-
ters.

V. CONCLUSION

This paper has presented a novel approach to design mixed
filters for discrete-time systems with polytopic

bounded parameters. Given a stable discrete-time linear system
with parameters residing in a polytope, attention is focused on
the design of parameter-dependent filters such that the filtering
error system is asymptotically stable and has guaranteed
and performances for different performance objectives.
Sufficient conditions are obtained for the existence of ad-
missible filters in terms of a set of linear matrix inequalities,
upon which the filter designs are cast into convex optimiza-
tion problems. In solving this filtering problem, to reduce the
conservativeness, we have made full use of the parameter-de-
pendent stability idea: The designed filters are dependent of
the slow time-varying parameters (which are assumed to be
measurable online); the Lyapunov matrices for different perfor-
mance objectives are enabled to be different by the introduction
of additional slack variables, and multiple Lyapunov matrices
have been developed for the entire polytope domain using some
new bounding techniques. Based on the above three aspects
that appear to be quite different from previous results in the
quadratic framework, the filter design method developed in
this paper is much less conservative than previous ones, as is
illustrated via a numerical example. Finally, it is worth pointing
out that a disadvantage of the filter design approach developed
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here is that the number of LMIs and matrix variables will be
very large when the vertex number of the polytope increases.
One possible way to reduce the number of the matrix variables
in Theorem 1 is to simply set , and ,
which will introduce some degree of conservativeness.
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