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Neuro-Fuzzy Generalized Predictive Control
of Boiler Steam Temperature

X.-J. Liu and C. W. Chan

Abstract—Reliable control of superheated steam temperature is
necessary to ensure high efficiency and high load-following capa-
bility in the operation of modern power plant. This is often difficult
to achieve using conventional PI controllers, as power plants are
nonlinear and contain many uncertainties. A nonlinear general-
ized predictive controller based on neuro-fuzzy network (NFGPC)
is proposed in this paper, which consists of local GPCs designed us-
ing the local linear models of the neuro-fuzzy network that models
the plant. The proposed nonlinear controller is applied to control
the superheated steam temperature of a 200-MW power plant.
From the experiments on the plant and the simulation of the plant,
much better performance than the traditional cascade PI controller
or the linear GPC is obtained.

Index Terms—Generalized predictive control, neuro-fuzzy net-
works, superheated steam temperature.

I. INTRODUCTION

CONTINUOUS processes in power plant and power sta-
tion are complex systems characterized by nonlinearity,

uncertainty, and load disturbance. The superheater is an impor-
tant part of the steam generation process in the boiler-turbine
system, where steam is superheated before entering the turbine
that drives the generator. Not only the steam generation pro-
cess is highly nonlinear, the temperature and the pressure in the
superheater are extremely high. Therefore, controlling super-
heated steam temperature is not only technically challenging,
but also economically important [1].

In [2], a simplified nonlinear model of a drum boiler-turbine
unit is obtained from a series of experiments. A fourth order
nonlinear model of the boiler with time delays, measurement
noise, and load disturbances was presented in [3]. This model
provides a useful basis for developing control strategies for the
boiler. More recently, artificial intelligence has been applied to
model steam-boiler systems, e.g., the identification of boiler
models discussed in [4], and the modeling of a 200-MW boiler
system based on neural networks [5].

The proportional-integral (PI) controllers are still the most
popular controller for controlling steam-boiler systems, and are
commonly available in the distributed control system (DCS)
installed in the control room of power stations. The PI controllers
are usually tuned by experts heuristically by trials and errors. Not
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only it is time consuming, the performance of the controllers is
not always satisfactory, especially when there are large changes
in the load or the operating point. Cascade PI controllers tuned
for a fixed load are common for controlling steam temperature
in a power plant. However, when the load changes are large, the
human operation is often required to replace the PI controllers
for a better performance.

The multivariable multistep adaptive regulator has been ap-
plied to control the superheated steam temperature in a 150 T/h
boiler [1], and generalized predictive control was proposed to
control the steam temperature [6]. A nonlinear long-range pre-
dictive controller based on neural networks is developed in [7]
to control the main steam temperature and pressure, and the
reheated steam temperature at several operating levels. Plant
nonlinearity was accounted for without resorting to on-line
parameter-estimation as in self-tuning control. The control of
the main steam pressure and temperature based on a nonlin-
ear model that consists of nonlinear static constants and linear
dynamics is presented in [8].

A well-designed nonlinear controller based on a nonlinear
model of the process may perform well, tremendous computing
time, however, is required to update the parameters of the non-
linear model and the controller, making it unsuitable for on-line
adaptation. Further, the lack of accurate and detailed techni-
cal data also makes it difficult to produce a sufficiently accurate
nonlinear model of the industrial process to be used in designing
the nonlinear controller.

In practice, the complex power plant is often controlled man-
ually by experienced operators based on their knowledge of the
plant, when the range of the load change is large. As fuzzy
logic is capable of incorporating human experiences via the
fuzzy rules, on-line self-organizing fuzzy logic controllers have
been proposed for controlling boiler-turbine systems [9]. In ad-
dition to direct control applications, fuzzy logics have also been
used in designing specifications. The design of fuzzy logic con-
trollers is somehow time consuming, as the fuzzy rules are often
obtained by trials and errors. In contrast, neural networks not
only have the ability to approximate nonlinear functions with
arbitrary accuracy, they can also be trained from experimental
data. However, the training of neural networks is computing
intensive, restricting their online applications. The neuro-fuzzy
networks (NFNs) developed recently have the advantages of
model transparency of fuzzy logic, and learning capability of
neural networks [10]. Since NFNs are linear-in-weights net-
works, they can be trained using linear least squares method,
and can be further simplified to reduce significantly the com-
puting time for on-line applications [11]. The NFNs have been
used to develop self-tuning control [12], [13], and is therefore
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Fig. 1. Boiler and superheater steam generation process.

a useful tool for developing nonlinear predictive control [14].
To use predictive control, the plant must be reasonably linear
near some local specified operating points. Since NFNs can be
considered as a network that consists of several local regions,
each of which contains a local linear model, nonlinear predictive
control based on NFNs can be devised with the network incor-
porating all the local generalized predictive controllers (GPC)
designed using the respective local linear models. Following this
approach, the nonlinear generalized predictive controllers based
on the NFNs, or simply, the neuro-fuzzy generalized predictive
controllers (NFGPCs) are derived here. The proposed controller
is then applied to control the superheated steam temperature of
the 200-MW power unit. Experimental data obtained from the
plant are used to train the NFN model, and from which local
GPCs that form part of the NFGPC is then designed. The pro-
posed controller is tested first on the simulation of the process,
before applying it to control the power plant.

II. PLANT DESCRIPTION

The power plant considered in this paper is a pulverized coal-
firing steam-boiler generation unit rated at 200 MW. The max-
imum steam consumption of the power plant is 670 T/h at a
superheated steam pressure and temperature of 16.7 MPa and
540 ◦C, respectively. A two stage water sprayers is used to con-
trol the superheated temperature. The objective is to control the
superheated steam temperature by controlling the flow of spray
water using the spray water valves.

From Fig. 1, the steam generated from the boiler drum passes
through the low-temperature superheater before it enters the
radiant-type platen superheater. Water is sprayed onto the steam
to control the superheated steam temperature in both the low and
high temperature superheaters. Proper control of the superheated
steam temperature is extremely important to ensure the overall
efficiency and safety of the power plant, as the temperature in
the high temperature superheater is the highest in the plant. It
is undesirable that the steam temperature is too high, as it can
damage the superheater and the high pressure turbine, or too low,
as it will lower the efficiency of the power plant. Therefore, the
superheated steam temperature is to be controlled by adjusting
the flow of spray water to within ±10 ◦C during the transient
states, and ±5 ◦C at the steady state. It is also important to
reduce the temperature fluctuations inside the superheater, as it
helps to minimize mechanical stress that causes micro-cracks

in the unit, in order to prolong the life of the unit and to reduce
maintenance costs. As the GPC is derived by minimizing these
fluctuations, it is amongst the controllers that are most suitable
for achieving this goal.

There are three main factors that can affect the superheated
steam temperature: load, gas flow, and inlet steam temperature
of the superheater. Other factors include steam flow, feedwater
temperature, enthalpy of steam entering the superheater and
combustion gas temperature. Unpredictable disturbances, such
as dust deposition on the furnace walls and sedimentation in
the steam pipe can also affect the heat transfer coefficients,
and consequently, the operation of the superheater. This type of
variations is slow and can be catered for by updating periodically
the model of the superheater.

As the steam generation process is complex and highly non-
linear, the performance of the conventional PID-based con-
trollers is often unsatisfactory. The proposed NFGPC trained
by experimental data, and incorporating also the experiences of
the operator is used to control the superheated steam temperature
of this 200-MW power generation unit.

III. NFN MODELLING

A. Structure of the Nonlinear Predictive Model by NFN

Consider the following general single-input single-output
nonlinear dynamic system:

y(t) = f [y(t − 1), . . . , y(t − n′
y ), u(t − d), . . . ,

u(t − d − n′
u + 1), e(t − 1), . . . , e(t − n′

e)] + e(t)/∆

(1)

where f [ · ] is a smooth nonlinear function such that a Taylor
series expansion exists, e(t) is a zero mean white noise and ∆ is
the differencing operator, n′

y , n′
u , n′

e , and d are, respectively, the
known orders and time delay of the system. Let the local linear
model of the nonlinear system (1) at the operating point O(t)
be given by the following controlled auto-regressive integrated
moving average (CARIMA) model:

A(z−1)y(t) = z−dB(z−1)u(t) + C(z−1)e(t)/∆

or

Ā(z−1)y(t) = z−dB(z−1)∆u(t) + C(z−1)e(t) (2)

where Ā(z−1) = ∆A(z−1), B(z−1), and C(z−1) are polynomi-
als in z−1, the backward shift operator. Note that the coefficients
of these polynomials are a function of the operating point O(t).
The nonlinear system (1) is partitioned into several operating
regions, such that each region can be approximated by a lo-
cal linear model. Since NFNs is a class of associative memory
networks with knowledge stored locally [10], they can be ap-
plied to model this class of nonlinear systems. A schematic
diagram of the NFN is shown in Fig. 2, where the member-
ship functions are given by B-spline basis functions. The input
of the network is the antecedent variable [x1, x2 . . . xn ], and
the output, ŷ(t), is a weighted sum of the output of the lo-
cal linear models ŷi(t). A property of the NFNs is that the
network stores information and learns locally, and that a priori
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Fig. 2. Neuro-fuzzy network.

knowledge of the process can be incorporated into the design
of the network. B-spline functions are used as the membership
functions in the NFNs for the following reasons [10]. First, B-
spline functions can be readily specified by the order of the
basis function and the number of inner knots. Second, they
are defined on a bounded support, and the output of the ba-
sis function is always positive, i.e., µj

k (x) = 0, x /∈ [λj−k , λj ]
and µj

k (x) > 0, x ∈ (λj−k , λj ). Third, the basis functions form
a partition of unity, i.e.,

∑
j µj

k (x) ≡ 1, x ∈ [xmin, xmax]. And
fourth, the output of the basis functions can be obtained by a
recurrence equation.

It is shown in [10] that for membership functions of fuzzy
variables given by univariate B-spline basis functions, the mem-
bership functions of the fuzzy variables derived from the fuzzy
rules can be obtained by the tensor product of the univariate ba-
sis functions. As an example, consider the NFN shown in Fig. 2,
which consists of the following fuzzy rules:

IF operating condition i (x1 is positive small, . . ., and xn is
negative large).

THEN the output is given by the local CARIMA model i

ŷi(t) = āi1ŷi(t − 1) + · · · āin ā
ŷi(t − nā)

+ bi0∆ui(t − d) + · · · + binb
∆ui(t − d − nb)

+ ei(t) + · · · + cinc
ei(t − nc)

or

Āi(z−1)ŷi(t) = z−d∆Bi(z−1)ui(t) + Ci(z−1)ei(t) (3)

where Āi(z−1), Bi(z−1), and Ci(z−1) are polynomials in the
backward shift operator z−1, and d is the dead time of the plant,
ui(t) is the control, and ei(t) is a zero mean independent random
variable with a variance of σ2. The multivariate basis function
ai(xk ), or the transformed input vector, is obtained by the tensor
products of the univariate basis functions µAi

k
(xk ), as follows:

ai =
n∏

k=1

µAi
k
(xk ), for i = 1, 2, . . . , p (4)

where n is the dimension of the input vector x, and p, the total
number of weights in the NFN, is given by

p =
n∏

i=1

(Ri + ki) (5)

where ki and Ri are the order of the basis function and the
number of inner knots respectively. The properties of the uni-

Fig. 3. Multivariate basis function.

variate B-spline basis functions described previously also ap-
ply to the multivariate basis functions, which is defined on the
hyper-rectangles, (k1 × k2 × · · · × kn ). Similarly, the output
of the multivariate basis functions is positive inside this domain
and zero elsewhere. An example of the multivariate basis func-
tion formed from two second-order univariate basis functions is
shown in Fig. 3.

Assuming the center of gravity defuzzification method is
used, the output of the NFN with p fuzzy rules is

ŷ =
∑p

i=1 ŷiai∑p
i=1 ai

=
p∑

i=1

ŷiαi (6)

B. Learning of the NFN

Consider a quadratic cost function

I =
1
2
e2 =

1
2
(ŷ − y)2 (7)

where ŷ is the network output, and y is the plant output. The
parameters of Āi(z−1) and Bi(z−1), the local linear model are
updated proportional to the negative gradient of I , as

˙̄ail = −g
∂I

∂āij
= −ge

∂ŷ

∂ŷi

∂ŷi

∂āij
= −geαi(x)ŷi(t − l) (8)

ḃim = −g
∂I

∂bil
= −ge

∂ŷ

∂ŷi

∂ŷi

∂bil
= −geαi(x)ui(t − d − m)

(9)

where g > 0 is the learning rate, 1 ≤ l ≤ nā , and 0 ≤ m ≤ nb .
In the on-line learning law (8) and (9), the initial value of the
weights should be chosen to ensure a fast convergence of the
estimated parameters to some constant values. To achieve this,
apriori information and experiences about the plant should be
used as far as possible.

Define the performance index

L(t) =
1
W

W∑
t=1

∣∣∣∣ ŷ(t) − y(t)
y(t)

∣∣∣∣ (10)

where W is the number of data. This index will be used later to
evaluate the performance of the models.

IV. NONLINEAR NEURO-FUZZY NETWORK GENERALIZED

PREDICTIVE CONTROL

In this section, the NFGPC is derived based on the NFN
presented in Section III.
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A. Derivation of NFGPC

The GPC is obtained by minimizing the following cost func-
tion [15]:

J = E




N∑
j=d

qj [ŷ(t + j) − yr (t + j)]2




+
M∑

j=1

λj [∆u(t + j − 1)]2 (11)

where qj and λj are, respectively, the weighting factors for
the prediction error and the control, yr (t + j) is the jth step
ahead reference trajectory, d is the minimum costing horizon,
N and M are, respectively, the maximum costing horizon for
the prediction error and the control. The control computed from
the NFGPC is the weighted sum of the control obtained from p
local GPC controllers

∆u(t) =
p∑

i=1

ai∆ui(t) (12)

where ∆ui(t) is the control in the ith region, ai(x) is defined
previously in (4). Note that the weights in the NFGPC are iden-
tical to that in the NFN that models the process. Although the
control computed by (12) is similar to the Takagi-Sugeno fuzzy
model [16], it is different in that the “consequence” does not
necessarily contain the “premise” component. Since switching
between local GPC controllers in the NFGPC involves fuzzy
logics, it can be interpreted not only as a fuzzy controller, but
also as a fuzzy supervisor. Since switching between local con-
trollers is achieved through fuzzy logics, the control can be
smooth if the weights ai(x) are suitably selected. From the
NFN (6) and the control (12), J given by (11) can be rewritten
as

J = E




N∑
j=d

qj

[
p∑

i=1

αi(ŷi(t + j) − yr (t + j))

]2



+
M∑

j=1

λj

[
p∑

i=1

αi∆ui(t + j − 1)

]2

. (13)

Because of the interactions between the sub-systems, mini-
mizing this cost function requires tremendous computation. To
reduce the amount of computation, the cost function is simpli-
fied first using the Cauchy inequality [17]. Since[

p∑
i=1

αi(ŷi(t + j) − yr (t + j))

]2

≤ p

p∑
i=1

[αi(ŷi(t + j) − yr (t + j))]2

hence [
p∑

i=1

αi∆ui(t + j − 1)

]2

≤ p

p∑
i=1

[αi∆ui(t + j − 1)]2.

(14)

Equation (14) implies that the sum of the weighted squared
errors can be an upper bound of the cost function J . Rewriting
(13) gives

E




N∑
j=d

p∑
i=1

qj [αi(ŷ(t + j) − yr (t + j))]2




+
M∑

j=1

p∑
i=1

λj [αi∆ui(t + j − 1)]2

= E




p∑
i=1

(αi)2
N∑

j=d

qj [ŷi(t + j) − yr (t + j)]2




+
p∑

i=1

(αi)2
M∑

j=1

λj [∆ui(t + j − 1)]2

=
p∑

i=1

(αi)2Ji (15)

where

Ji = E




N∑
j=d

qj [ŷi(t + j) − yr (t + j)]2




+
M∑

j=1

λj [∆ui(t + j − 1)]2. (16)

Equation (15) shows that minimizing Ji is essentially the
same as that of minimizing J . From (16), a set of local general-
ized predictive controllers is obtained, which forms part of the
NFGPC.

B. Local GPC

The local GPC [15] is given by

∆Ui(t) =
(
GT

i QGi + λ
)−1

GT
i Q[Yr (t + 1)

− Fi∆Ui(t − 1) − Si(z−1)yi(t)] (17)

where

Yi(t + 1) = [ŷi(t + 1), ŷi(t + 2), . . . , ŷi(t + N)]T

Yr (t + 1) = [ŷr (t + 1), ŷr (t + 2), . . . , ŷr (t + N)]T

∆Ui(t) = [∆ui(t),∆ui(t + 1), . . . ,∆ui(t + M − 1)]T

∆Ui(t − 1) = [∆ui(t − nb),∆ui(t − nb + 1), . . . ,

∆ui(t − 1)]T

εi(t + 1) = [Ri1(z−1)ei(t + 1), . . . RiP (z−1)ei(t + N)]T

Si(z−1) = [Si1(z−1), Si2(z−1), . . . , SiP (z−1)]T

Si(z−1) and Ri(z−1) satisfy the Diophantine equation

1 = Āi(z−1)Rij (z−1) + z−jSij (z−1) (18)
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Fig. 4. Step response of superheated steam temperature (solid line) for a 18%
step change in spray water flow to the high temperature superheater and the
modeling result (circled line).

and

Gi(z−1) = Bi(z−1)Ri(z−1)

= gj,0 + gj,1z
−1 + · · · + gj,nb +j−1z

−(nb +j−1)

(19a)

gj+1,i = gj,i + sj,0bi−j (19b)

Qi = diag(qi1, qi2, . . . , qiN )

Ti = diag(λi1, λi2, . . . , λiM ) (19c)

Gi =




gi
1,0 · · · 0

gi
2,1 gi

1,0

...
...

...
gi

N ,N −1 gi
N −1,N −2 · · · gi

N −M +1,N −M




N ×M

(19d)

Fi =




gi
1,nb

gi
1,nb −1 · · · gi

1,2 gi
1,1

gi
2,nb +1 gi

2,nb
· · · gi

2,3 gi
2,2

...
...

...
...

gi
N ,nb +N −1 gi

N ,nb +N −2 · · · gi
N ,N +1 gi

N ,N




N ×nb .

(19e)

The optimized M steps ahead control is computed, and only
the first step ahead control is implemented, using a receding
horizon principle [15], giving

∆ui(t) = dT
i1[Yr (t + 1) − Fi∆Ui(t − 1) − Si(z−1)yi(t)]

(20)
where dT

i1 = (1, 0, . . . , 0)(GT
i QGi + λ)−1GT

i Q is the first row
of the matrix (GT

i QGi + λ)−1GT
i Q.

V. NEURO-FUZZY MODELING AND PREDICTIVE CONTROL OF

SUPERHEATED STEAM TEMPERATURE

A. Neuro-Fuzzy Modeling of Superheated Steam Temperature

Let θ be the superheated steam temperature, and µθ , the flow
of spray water to the high temperature superheater. The response
of θ to a step change of 18% in µθ under 180 MW load condition

Fig. 5. Membership functions for local models.

is shown in Fig. 4. Clearly, θ can be approximated by a second
order model [18]

G(s) =
θ

µθ (s)
=

Kp

(T1s + 1)(T2s + 1)
e−τ s (21)

where T1 = 185 s, T2 = 175 s under this load condition. Equa-
tion (21) can be written in discrete form as shown in (2), where
Ā(z−1) = ∆A(z−1) is a third-order polynomial.

The linear model (21) is, however, only a local model for the
selected operating point. As discussed previously, a number of
these linear models are used in the neuro-fuzzy model given by
(3).

Since load is the unique antecedent variable, it is used to
select the division between the local regions in the NFN. Based
on this approach, the load is divided into five regions as shown
in Fig. 5, using also the experience of the operators, who regard
a load of 200 MW as high, 180 MW as medium high, 160 MW
as medium, 140 MW as medium low, and 120 MW as low. The
power plant is operated usually near the low end of the load at
140 MW during the night and the high end at 200 MW during
the day. Since a load less than 120 MW occurs only during
the start-up and the run-down of the power plant, it is therefore
not included in the modeling. This type of partitioning ensures
that any change in the real-valued input signal will be reflected
by a change in the degree of membership. Notice that uniform
division was chosen for ease of implementation, as nonuniform
division would involve a lot more trials and errors, which is not
feasible for a real plant.

The data for training the neuro-fuzzy model should ideally
contain as much information as possible on the dynamics of the
process, as the generalization ability of the NFN depends on the
quality of the training data. For this reason, it is important that
the experiments should be designed to cover sufficiently the full
operation region of the power plant. It may be argued that data
for estimating the parameters of the model should be generated
with the plant under persistent excitation. However, it may not
be desirable or acceptable to put the plant under too much stress.
Further, as the dynamics of the plant is well understood by the
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TABLE I
LOCAL CARIMA MODELS IN NEURO-FUZZY MODEL

Fig. 6. Actual superheated steam temperature (solid line) versus linear model
(dotted line) and NFN model (dashed line).

operators, sufficiently reliable estimate of the parameters of the
plant model can be obtained from step changes in the input. In
order that the neurofuzzy model of the plant can approximate the
plant, the experiment is repeated over the full operating range of
the plant. The NFN that models the power plant is then trained
by the gradient method (8) from the training data.

Since the length of the superheater tube is measured in tens
of meters, a time delay therefore exists between the spray water
flow and the superheated steam temperature at the outlet of the
superheater. This time delay is extremely difficult to determine
experimentally, due to the measurement noise and the dynamic
of the process. A reasonable estimate of this time delay τ is 30 s,
and is used as the minimum control horizon. Assume ei(t) is
a zero mean uncorrelated random sequence, then Ci = 1. For
a sampling interval of 30 s, the estimated linear local models
Ā(z−1) used in the NFN are shown in Table I.

From Fig. 6, good generalization result of the superheated
steam temperature over the full operating range is obtained from
the NFN. In contrast, the linear model estimated using the same
data can only give good approximation over certain, but not the
full operating range, illustrating that the plant is highly nonlin-
ear. The performance index (10) is computed for both models.
The one for the NFN is 0.1551, while that for the linear model
is 0.3469, showing clearly the superiority of the NFN over the
linear model.

B. Neuro-Fuzzy Predictive Control of Steam Temperature

From the trained NFN given in Table I, the NFGPC is de-
termined and is shown in Table II. It is tested first to control
the simulated power plant. In the simulation, the sampling in-

TABLE II
NEURO-FUZZY GPC CONTROL LAW PARAMETERS (Fi = 0)

terval is selected to be 30 s. For the NFGPC, the time delay d,
which is also the minimum cost horizon, is set to 30 s, Q = I ,
and λ = 0.1 × I . To investigate the effect of the control hori-
zon M on the performance of NFGPC, several values of M are
chosen with the prediction horizon N set to a relatively large
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Fig. 7. Closed-loop response of superheated steam temperature using NFGPC
(solid line—setpoint, dotted line—superheated steam temperature).

Fig. 8. Cascade control of superheated steam temperature.

Fig. 9. Cascade NFGPC control of superheated steam temperature with feed-
forward control.

value of 10. For small M , the closed-loop response is sluggish.
Reasonably good performance is obtained for M = 6. There is,
however, little improvement when M is increased further. The
control of the superheated steam temperature using the NFGPC
for M = 6 is shown in Fig. 7. The performance of the NFGPC
is clearly satisfactory. The same NFGPC is used later to control
the actual power plant.

Cascade control scheme, as shown in Fig. 8, is widely used
to control the superheated steam temperature. There are basi-
cally two nested loops. The inner one controls the superheated
steam temperature by manipulating the spray water valve, and
the outer one controls the superheated steam temperature by
controlling the set-point of the inner loop. Feedfoward control,
with the steam flow and the gas temperature as inputs, can be
applied to provide a faster response to large variations in these
two variables. In practice, the feedforward paths are activated
only when there are significant changes in these variables. The
control scheme also prevents the faster dynamics of the plant,
i.e., the spray water valve and the water/steam mixing, from
affecting the slower dynamics of the plant, i.e., the high temper-
ature superheater [1]. The conventional control scheme shown
in Fig. 8 involves two PI controllers for controlling the inner
and outer loops. It is proposed here to replace the PI controller
in the outer loop by the NFGPC, as shown in Fig. 9.

Fig. 10. (a) Load changes. (b) Superheated steam temperature controlled by
the NFGPC. (c) Superheated steam temperature controlled by the cascade PI
controller.

Denote the set-point and the measurement of the superheated
steam temperature respectively by θ0(t) and θ(t). As already
discussed, the NFGPC consists of five local GPC controllers,
each with θ0(t), θ(t − 1), θ(t − 2) as its inputs. The local prop-
erty of NFN implies only two local controllers are activated
each time, determined by the load signal through five triangu-
lar membership functions. Consider the load changes shown in
Fig. 10(a), where the load increases from 140 to 195 MW at
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Fig. 11. Comparison of the NFGPC, conventional linear GPC, and cascade PI
controller.

a rate of between 1%/min and 2.5%/min around 20 min, and
decreases gradually to 160 MW from 60 min. When the load
increases, more fuel is consumed by the furnace, leading to an
increase in the gas temperature and thus an increase in the su-
perheated steam temperature. To control the superheated steam
temperature, the flow of the water spray to the superheater is
adjusted by the control system shown in Fig. 9. From Fig. 10(b),
good control of the superheated steam temperature is achieved
by the NFGPC, as the temperature fluctuations for both the
upward and downward load changes are within ±7 ◦C. This re-
sult is comparable to that presented in [6], which is tested on
a 380 MW unit, under coal mill stop disturbance. In contrast,
the fluctuations in the superheated steam temperature is much
larger using the conventional cascade PI controller, as shown in
Fig. 10(c).

As a further illustration, the power plant is simulated using
the NFN model given in Table I, and is controlled, respectively,
by the NFGPC, the conventional linear GPC controller, and the
cascaded PI controller while the load changes from 160 MW to
200 MW. The conventional linear GPC controller is the local
controller designed for the “medium” operating region. The
results are shown in Fig. 11, showing that, as expected, the
best performance is obtained from the NFGPC as it is designed
based on a more accurate process model. This is followed by
the conventional linear GPC controller, as the plant is nonlinear.
The performance of the conventional cascade PI controller is
the worse, indicating that it is unable to control satisfactory the
superheated steam temperature under large load changes. This
may be the reason for controlling the power plant manually
when there are large load changes.

In practice, the control u(t) of the GPC is usually computed
by (12) and (20). However, if u(t) exceeds the physical limits
of the actuator, then actuator saturation occurs. In this case,
the performance of the NFGPC will be affected. The constraint
optimization by quadratic programming algorithm [19] can be
incorporated to optimize the cost functions of the local GPCs
subject to the actuator limits. Let the change in the rate of the
spray water valve be limited to

−0.17 < ∆u < 0.17. (22)

The performance of the NFGPC taking into account the rate
limits of the actuator given by (22) for a load disturbance of

Fig. 12. Comparison of the constraints optimal NFGPC and the constraints
limited NFGPC performance.

TABLE III
COMPARISON OF IAE

40 MW is shown in Fig. 12, where the control of spray water
valve is normalized to [0, 1]. The control signal for the con-
strained NFGPC seems to be better in anticipating the effect of
the actuator limits. When ∆u exceeds the constraints, a new set
of control signals is obtained, anticipating the control is going
to exceed the limits. For a total comparison, Table III gives the
summary of integral absolute errors (IAE) of these methods.

Since GPC can be extended to minimize the cost function
J taking into account of inequality constraint by solving of
quadratic programming, it can accommodate the actuator con-
straints, which are neglected in the majority of other control
algorithms. Although better simulation results are obtained, the
computation load is still quite heavy. Further works will be con-
ducted to devise methods to reduce the computation load when
the NFGPC is subject to actuator constraints. The modified
NFGPC will then be applied to control the power plant. It should
be noted that constraint GPC is an active area of research that is
receiving immense interest [20]–[22]. However, the computing
efficiency, the stability and the feasibility question are still the
widely discussed problems. In existing approaches, the actuator
saturation compensators are often designed for a specific plant
and controller to ensure the compensated closed-loop system to
be stable.
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VI. CONCLUSION

The modeling and control of a 200-MW power plant using
the neuro-fuzzy approach is presented in this paper. The NFN
consists of five local CARIMA models, and the output of the net-
work is the interpolation of the local models using memberships
given by the B-spline basis functions. The proposed NFGPC
is similarly constructed, which consists of five GPCs, each of
which is designed from the CARIMA models in the NFN. The
NFGPC is most suitable for processes with smooth nonlinearity,
such that its full operating range can be partitioned into sev-
eral local linear operating regions. The proposed approach has
been successfully applied to model the 200-MW power plant,
from which the NFGPC is designed. The NFGPC is applied
first to the simulated power plant before applying it to the actual
power plant. Much better performance is obtained from NFGPC
than from the traditional cascade PI controller in controlling the
actual power plant under large load changes. Comparison with
the cascade PI controller and the linear GPC is also made
on the simulated power plant. As expected, NFGPC outper-
forms the other two control schemes. The proposed NFGPC
therefore provides a useful alternative for controlling this class
of nonlinear power plants, which are formerly difficult to be
controlled using traditional methods.
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