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Nonequilibrium statistical mechanics of the evolution of dislocation structures
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We develop a form of nonequilibrium statistical mechanics designed to be applicable to the evolution of
dislocation structure (or patterning) during metal deformation. The formalism can be applied both to time
independent relaxed dislocation systems as well as to the time dependent relaxation itself. One specific appli-

cation is to a simplified version of the “equilibrium” relaxed state, where we show that an effective temperature
can be defined in terms of the noise in the system (back stress fluctuations). As the noise is decreased, varying
degrees of order appear. In a second application to a simple two-dimensional (2D) dislocation computer model,
we show how to obtain an effective time dependent free energy and temperature from the ensemble driving
forces developed in earlier work. In this model, too, the underlying physics relates to a competition between
the noise and energy. And, finally, we show that the behavior of the Boltzmann H function for the same 2D
computer model can be tied to the rather complex physics of the evolving time dependent structure.
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I. INTRODUCTION

The study of nonequilibrium statistical mechanics goes
back at least to the work of Boltzmann. In modern times, it
has morphed into linear response transport theory.! But in
these studies, the underlying system is always thermal, and
the local temperature is a well defined quantity, so the system
is at best near thermal equilibrium. However, more recently,
studies have addressed the problem of the nonequilibrium
statistical mechanics of time dependent nonlinear dynamic
systems. In these systems, the phase space becomes fractal,
and the entropy can become singular.>* This field is still
very much a work in progress, so there is no agreement on
the form of an adequate general nonequilibrium statistical
mechanics for all physical systems. In a different direction,
there have also been successful attempts to define an effec-
tive temperature in certain simple highly dissipative
systems.>® Our focus in this paper will be on the evolution of
dislocation partially ordered structures during deformation.”
Berdichevski® has very recently developed a statistical ap-
proach to a plane strain system composed of screw disloca-
tions based on more general prior ideas about nonequilib-
rium systems. (See that paper and his book® for further
references.) And, finally, Edwards and Grinev'® have pro-
posed that the approach to the steady state of a granular
material can be studied as a nonequilbrium “ergodic” system,
which one of us'' has applied to the problem of structure
evolution in a dislocation system.

Picking up on the approach of Edwards and Grinev,'? we
will show that Gibbsian statistical mechanics can be ex-
tended to an interesting class of nondynamic problems, with
ideas which are quite different from the approaches being
explored for the nonlinear dynamic case noted above.”™*
They also differ in various ways from the approach of
Berdichevski.® The idea of an ensemble of systems will be
central to our thoughts, and for definiteness, this ensemble
can be thought of as a set of computer simulations of a re-
laxation problem. The variables of the theory, the energy,
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etc., will be simulation averages. The dislocation relaxation
problem and the evolution of partially ordered dislocation
structures during the relaxation is the one of special interest
to us, so that is where our focus will be. But we note that the
theory is wider than that specific application.

We will show that the analysis leads to a particularly
happy intuitive understanding of the dislocation problem
wherein the (effective) temperature of the theory is associ-
ated with noise in the system which the physics of the dis-
location system demands. This noise supplies the fluctuations
that carry the system away from its ground state in much the
same way that energy fluctuations of a thermal sort do for
thermal systems. This will lead in our particular case to par-
tially ordered structures in the dislocation system that are
created by the balance between the noise generated disorder
and the energetic tendency to order.

We will find that the analysis is very straightforward and
utterly simple on both logical and analytic levels.

The history of attempts to understand the evolution of
partially ordered dislocation cell walls as a metal deformed
into stage III7 illustrates the general point that the evolution
of nonequilibrium systems has been difficult to grasp. The
partial ordering in the metal systems is so suggestive of a
classic phase change that attempts to apply ordinary statisti-
cal thermodyamics to the dislocation system were made very
early.!” But the fact that the ordering energy per lattice site of
a dislocation is of the order of eV, whereas the thermal or-
dering energy is only of order 1/40 eV is irrefutable evi-
dence that the dislocation system is in fact far from thermal
equilibrium, and cannot be understood on the basis of classic
statistical thermodynamics.

A much more interesting approach to the dislocation evo-
lution problem was developed by Hahner,'>!'# who proposed
that the transition to partially ordered walls was a noise in-
duced transition. He developed convincing evidence that
noise (the back stress) was in fact a serious factor, when he
and co-authors showed'” that the observed cell structure was
fractal, a result that was a direct consequence of the random-
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ness of the noise. But Hahner’s noise-based analysis does not
incorporate energetic forces (except for annihilation of un-
like dislocations), and this violates a very deep seated intui-
tive sense that the ordering problem must involve energetic
forces as well as noise. Also, the theory does not distinguish
between edge and screw dislocations, whereas it can be eas-
ily demonstrated that screw dislocations of a single kind can-
not form walls. Thus the Hahner theory must be considered
at best incomplete.

Thomson et al.'® studied computer simulations of a very
simple system of edge dislocations which exhibited partially
ordered vertical walls. They showed that their two-
dimensional (2D) dislocation computer model could be un-
derstood in terms of opposing ensemble driving forces de-
rived from the energy and the noise, and that the final state
was a balance between these two. This finding seems to vin-
dicate the idea that the ordering must involve the energy as
well as the noise operating on the same logical footing.

Ngan!! showed that the results of Hahner and Thomson
and co-workers correspond to two limiting cases.

In this paper, we will first modify Ngan’s previous ap-
proach in order to develop a more satisfying but still analytic
theory of dislocation wall evolution based on an approximate
treatment of the actual edge dislocation force law. We will
then show how to define an effective free energy and tem-
perature for the 2D simulations of Thomson et al., and ex-
plore the time dependence of the Boltzmann H function for
that model. Finally, we will demonstrate that the noise is the
seat of the effective temperature in the system for both the
analytic and 2D computer models and that the effective tem-
perature thus represents the same physical reality in both
cases.

II. A NONEQUILIBRIUM GIBBSIAN
STATISTICAL MECHANICS

We start with an ensemble of physical systems which has
been constructed with a flat a priori probability distribution.
But we specifically exclude Hamiltonian dynamics from our
consideration. The flat a priori distribution for a set of com-
puter simulations follows from the fact that the set of simu-
lations is itself a flat distribution, if the systems involved are
stochastically chosen.

For any such ensemble, a set of ensemble variables, such
as the number of dislocations, the elastic interaction energy
between dislocations, etc., is defined and measured.

The total number of all possible states of any such en-
semble will be called

szﬂs’ (1)

where (), is the number of states of the ensemble for which
the ensemble variable s has a specific value. For example, for
an ensemble with total interaction energy, E.,, the number
of states possible in the ensemble with energy E), is QEp.
Because of the flat a priori ensemble distribution, the nor-
malized probability for an ensemble to be in the state s is
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Q
P(s)=" 2)

From these (not necessarily equilibrium quantities), we de-
fine the Boltzmann entropy, and the Boltzmann H, as

55 =In (),
k
H={(In P(s)),= f P(s)In(P(s)) ds. (3)

The constant k is analogous to the Boltzmann constant, but in
this case is simply a constant which gives the appropriate
dimensions to Sg. The integral in the second equation is over
the range of the variable s.

The Boltzmann H theorem states that under the very gen-
eral conditions when detailed balance is satisfied (in either
quantum or classical mechanics), dH/dt=0. See Reif, Ap-
pendix A12."7

The equivalence between the Boltzmann entropy, Sg, and
the Boltzmann H is demonstrated by introducing the familiar
function, W, which is the count of the number of distinguish-
able states accessible to the ensemble. That is, with Gibbs,
we make a table of all the distinguishable states of each
system of the ensemble, labeling them with an index, s, and
count the number of systems in the ensemble with distinct
values of the energy E,. This results in a distribution func-
tion, n, for the energy as a function of E,. If there are a total
of M systems in the ensemble, then the number of distin-
guishable states, W, accessible to the ensemble is

M!

W= , 4)
HS ng!
with the Stirling formula,
InW=MInM- > n,lnn,. (5)

Since Szp=k In W, and the normalized P;=n,/M for a general
distribution ng,
Sp

a =InM-, P,In(MP,)=— > P,InP,=—H. (6)

The relationship Sz/kM=—H fully connects the Boltzmann
H theorem and Sp in the second law and is valid for the fully
general time dependent nonequilibrium system.

In the special case when the total ensemble energy, E., is
known to be a fixed time-independent constant, then the
standard Gibbs argument asks for the condition of maximum
probability, under the constraints that the total number of
systems in the ensemble, M, and the total energy of the en-
semble, E.,, are both fixed. That is, the total ensemble is
isolated. We follow Gibbs in not assuming that the energy is
an invariant from system to system (microcanonical en-
semble), because in the 2D dislocation computer model, to
be explored later, the energy fluctuates from simulation to
simulation. But, of course, the average energy of the en-
semble is a well defined quantity. Thus the ensemble of in-
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terest is the Gibbs canonical ensemble. Then by standard
arguments for the constrained maximum of W,

n(E,) = e Pt

DePhrazy, Y EePE =B, )
s

s

By the same standard arguments, it then follows that

1
Z= P Fo.=— F: InZ,
s

dlnZ

B’
where Z is the familiar partition sum and F is the ensemble
free energy. As noted earlier, the constant, k, is analogous to
the Boltzmann constant, but is here simply an arbitrary con-
stant that sets the dimension of S,. Clearly, in this analysis,
once the flat a priori ensemble distribution is established, all
the standard statistical mechanics relations follow in lock
step.

We note the important distinction between the time inde-
pendent fully equilibrium Egs. (7) and (8), and the time de-
pendent equations, Eq. (3), valid for true nonequilibrium. We
will find occasion to study both the time independent equi-
librium case, for example, when a time dependent system
relaxes to equilibrium, as well as fully time dependent non-
equilibrium situations, for example while a relaxation is still
taking place.

The only new thing in the equilibrium analysis is the in-
terpretation of the effective temperature, 1/, since the stan-
dard connection to the gas law and the absolute temperature
scale is not made. But it is still a property of the analysis that
the temperature introduces energy fluctuations into the sys-
tem and that, at zero temperature, the system would be in the
ground state (possibly degenerate) of global minimum en-
ergy, consistent with the energy constraints placed on the
system. The point to be emphasized here is that the tempera-
ture for this nonthermal case has all the meaning of a gener-
alized thermodynamic temperature, except that the “heat
bath” of the nonthermal system (the energy constraint) is not
the same as that for the Kelvin absolute temperature. We
return below to a further discussion of these points.

We note one more general property of such a nonthermal
equilibrium ensemble. In the limit of very large M, the prob-
ability distribution for the time independent equilibrium sys-
tem exhibits the same kind of extremely narrow Gaussian
maximum one is familiar with in thermal systems. This is
such an important property that we repeat the steps of the
familiar argument here.'

We work with the normalized probability distributions,
P(E) of Eq. (2), but restricted to the equilibrium case, where
one can write

S
—==InZ-p8

. (8)

P(E,) = CQ(E e, )

where C is a normalization constant. As in standard statisti-
cal mechanics, the maximum in P arises because of the
sharply increasing ()(E,), and the decreasing exponential.
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We now expand In P(E,) about its maximum value. At
the maximum, of course, d In P/dE=0, and the first term
in the Taylor expansion is the quadratic. So if 2/7%
=—d*(In P)/dE? at the maximum, then

InP=InPy— (E,—E)/n+ -,

2
P(E,) = Poexp{— @} +

(10)
Explicit computation of 7 gives
1 dg
=———. 11
="K, (11)

That is, the width of the peak is proportional to the effective
heat capacity of the system.

The Gaussian form of the energy peak for a system can be
used to test if an unknown a priori ensemble distribution is
flat.

III. STATISTICAL MECHANICS OF DISLOCATION
STRUCTURES: ANALYTIC AND EQUILIBRIUM

The central purpose of this paper is to explore noise in the
dislocation system, but that noise is quite different from
noise in other familiar systems and, before digging into fur-
ther analysis, it is important to characterize the source and
physics of the dislocation noise. When a 2D edge dislocation
system with a single Burgers vector relaxes, it seeks the glo-
bal energy minimum, which would correspond to lining all
the N dislocations up in a smooth single vertical wall with a
constant vertical density of dislocations in the wall. But the
system suffers from two sources of frustration that never
allow such a global minimum to be realized. The first is that
the dislocations are randomly placed on slip planes, and
climb is not allowed, or at least only under strong constraint.
This means that the minimum energy vertical wall has a
random variation in the vertical dislocation density in the
wall so the energy is higher than the global minimum. The
second frustration is subtler, and is associated with the pecu-
liar angular dependence of the glide force between two dis-
locations. For a given pair, if they lie oriented within a sector
+45° about the slip plane, the force is repulsive; otherwise,
the force is attractive. For many dislocations in an attractive
orientation, the configuration becomes a vertical wall. In the
repulsive orientation, of course, the dislocations do not line
up in vertical walls. As additional dislocations in both orien-
tations are added, the situation becomes very complex, but
the minimum energy for the system will not consist of a
single vertical wall of dislocations. Instead, some local
groups of dislocations will form wall configurations, while
others will maximize their relative distances from one an-
other.

These two sources of frustration lead to a fluctuating back
stress on the slip plane at the relaxed structure which consti-
tutes a resistance to ordering. In the micromechanics of the
system, to achieve a completely perfect vertical wall, some
dislocations would have to surmount an energy barrier. We
term this fluctuating back stress the noise in the system and,
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in these terms, the actual system minimum corresponds to a
balance between the global energetics favoring wall forma-
tion and the noise that resists it.

The standard approach in chemical statistical thermody-
namics would be to introduce a specific assumption for the
energy of the dislocation system and compute the appropriate
partition sum. But in the dislocation problem, the interaction
energy between pairs is not only long ranged, but angular
dependent, which leads to a degree of complexity never ad-
dressed in the field of chemical thermodynamics. In the face
of this difficulty, instead of attempting to compute the parti-
tion sum for a multiparticle system, Ngan'' focuses on the
energy distribution among the lattice sites of the system ex-
pressed in terms of a local density of dislocations. This
amounts to the adoption of a field method for the problem,
where one works with the more primitive distribution func-
tions, P(E,) in Eq. (9).

A. Analytic energy distribution functions

We proceed from the energy of a particular system of the
ensemble in terms of its individual energy states,

E_Y:E €si» (12)

where in the field approach mentioned above, the index pair,
{si}, refers to the ith lattice site of the sth system in the
ensemble. The definition of the entropy of the system follows
from Eq. (3), where the sum over the index, s, means the
sum over the energy probability distributions of the systems
of the ensemble. S, is the entropy of the entire ensemble,

Sens == > P(E)In P(E,). (13)

The distribution functions for independent systems can be
written as a product of normalized distribution functions for
the individual systems, p(e,;)

P(E) =TT p(e). (14)

The free energy of the ensemble is also decomposed into the
individual free energies of the systems composing the en-
semble,

b}

Fens = Eens - GSens = 2 FS’ 0=

> =

Fs = Es - QSA = 2 [Esipe(fsi) + aps(fsi)ln(pe(fsi))]

= f [Eszpe(ew) + 0p5(6si)ln(pe(€xi))] desis
(15)

where the individual system entropies are Sq,=2,S,. Writing
Sens as the sum of the individual system entropies can only be
done at equilibrium and, for dynamical systems, involves a
subtle argument about the difference between coarse grained
and fine grained distributions.!® We expect no such difficul-
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ties in our nondynamic relaxing dislocation system because
there is no Poincaré cycle in these systems, and the distribu-
tion function is always “coarse grained” with a well defined
time arrow.

In the last equation, the discrete variables have been con-
verted to continuous functions and p(€;) is the normalized
probability that a lattice site i has the energy, €. Since we
wish to work with dislocation lattice densities, p, a new
probability density function, p,(p) must be defined by

Pop)dp=pde)de. (16)

Here, p is the normalized density defined as p=p’/p, where
p' and p are the absolute and mean densities, respectively.

The physics of the dislocation system is fully determined
when the energy of a lattice site is specified in terms of the
local density of dislocations. In addition, we specify that the
density distribution is normalized. The problem is then to
determine the probability distribution, p,. Since the probabil-
ity distribution function is so far arbitrary (within the con-
straint of a fixed number of dislocations), the probability
density of interest is the one at mechanical equilibrium,
which means the one that minimizes the free energy function
with respect to the probability distribution function. (As in
standard statistical thermodynamics, for a canonical en-
semble at equilibrium, the free energy is a minimum.)

The only conceptual question remaining is that the sub-
script, s, remains on system functions, and since the system
is canonical, these quantities vary from system to system in
the ensemble. Final results are obtainable for the ensemble,
when the system quantities are summed over, e.g., F=XF,.
In practice, it is often possible to ignore the difference be-
tween F for a particular system and F/M, because for a
large ensemble, M, the relative fluctuations become very
small. With this assumption, in the following, we drop the
subscripts s.

Thus we engage, once again, in a constrained minimiza-
tion process, but this time for the free energy of the system,

OoF
— =0, (17)
op,

with the constraint that the number of dislocations is fixed,

f ppy(p)dp=1. (18)

(8F,/ 8p) is the variational derivative with respect to the
function p,,. If it is possible to write a relation between the
energy at a lattice site and the local dislocation density at that
site, then the mathematical procedure laid out is well defined.

In his previous work, Ngan'! explored a problem that is
equivalent to the process above except he assumed a micro-
canonical ensemble. That is, he considered a single system
with fixed energy. We will wish to work with an ensemble
with fluctuating energy, so the canonical ensemble is the ap-
propriate one for the dislocation problem. This introduces a
slight change in the analysis, but no practical difference in
the final result.
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He introduced two different energy functions: One appro-
priate for low densities of dislocations and a second appro-
priate to high density, where the dislocations are already in
walls. The one for low density was

aub® p;

eV(p))=—"—In| — |, (19)
4 Pmin

where the prelogarithmic factor is a constant and p,;, refers

to the outer cutoff radius for the dislocation distribution. For

high density, he considered the function

! alu’b2 pmax
e?(p!) = - 1n<—,), (20)

where p,..=1/b% Note that these two energy functions are
on a per unit dislocation length basis in a local environment
with density p.

In this paper, we use these energy functions in a very
different way than in his earlier paper. Our strategem, here, is
to introduce a distribution composed of two independent
subdistributions of dislocations; one which corresponds to
pairs oriented in the repulsive manner and a second which
corresponds to pairs oriented in the attractive manner. Be-
cause of the physical symmetry, we will assume that half of
the dislocations, N,/2, are in the repulsive distribution and
half in the second. The energy function for the first repulsive
distribution is simply Ngan’s energy expression for the low
density limit, Eq. (19), where €' is the energy for the repul-
sive density and p; refers to the repulsive density function.
The energy function for the attractive distribution is Ngan’s
expression for the high density limit, Eq. (20), where €?
refers to the energy of the attractive distribution density
function, p,. Even though, in his earlier paper, these two
functions were meant to describe a single distribution in the
two physical limits of low and high density, they are also the
appropriate functions for repulsive and attractive subdistribu-
tions, respectively.

This strategem is, of course, highly arbitrary and contains
serious energetic inconsistencies relative to real dislocations.
For example, the model does not include interactions be-
tween dislocations in different distributions, even though, in
reality, these interactions are very important. Indeed, it is
these interactions that form the basis for the frustration in the
system, and which leads in turn to noise. A second inconsis-
tency is that no exchange from one distribution to the other is
allowed when pairs switch their character during motion.
Nevertheless, because the two-distribution model distin-
guishes repulsive interactions from attractive ones, and is
analytic, it is a very attractive toy model to explore. The
physical interpretation is that the two different subsystems
coexist on the same lattice at the same time.

B. Effective temperature

As noted previously, through the temperature, 1/, the
system is subject to fluctuations. At the equivalent of abso-
lute zero temperature, each subsystem will sit in its global
energy minimum. In the repulsive case, that will be a com-
pletely ordered state with each dislocation equidistant from
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every other on a regular dislocation lattice. In the attractive
case, that will be a state with the system in a single ordered
wall stretching from the upper boundary to the lower. (In
both cases, there is no injunction against climb, so there is no
constraint to the system achieving an absolute global mini-
mum.)

But, physically, the system cannot achieve the state of
lowest global minimum, because of the two forms of frustra-
tion in the model: The constraint of no climb and the angular
dependent force law. Both forms of frustration lead to noise
in the sense of fluctuations in the back stress in the system.
Of course, there is a minimum back stress noise level in even
a completely ordered wall, and all other noise is measured
against this minimum value. Since the noise contributed by
the climb, constraint is small compared to that contributed by
the angular dependent forces; we will simply designate the
“noise” as the noise generated by the angular dependent
force law.

In the two-distribution model, this noise is generated by
the forces between a dislocation in the repulsive distribution
and a dislocation in the attractive distribution. Setting the
temperature to a positive value introduces the noise in the
system that prevents complete global ordering between the
two populations, and thereby injects the frustration physics
in an ad hoc manner. With this perspective, it is appropriate
that 3 is the same in the two distributions, since interactions
between a repulsive dislocation with an attractive one is ex-
actly the same as the interaction of an attractive dislocation
with a repulsive one. In the earlier language, this means the
two distributions are, in fact, in contact with the same heat
bath.

Since the distributions are assumed to be completely in-
dependent of each other, the total elastic energy of the two
dislocation populations for a particular system in the en-
semble is

ES oo oo
—=| eppile)de+ | eppe)de+¢g. (21)
Ny Jo 0

Here €, and ¢, are given by Egs. (19) and (20), respectively,
so that the two integrals represent the interaction energies
between dislocations, and €, is an unimportant constant term
representing the self-energies of the individual dislocations.
In Eq. (21), p=p’/p, where p is the mean density in each
population, and the appropriate subscripts to the variables are
added when applying to a particular subdistribution. The en-
tropy S, is given by Eq. (15)

o

%=—k1f pi(e)In[p(€)]de —sz pa(&)In[py(e)]de;.
a 0 0

(22)

In the light of Egs. (19) and (20), normalization with the
energy terms can be achieved by setting the two Boltzmann-
like constants to be

aub?
4

apb®  k
, ky= =—. 23
2T 8n 2m (23)

kl=
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FIG. 1. (Color online) Probability density functions for the two
noninteracting populations for different values of the effective tem-
perature, 6.

The effective temperature, 6, is defined from the effective
free energy function in Eq. (15). Note that the two popula-
tions are linked by a common temperature 6, interpreted as
the retained noise level in the system.

Following the analysis carried out in Ngan’s earlier paper,
minimization of F in Eq. (15) with E; and S, defined respec-
tively in Egs. (21) and (22) leads to

A p
pi(p) == eXP[—l(cl —In pl)],
P1 0

24T

i ps - 02)} (24)

Ay
Pa(p2) = — exp
P2

The constants, ¢, in Eq. (24) are set to enable satisfaction of
the auxiliary constraint

f pp(p)dp =1 (25)

0

for each population. The constants, A, are normalization con-
stants. As discussed in Ngan’s earlier paper, because the
force law is attractive, the probability function for population
2 diverges with p, and so, in practice, the upper limits in the
constants in Eq. (25) have to be replaced by a maximum
density (e.g., 10).

Figure 1 shows the probability functions for the two
populations evaluated at three different temperature values. It
can be seen that at a small temperature value (6 = 1), the
two populations adopt behaviors governed mainly by their
force laws in Egs. (19) and (20), namely, population 1 tends
to adopt a uniform distribution [with a unimodal p,(p;)] in
which dislocations are kept furthest apart from one another,
and population 2 adopts a segregated distribution in which
high and low density domains coexist. At increasing tem-
peratures (e.g., =100), however, the two populations tend to
behave the same way, with a fractal-type power law density
distribution. The force law therefore does not matter much in
determining pattern formation at high noise levels.
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IV. 2D COMPUTER SIMULATIONS

In an earlier computer simulation study of edge disloca-
tions with a single Burgers vector in 2D, Thomson et al.'®
found an ensemble driving force for ordering due to energet-
ics, and another disordering force due to the noise. They
showed that the relaxed equilibrium state corresponded to a
balance between these two ensemble forces. The purpose of
this section is to extend the earlier treatment by integrating
the ensemble force balance at the relaxed equilibrium state to
find a phenomenological effective free energy for the 2D
simulation system and, from that, the effective temperature
of this 2D discrete system. In addition, we will also extend
the earlier work by exploring the time dependence of the
Boltzmann H function (i.e., the entropy) of the system as it
relaxes under the action of the force laws. Finally, we will
show how the 2D discrete simulations relate to the analytic
model of the previous section.

A. Phenomenological integration of the ensemble
driving forces

In the simulations of Thomson et al.,'® the sample is a 2D

square cell 1000 sites on a side containing N straight parallel
dislocations vertical to the sample cross section. The Burgers
vectors are all in one direction, X, and all of a single sign. (In
a true metal, this would correspond to a bent crystal, but we
do not allow the lattice to rotate. This feature makes the
model highly nonphysical, but we are free to study any “toy”
model we like, so long as it is self consistent.) The disloca-
tions interact with the fully angular dependent 2D elastic
interaction.

In the modeling, an initial distribution is generated ran-
domly and the system is allowed to relax under the interac-
tion forces. Specifically, in a simulation, the force on each
dislocation in turn is computed. If the absolute value of the
force on the dislocation is greater than a specified value (the
analogue of the Peierls stress), that dislocation is then moved
one lattice spacing in the direction of the force. The force
computation is repeated ten times for each new position, and
then the computer moves on to the next dislocation in the list
in repeated relaxation cycles till the system is perceived to
have converged. Note there is no kinetic energy in the sys-
tem, because that is quenched out every time a dislocation is
moved. After the system has relaxed for a specified number
of cycles, a new simulation is performed with a new starting
random configuration for a specified number of simulations.
The totality of simulations constitutes an ensemble. En-
semble averages for the interaction energy, etc. can be com-
puted for each relaxation cycle, so the relaxation history of
the system can be examined.

It is found that for small Peierls stress, the relaxation is
complex, with one fast relaxation, followed by a second
much longer relaxation. We will identify the “time” with the
total count of relaxation cycles from the beginning of a simu-
lation.

The ensemble functions computed from the simulations
are the total interaction dislocation energy, &, the noise, R,
which is the average of the square of the stress at each point
on a slip plane, and the wall correlation function, C. The wall
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correlation function is simply the vertical pair correlation
function. (This is a small deviation from the wall correlation
function defined in Thomson et al.'®). The ensemble func-
tions are all functions of the cumulative number of relaxation
cycles in a simulation, #, and on the total number of disloca-
tions in the system, N,. If the Peierls stress is above a critical
value, all the ensemble functions of the early system re-
sponse are found to be simple exponentials,

E(Ny1) = eg(Nyexp(—t/a(Ny)) + e, (N,),
R(Ngt) = ro(Nyexp(=t/{(N,)) + ri(N,),

C(N 1) = co(Ngexp(=t/Y(N,y)) + c1(N,). (26)

Note that here ¢,<<0, while all other constants >0, i.e., £
and R decrease with t while C increases with ¢ as relaxation
proceeds. It is also found that the initial relaxation times for
& and R were roughly equal. C has a much longer relaxation
time than £ and R, so that wall formation continues long
after the fast relaxation for £ and R have ended. The long
relaxation tails observed for £ and R after the fast relaxation
has ended at t=2a, and when the Peierls stress is small(
<6X1074 ), are associated with the longer relaxation time
for wall formation. These long tails are slow power laws, £
~1t2 and R~172, instead of exponentials. The fast relax-
ation stages appear to be associated with relatively gross re-
arrangements of the dislocations, and the longer tails with
small energy changes associated with relatively subtle later
stages of wall formation. In this subsection (but specifically
not in subsection D), to keep the model as simple as possible,
we will choose the value of the Peierls stress to restrict the
system within the fast relaxation regime of the energy, so
that the ensemble functions are describable in terms of a
single exponential function. In addition to this rather heuris-
tic use of the idea of a Peierls stress, we will also use it
below as a control parameter to explore the physics of the
relaxation process.

An ensemble driving force, Fg(N,, 1), for ordering is de-
fined as

k)

JE(N 1)
—d> __ &Y ug
N

fE(Nd’t) == (8C(Nd t)

Co¥

_ Yy
T a+y

(27)

where the second line is valid for the fast relaxation regime
at fixed N. We find that the relaxed state is determined by

fg(Nd,lz 2(1) = fR(Nd,tz 201) = KR(Nd,tz 20.’) (28)

The time, 2«, is a convenient time at the end of the fast
relaxation regime, which we define to be the relaxed state.

Using this convention for the relaxed state, it is found that
k is a fixed constant for different N,;. That is, xk depends only
on the force law, and not on N,. But we note a subtle point.
For two relaxed states of different Peierls stress, « is differ-
ent. As the Peierls stress increases, « decreases.
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B. Phenomenological time dependent free energy function

It is possible to integrate the force balance equation to
obtain a function whose minimum corresponds to the force
balance at the relaxed state. Such a function, the effective
free energy function, is

G,=E-0S,, (29)

such that at the relaxed state, QI, is a minimum,

ag aS
[—"} :—lfg+ 0—”] =0. (30
(96 Ngi=2a ac Nd,t:Za

Comparing the equilibrium conditions in Eq. (28) and Egq.
(30),

2 - —_ = — K] —Da-
9 Jyma LR (GCIIR) |y s, Nat=2

@31

This is a condition for one time only, so it can be satisfied in
a number of ways, which we tailor to satisfy the physical
requirements. We thus postulate that

{ 38,(Ny z)} .

8 N, = RN, 5
IR(N 1) (N t) = KR(N 1)

- )
Ny

6(N,) = R£ (32)
“ IR Nd,t=2a.

According to the second of these equations, the effective
temperature, 6, is proportional to the noise, R, at the equi-
librium point, which is physically satisfying. It is defined for
a time dependent process in terms of the final relaxed state.
Note that the temperature is positive, because (dC/JIR) is
negative. The expression for the free energy is now fully
determined, is consistent with the balance of forces at ¢
=2q, and is given by

g1,= E- Ka(Nd)R(Nd,[) =+ KR(Nd,t)lRa_C‘|

Nd,t=2a
(33)

For a different simulation with a different starting number
of dislocations, the functional dependence on N, can be de-
termined. Such a (time dependent) free energy function has
all the necessary properties, and completely describes the
simulation ensemble and its relaxations.

C. Path dependence and flatness of the relaxed states

We turn now to the application of the time dependent
Gibbs analysis to the computer model. But before that can be
done, two consistency checks must be run: The intermediate
states must be independent of the path so the ensemble vari-
ables are unique and the time dependent system must corre-
spond to flat ensembles.

During a relaxation process, there is only one relaxation
path, so there is no question of reaching the state by different
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FIG. 2. (Color online) Demonstration that the final relaxed en-
semble is the same independent of how it is achieved.
“Energy100.dat” is for five relaxations with varying P stress, and
“Energy10005.dat” is for a single relaxation with very small P
stress.

paths. But the final relaxed state can also be approached by a
series of intermediate relaxation paths during which the
Peierls stress of the system is changed during the relaxation.
We show in Fig. 2 that the final state is in fact independent of
intermediate Peierls stress changes, so the ensemble states
and the effective free energy function, G, etc. derived for
them, are all well defined. These simulations were done in
the standard way16 for 50 dislocations. In each simulation, a
sequence of five values of the Peierls stress is chosen in turn,
starting with a high value and ending with a very small
value. Thus each sequential relaxation after the first starts
with the partially ordered state of the previous relaxation.

To confirm that the 2D computer model represents a flat
ensemble, we show that a fully relaxed system of 50 dislo-
cations does indeed conform very accurately (for very large
numbers of simulations) to a Gaussian distribution. See Fig.
3. Of course, this demonstration is only the necessary condi-
tion, and not sufficient. But, physically, the probability that a
Gaussian distribution can be achieved and not correspond to
a flat ensemble should be very small.

0.2

dE
-75 -50 -25 25 50 75

FIG. 3. (Color online) Plot of cumulative energy distribution,
P(dE), in the completely relaxed state for 50 dislocations. dE is
proportional to the energy decrement relative to the maximum of
E,, dExE—FE,,.. Averaged over 5000 simulations. An error func-
tion fitted to the same width is plotted on the same graph. The two
separate curves can hardly be resolved on the figure.
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38 . , . '
‘Hdal |
-39 8.986*exp(-x/112.1)-47.13 - -

Time

FIG. 4. (Color online) Plot of the numerical computation of
H(N,4=50,1) for 50 dislocations as a function of time for long times,
showing a peak at about time =~20. Averaged over 5000 simula-
tions. The time is in units of cumulative relaxations within a simu-
lation. The dashed line is an exponential function with relaxation
time in the long time limit of 112.1.

D. H function for the computer model

With these two consistency checks out of the way, we turn
now to the direct numerical computation of the time depen-
dent H function for the 2D computer model from Eq. (3).
This result is shown in Fig. 4 for 50 dislocations.

The function, H, is found in Fig. 4 to be an increasing
exponential initially, whose initial relaxation time is =4.08.
This result apparently contradicts the H theorem and implies
a decreasing entropy during early relaxation. Figure 4 is plot-
ted for a very small Peierls stress, so the relaxation can go to
completion at long times. For these long times, the H func-
tion develops a peak and decreases slowly.

What can be happening here?

During the early fast relaxation, the rapid energy release
drives the system quickly to the relaxed wall configuration.
During this rapid relaxation, the effective I" space available
to the ensemble decreases, the probability of the system de-
creases, and the Boltzmann entropy also decreases. In these
fast relaxations, the large interaction energy changes are to-
tally quenched after each relaxation, and this loss in potential
energy is not converted to kinetic energy as it would be in a
system where the energy is conserved, or in the actual physi-
cal system, where this energy is converted dissipatively into
heat. In the parlance developed for such simulations, a
“thermostat”!? is introduced to skim off the kinetic energy of
the dislocations and/or the heat generated after each relax-
ation step in the computer. Of course, for the total physical
system including the action of the thermostat, the total en-
tropy of the physical system must necessarily increase during
a relaxation. But the H theorem is not obeyed for the quasi-
static system during the fast relaxation, because the system is
not isolated.

The initial rising part of the H curve fully captures the
changes in the system I' space, however. In particular, the
entropy is predicted to be proportional to R according to Eq.
(32). The early rise in H has a relaxation time of 4.08, while
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the relaxation time for R is {=4.9. The rough consistency
between these relaxation times confirms the fact that H in-
deed roughly tracks the increasing order in the system during
the fast relaxation and its description via the phenomenologi-
cal free energy.

Once the fast relaxation is over, however, the ordered
state is essentially formed and the energy relaxation changes
its character. At this point, instead of relaxing exponentially,
the energy relaxation switches to a much slower quadratic
power law decrease. (See Sec. IV A.) The correlation func-
tion, C, does not show this two stage behavior, but instead
decreases exponentially with a very long relaxation time of
110 throughout the entire process of both fast and slow re-
laxation. It is striking that the relaxation time for H past the
peak is 112, or within numerical accuracy, the same as the
relaxation time for C.

We believe the continuing relaxation after the peak in H is
to be interpreted in terms of the standard decrease of H for a
(nearly) closed system of fixed energy. This is because the
energy changes very little during the slow relaxation, com-
pared to the exponentially decreasing H. When the system
enters the slow relaxation regime, the major features of the
ordered state have been achieved, and after this, the en-
semble system explores a variety of neighboring states con-
sistent with a nearly fixed energy. Such neighboring states
might correspond to small further refinement of the walls, or
to excursions of dislocations caught in shallow energy
minima outside the walls. The expansion of the I" space as-
sociated with these low energy excursions corresponds to
decreasing H and increasing entropy. The fact that the relax-
ation times for C and H are the same is evidence that the
changes in H during the slow relaxation are to be associated
with subtle configuration changes. All this would be consis-
tent with an effectively closed system, for which the Boltz-
mann H theorem is satisfied.

This discussion can be encapsulated in an equation for the
ensemble entropy, Sy

Sens(t) = Smean(t < za) + SVal'(t > 2a)7 (34)

where S,.., describes the fast relaxation to a kind of mean
field state and S, is the entropy of a system exploring a
wider region of I' space. S, i a decreasing function of
time, while S,,, increases with time.

E. Comparison of the noise in the analytic
and computer models

In Eq. (32) in the phenomenological approach, it is shown
that the quasitemperature is related to the noise level R at
equilibrium. In this section, we will show that a similar con-
dition can also be obtained from the analytical model.

We begin by noting that the shear stress at a given lattice
point is due largely to a nonzero gradient in the local dislo-
cation density function. More precisely, the shear stress 7,1/,
at the midpoint between lattice sites i and i+ 1 on a slip plane
is approximately given by
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ub’?
Tiv12 =~ @(PM - Pi)’

Tir1/2
2ub’p

Liyin= = Piv1 ~ Pis (35)

where p; and p!,, are the dislocation densities at sites i and
i+1 which are assumed to be spaced b apart, p=p’/p, p is
the mean density, and #;,,, is a normalized form of 7, . In
Eq. (35), the effects of dislocations at other, more remote
sites are ignored. Since the dislocation densities at i and
i+1 are distributed according to p,(p), the probability distri-
bution of #;,,,, is

pt(ti+1/2)=f f Pp(Pi)Pp(Pm)é[l‘M/z—(Pi+1—Pi)]dpidpm,
o Jo

(36)
where -] is the Dirac delta function. The Laplace trans-

form of p,(¢) in Eq. (36) is

17;(5)=f fPp(Pi)Pp(Pi+1)3_(pi*‘_p")sdpidpi+1
0 Jo

=Pp()Dp(=5), (37

where p,(s) is the Laplace transform of p,(p) and s is the
transform variable. From a physical point of view, the mean
of the shear stress should be zero, and indeed the same con-
clusion can be seen from Eq. (37), since

= J tp(t)dt =-p;(0)=0. (38)

The noise R in the phenomenological approach is the mean
of the square of the shear stress, and so is given by

R ()= f oo p(0dt = 5;(0), (39)

and from Eq. (37), (¢?) is given by

() =2{p,(0)p,(0) - [7,(0)} =2[F,(0) - 1], (40)

since, by the normalization conditions of [(p,(p)dp=1 and
Eq. (25), p,(0)=1 and ﬁ;',(O):—l. Assuming the equilibrium
low-density distribution,

pp) =" exp[‘-’(c_m p>],
p 0

p,(0) = f p’py(p)dp=A f p eXp{ %(c —1In p)]dp,
0 0

(41)

and so the noise R at equilibrium can be evaluated as
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FIG. 5. Equilibrium noise at various temperatures, computed
from Eq. (42).

R o (2 =2 Afxpexp[%(c—lnp)}dp—l . (42)

0

Here A and ¢ are normalization constants for the p,(p) func-
tion at each @ value; they are therefore known functions of 6,
i.e., A(A) and c(6). Figure 5 shows the values of {t*) com-
puted at different values of € over several orders of magni-
tude. It can be seen that the computed noise level at equilib-
rium is approximately proportional to the temperature. In the
phenomenological approach, there is a factor dC/JR in the
relationship between temperature and noise as in Eq. (32).
The wall correlation function C cannot be defined easily in
the analytic approach but, in any case, exact agreement be-
tween the two approaches is not to be expected because the
force laws used in the computer and analytical approaches
are very different.

V. CONCLUSIONS

The original motivation in doing this work was to better
understand the nonthermal problem of dislocation order evo-
lution during metal deformation. After struggling with the
extant ideas about the problem, we came to the firm conclu-
sion that the question had to be addressed in terms of a
competition between energy and noise in the system. We
believe this is even true from a kinetic standpoint: The dis-
sipative processes are very noisy, and they compete with
energetic forces which tend toward order. This viewpoint
eventually thrust upon us the fact that what was happening in
this system was very similar to what happens in thermody-
namics when thermal fluctuations frustrate ordering forces,
for example during melting of an ordered solid. But one
cannot use standard thermodynamics for this problem be-
cause of the discrepancy between thermal energies and the
elastic driving forces in the deforming system. Our first step
was to develop the analogue of ensemble forces in the de-
forming solid, and show that the ordered state was, indeed, a
balance between noise and energy. But, with the current pa-
per, we have gone to the core of statistical mechanics as
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developed by Gibbs and shown that his basic ideas associ-
ated with the properties of flat ensembles of systems are fully
applicable to our class of nonthermal mechanical systems.
Instead of using the idea of a thermal heat bath, however, for
the definition of the temperature of the system, our heat bath
is supplied by the noise in the system, which can be signifi-
cant even at zero Kelvin temperature. This is even true when
the noise is created by processes that are embedded within
the physics of the system itself. In the dislocation problem,
indeed, one principal cause of the noise is the angular depen-
dent force law between dislocation pairs and the frustration
this generates when many dislocations are present. Of
course, in the full complexity of the deformation problem,
there are other potent sources of noise, as well, such as pair
formation, lock formation, point defects, etc. Studies of these
additional sources of noise are left for future work.

In the current paper, we therefore begin with an extension
of Gibbs statistical mechanics to the nonthermal regime suit-
able for the dislocation problem. In the relaxed equilibrium
condition, we demonstrate the meaning of the temperature,
and rules for extending the standard thermodynamic func-
tions to apply to the nonthermal regime. It is shown that the
partition sum is well defined, and that analysis analogous to
standard chemical statistical thermodynamics is possible. Al-
though, to our knowledge, our use of the Gibbs theory is
new, it sidesteps the problem of the nonequilibrium statistical
mechanics of nonlinear dynamic systems, which has re-
ceived intense attention in recent years. (See, for example,
Rondoni and Cohen.*) In our work, though time dependent,
the system is not dynamic in the Hamiltonian sense and the
H function is well defined and finite.

Our first application is to an analytic but approximate
treatment of equilibrium dislocation structure formation. Our
approach is very approximate, but highlights in a very intui-
tive way the role of the dislocation temperature. This meth-
odology results in a prediction for ordered walls as a func-
tion of the strength of the noise, and exhibits a regime for
high dislocation temperatures where the structure degener-
ates into a fractal inhomogeneity that is akin to the “tangle”
formations observed in the earlier stages of deformation.

The second application is to direct computer relaxation
simulations of a 2D dislocation system composed of edge
dislocations of a single sign Burgers vector. In this system,
studied earlier by Thomson et al.,'® the system is observed to
order partially, and the ordered relaxed state is associated
with a balance between ensemble energetic and noise forces.
In the current paper, we show that a function analogous to a
time dependent free energy function can be defined, phenom-
enologically, for this system, whose minimum corresponds to
the relaxed partially ordered state.

We then show that during an initial fast relaxation, the
Boltzmann H theorem is not obeyed and the entropy de-
creases. We interpret this in terms of energy thermostat trans-
actions, which damp out for long times. At long times, the
system enters a very long relaxation at nearly fixed energy,
the Boltzmann H theorem is obeyed, and entropy increases.
This is consistent with a system of nearly constant energy but
varying order.

There are important differences between the analytic stat
mech model studied in Sec. IIT and the relaxed 2D computer
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model in Sec. IV, which give complementary insights into
the dislocation ordering problem. In the computer model, the
full angular dependent force law is employed, so the frustra-
tion and noise is generated self-consistently by the system
itself. Thus the dislocation temperature is not tunable—the
heat bath is self-consistent with the physics of the dislocation
interactions. However, in the analytic model, we separated
the dislocation population into two subpopulations: One for
the attractive orientations of the dislocations and one for the
repulsive. The unperturbed energy functionals for these sub-
populations do not possess interaction terms between the two
populations, so the ground state of the system is fully or-
dered with half the dislocations in a single perfect wall and
half in a regular lattice. But the fluctuations caused by the
noise temperature are tunable, corresponding to turning on
the interactions between the populations in a tunable manner.
Thus the analytic model illustrates in a very graphic and
intuitive manner the ordering physics in the dislocation sys-
tem, even though the model is much more approximate and
abstract than the computer model.

But our 2D computer modeling has addressed only an
extremely simplified version of the dislocation problem. In
particular, it is restricted to the 2D case, and there is only one
Burgers vector present, so no annihilation takes place, and no
dipoles are formed. Further, the relaxed structures found can
be expected to be different from those in a steady state de-
formation, and it would be useful to explore the steady state
deforming system in 2D.

If one asks how the ideas developed here for 2D disloca-
tion systems might be extended to 3D, the first answer is that
the general idea that noise and energetics drive the system in
opposite directions is surely valid. But to extend the analytic
model to 3D seems impossible for the same reason that no
analytic dislocation theory can be extended into 3D. How to
extend the ideas developed for the 2D simulations to 3D is
more interesting. Although a direct implementation of a large
3D ensemble is impossible at present, the idea of a 3D en-
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semble of systems is certainly valid. Also, the noise function
is easily extended to 3D. Likewise, it should be possible to
define a 3D wall correlation function from which an ener-
getic driving force could be defined. But such a 3D driving
force will be weaker than the 2D analogue, because of com-
petition from other 3D energetic driving forces. Neverthe-
less, the general concept seems possible, and the extension to
other driving forces sounds to us like a fruitful direction to
explore for understanding the very complex physics of metal
deformation. Thus an extension to 3D seems possible in prin-
ciple, but implementing it straightforwardly in practice
seems beyond our current capabilities.

One alternative idea presents itself to us: Would an en-
semble of simulations be necessary in 3D? Maybe not, be-
cause any single implementation of a 3D dislocation system
may be sufficiently complex to incorporate enough of the
statistical variation of an actual ensemble to be useful. But, if
so, the 3D system would have to contain a large number of
cells to generate the necessary variability—another challenge
to current computer capabilities. But if such a proposition is
valid, then 3D implementation of the ideas of this paper
might be feasible. In any case, this is another question for
later investigation.

The existence of a time dependent H function as a means
for studying dislocation structure evolution in combination
with the twin ideas of ensemble defined driving forces and a
noise induced effective temperature is the main vista we
hope has been opened up in this paper. However, there are
clearly many relevant directions yet to be explored.
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