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Agent-Based Modeling of Supply Chains
for Distributed Scheduling

Jason S. K. Lau, George Q. Huang, K. L. Mak, and L. Liang

Abstract—This paper considers a supply chain that comprises
multiple independent and autonomous enterprises (project man-
agers) that seek and select various contractors to complete opera-
tions of their project. Both the project managers and contractors
jointly determine the schedules of their operations while no single
enterprise has complete information of other enterprises. The
centralized scheduling approach that can usually obtain good
global performance but must share nearly complete information
that is difficult or even impractical due to the distributed nature
of real-life supply chains. This paper proposes an agent-based
supply chain model to support distributed scheduling. A modified
contract-net protocol (MCNP) is proposed to enable more infor-
mation sharing among the enterprises than conventional CNP.
Experimental simulation studies are conducted to compare and
contrast the performances of the centralized [centralized heu-
ristic (CTR)], conventional CNP, and MNCP approaches. The
results show that MCNP outperforms CNP and performs com-
parably with CTR when project complexity is high in terms of
the total supply chain operating cost. Moreover, it is found that
although CTR is better than MCNP in terms of global perfor-
mance, MCNP yields good schedule stability when facing unex-
pected disturbances.

Index Terms—Agent-based modeling, distributed scheduling,
information sharing, project scheduling, supply chain.

I. INTRODUCTION

HIS paper considers a distributed scheduling problem in

manufacturing supply chains. In such supply chains, there
are multiple enterprises that offer different products to their
customers. One example of the enterprises is original equip-
ment manufacturer (OEM). Generally, there are two supply
chain management (SCM) paradigms for the enterprises to
meet the demands from the customers. The paradigms are
make-and-sell and sense-and-respond [1]. Make-and-sell enter-
prises focus on forecasting demand of customers and managing
production according to the target established by forecasting.
The customers’ demand is fulfilled by available inventory of
the product. The enterprises can save costs due to the advantage
of mass production. On the other hand, sense-and-respond en-
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terprises aim at agilely responding to customers’ demand. The
production is tailored to satisfy the requirements from diverse
customers. This characteristic is called mass customization.
The make-and-sell paradigm is well-suited for the market with
wide consumption, characterized by a very long product life
cycle, a stable demand pattern, and low differentiation. On the
other hand, products that have volatile demand and a short
life cycle need a sense-and-respond supply chain paradigm.
As global competition becomes fierce nowadays, providing dif-
ferentiated products and services in a cost-effective way is the
key for surviving in and, also, leading the market. Such differ-
entiation is best captured by mass customization in the sense-
and-respond paradigm. The way to achieve cost-effective mass
customization is, therefore, of paramount importance for the
enterprises that want to succeed in the market.

The rapid advancement of the Internet and web technologies
enables enterprises to capture (or “sense’) customers’ require-
ments efficiently. The next problem is how the enterprises
respond to the customers’ requirements in a cost-effective way.
In recent years, both industrial practitioners and academia
advocate outsourcing as a tool for improving productivity and
reducing operating cost [2]-[4]. The sense-and-respond enter-
prises can exploit the expertise of other enterprises (e.g., con-
tract manufacturers) for performing production operations. A
well-known example of sense-and-respond paradigm is Dell’s
supply chain. The configuration of personal computers (PCs)
is determined by consumers on Dell’s web site. Dell then
arranges the contract manufacturers and suppliers for pro-
ducing and supplying the components [e.g., central processing
unit (CPU), hard disk, random access memory (RAM), etc.]
of the PC according to the location and preferences of the
consumer. All the suppliers and contract manufacturers need
to join the Dell’s trading network in order to be potential
partners of Dell. The large PC market share (second largest in
world’s sales) and effective selling channels (e.g., online sales)
justify Dell’s investment on the information technology (IT)
infrastructure. It is, however, not economically feasible for
small- and medium-sized OEMs to invest in the IT infrastruc-
ture as complicated as Dell’s. The OEM also does not have the
power to force its supply chain partners to join its IT platform.
A new modeling approach is needed to enable the small- and
medium-sized OEMs to find suitable manufacturing partners
that are distributed in different locations.

This paper proposes a new modeling approach of configuring
and scheduling multiple projects in a network of enterprises
or virtual enterprises, which consist of project managers and
contractors. The project manager coordinates and manages the
process of producing a product on a make-to-order (MTO)
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basis. The process of realizing the product is described by a
project. Each project consists of many tasks or operations
with complex precedence relationship. Each operation can be
performed by a set of alternative partnering enterprises or
contractors. Each contractor is capable of performing one or
more types of operation. Contractors differ from each other
in terms of resource capacity, processing times, and costs
of performing operations. Since the contractors are dispersed
in different geographical areas, the transportation cost and
duration between different contractors are significant when
compared with the processing time of operations. The config-
uration of a project refers to selection of contractors for per-
forming operations of the project. The scheduling of a project
refers to determining when the operations start. Decisions of
the project configuration are made by project mangers while
decisions of scheduling operations are jointly determined by
project managers and contractors. The objective of the con-
figuration and scheduling is to minimize the costs of per-
forming operations, transportation, and tardiness. The resulting
schedule of a project manager should respect the precedence
constraints between the operations. On the other hand, a con-
tractor wants to get as many operations as possible from the
project managers to maximize its revenue without violating
its capacity constraints. In general, we use the term “supply
chain scheduling problem” (SCSP) to describe the above-
mentioned problem.

The supply chain considered in this paper has the following
three characteristics.

1) Information privacy. There is no single enterprise that
has global information about the supply chain. For ex-
ample, a project manager does not know about the
capacity and current operations of the contractor. Fur-
thermore, both project managers and contractors are not
willing to share their operating information to others due
to privacy reason. This characteristic is manifested by the
present global and interorganizational supply chain.

2) Multiobjectives. Participants in the supply chain have
different objectives. The objective of project mangers is
to minimize operating costs of the project. The objective
of contractors is to maximize the revenue earned by
performing operations.

3) Distributed decision making. Each of the project man-
agers and contractors makes its operating decision in-
dependently and autonomously. No single enterprise can
control the decision making of the others.

The purpose of this research is “not” to develop an optimal
or near-optimal algorithm to solve SCSP. As the problem is
complicated and the agents lack of global knowledge in the
problem solving process, finding an optimal or near-optimal
solution is virtually impractical in real supply chains. Instead,
we aim at modifying a well-known distributed problem solving
approach, contract-net protocol (CNP), to address SCSP. The
modification allows multiple project managers simultaneously
select contractors for performing their operations. We also
propose to share time window information by project managers
to contractors in order to improve the performance of the mod-
ified contract-net protocol (MCNP). We will evaluate MCNP

with the proposed level of information sharing by comparing
its performance with a centralized heuristic (CTR), which
requires full information sharing, and the conventional CNP,
which requires minimal information sharing. This research
is unique because effects of different levels of information
sharing on the supply chain performance in SCSP have not
been investigated in literature. Moreover, there are few studies
that compare agent-based coordination approaches with cen-
tralized approaches in supply chain problems. The objectives
of this paper are as follows: 1) to establish a mathematical
model of SCSP; 2) to develop an agent-based model for
SCSP; 3) to propose an MCNP to coordinate agents to solve
SCSP; and 4) to evaluate the global performance of MCNP
with the centralized approach and conventional CNP for the
distributed project scheduling problem.

The remainder of this paper is structured as follows. In
Section II, a literature review on centralized approaches and
CNPs in supply chain planning and scheduling problems is
presented. In Section III, a mathematical formulation of the
scheduling problem will be described. In Section IV, an agent-
based model of the supply chain is presented. In Section V, the
MCNP is described. In Section VI, a CTR to solve the distrib-
uted project scheduling problem is presented. In Section VII,
the performance of MCNP is evaluated. In Section VIII, the
paper will be concluded.

II. LITERATURE REVIEW

There are two general approaches to supply chain planning
and scheduling: 1) centralized; and 2) distributed. The cen-
tralized approach in which computation of the planning and
scheduling are performed by a centralized authority has been
investigated for many years [S]-[9]. The information required
for planning may be centralized or distributed depending on the
nature of problem. Erenguc et al. [10] gave an excellent review
of centralized planning. The centralized approach requires input
of production information (e.g., lead time, operating costs,
etc.) from all of the firms involved in a supply chain. An
optimal plan is generated by one of the firms that acts as a
coordinator and sent back to other firms (e.g., contractors, com-
ponent suppliers). One of the established methods of finding
the optimal plan is mathematical programming. Gaonkar and
Viswanadham [11] formulated a linear programming model
for solving supply chain planning problem under information
sharing. In their model, each firm in the supply chain shares
all of its production information to other supply chain partners
through an Internet-based platform. The centralized approach,
however, has several barriers in implementation despite of its
reported benefits. One of the major barriers is due to reluctance
for a firm to share its private and sensitive information like
operating costs with other firms, which may well be its competi-
tors. Another worry stems from the security and reliability of
sharing sensitive information through the Internet. Even though
each supply chain partner agrees to freely share its production
information to all the others, the computational time of solving
a real industrial problem is tremendous. Moreover, the inte-
grated approach makes it inefficient to react to random events
(e.g., transportation delay) in the supply chain. The solution or
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schedule needs to be recomputed completely whenever there is
an update of local information of each supply chain firm.

The distributed approach, on the other hand, requires lim-
ited sharing of key information between supply chain part-
ners. This approach is characterized by decentralization of
computation and information in a supply chain. The ratio-
nale behind the distributed approach is that each enterprise
makes its scheduling decision based on its local information
and objective. The enterprises exchange their scheduling re-
sults and try to find a common agreement on the global sched-
ule. The process continues until some termination conditions
(e.g., a feasible schedule is obtained) are met. Durfee [12] dis-
cussed several methods in distributed problem solving. By
using distributed approaches, the enterprises need not share
all local information with each other. The computational
efficiency of problem solving can be improved as the local
problem of each enterprise is less complicated than the cen-
tralized one and the local problems can be solved concurrently
by a network of computers in the supply chain. Moreover, as
enterprises can act autonomously, they respond to local dis-
turbances more quickly in the centralized approach. The
distributed approach is, therefore, more reactive than the cen-
tralized approach.

A celebrated distributed approach to planning and sched-
uling is CNP. CNP specifies a bidding approach that enables
task allocation among multiple agents [13]. CNP consists of
two types of decision makers: 1) managers; and 2) contractors.
A manager seeks a contractor to complete a task. It sends a
request to all eligible contractors for getting bids of the task.
After receiving the bids from the contractors, the manager
awards the task to the best contractor based on certain criteria.
CNP has been adopted extensively in job shop scheduling
because of its simplicity and intuitiveness. Job and machine
are represented by manager and contractor in CNP, respec-
tively. Vancza and Markus [14] applied market mechanism
(based on job price) for resource allocation in job shop
scheduling. Macchiaroli and Riemma [15] also proposed a
price mechanism in CNP to assign parts to resources in flex-
ible manufacturing systems (FMSs). Sousa and Romas [16]
presented a negotiation protocol based on CNP for schedul-
ing in a holonic manufacturing system. They proposed for-
ward and backward propagation of scheduling information
between resource holons. A similar backward propagation of
contract in CNP can be found in [17]. The manager starts
task announcement from the last operation of the job. Tem-
poral constraints of the operation are propagated to pre-
ceding operations for further announcements. Baker [18]
demonstrated the viability of CNP in a real job shop envi-
ronment. Saad et al. [19] proposed an FMS scheduling policy
called production reservation. Each job is scheduled only when
it arrives. Xue et al. [20] combined constraint-based search
and agent-based collaboration for production scheduling. CNP
is used to collect resource information and assign opera-
tions to resources. In addition to manufacturing scheduling,
Fischer et al. [21] also reported a successful application of
CNP in transportation domain. Most of the studies on ap-
plication of CNP in manufacturing scheduling consider one
job at a time. If there are several jobs arrive, the jobs are

scheduled sequentially by applying CNP to each job. This
leads to unsatisfactory global performance. Moreover, in
manufacturing domains, agents can use some global informa-
tion of the system in their decision making. For example, part
agents proposed in [15] know the slack information of all
parts in the system. In the holonic manufacturing system
described in [16], resource holons need to know the down-
stream and upstream resources in order to propagate sched-
uling information. Availability of global information may not
be possible in realistic supply chains as discussed in Section I.
Recently, Naso and Turchiano [22] have proposed an intelli-
gent decision making and coordination strategies for part and
workstation agents to solve dynamic part routing problems
in automated manufacturing systems. Like previous research,
the multiagent system requires a supervisory agent to resolve
conflicts. Sousa et al. [23] proposed a new version of CNP
called “contract net with constraint propagation protocol”
(CNCPP) for scheduling manufacturing systems. CNCPP al-
lows multiple task a gents to concurrently negotiate with re-
source agents. The main advantage of CNCPP is the existence
of explicit cooperation between the resource agents in order
to guarantee feasible schedules. This advantage, however, may
not be appealing in supply chains in which contractors or
suppliers are not supposed to frequently and truthfully share
local information.

Agent-based modeling has been considered as a suit-
able approach to modeling distributed scheduling problem in
supply chains. Zhang [24] used a PC supply chain example
to illustrate their negotiation protocol. They investigated the
effects of varying attitudes from self-interested and completely
cooperative on social welfare of the agent society (i.e., sum of
rewards of all agents). Collins [25] developed a bidding sys-
tem for multiagent contract negotiation. The system facilitates
customers to contract a network of tasks to suppliers based on
CNP. Their work mainly focused on presenting a bid selection
algorithm for the customers to determine an optimal selection
of the suppliers. Reis et al. [26] proposed a coordination
mechanism for scheduling a network of jobs in an extended
enterprise. In their multi-agent system (MAS) model, there is
only one supplier for each job and only one customer order is
processed at a time. The product structure is an in-tree struc-
ture. Lee ef al. [27] developed a market-based control mech-
anism for controlling distributed multiple projects in supply
chains. Agents are used to represent projects and resources. The
market-based approach, however, does not guarantee a feasible
project schedule. Wagner et al. [28] examined the production
scheduling problem of a small volume manufacturing supply
chain that produces build-to-order goods. Their model did
not consider alternative component manufacturers and capacity
constraint of resources. Most of the abovementioned agent-
based supply chain models considered only a single customer
order and did not address the competition of resources among
customers. The models did not support alternative resources
with multiple capacities. There also is a lack of comparison
between the agent-based and centralized modeling approach for
supply chain problems.

The agent-based approach is, however, not without limita-
tions. A major drawback of such approach is that the feasibility
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and optimality of the solution are sacrificed when compared
with the centralized approach [29]. Due to the lack of global
information, agents make their decisions independently and op-
timize their local objectives without considering other agents’
constraints and global performance. We are motivated to in-
vestigate how to improve the global performance of CNP to
solving the distributed project scheduling problem by sharing
more information among the enterprises.

III. PROBLEM FORMULATION

In the formulation, N and M represent the sets of project
managers and contractor, respectively. The project manager
and contractor are indexed by m and m, respectively. The
scheduling time horizon is 7' with index ¢ ranging from 1
(the current period) to 7'. Each project manager aims at com-
pleting a project with a given due date and tardiness cost. In
the rest of this paper, subscripts n and m will be omitted when
there is no ambiguous interpretation of symbols.

A project P is defined as a directed acyclic graph (J, E)
where J is a set of operations (nodes) in a project and E is
a set of ordered pair (edges) (¢, j) where ¢,j € J. An ordered
pair of operations (7, j) represents a precedence relationship,
namely operation ¢ immediately precedes operation j where
1,7 € J.The index of operation is labeled by the following rule:
(i,4) = i < j. For example, operation 1 precedes operation 2.
The index of an operation must be greater than the indexes
of its preceding operations and smaller than the indexes of its
succeeding operations. A set of beginning operations is denoted
by B.J. A beginning operationi € B.J C J satisfies (¢,i) € E.
The last operation is denoted by f, which satisfies (¢,7) € E
where ¢ is a null operation. It is assumed that there is one and
only one last operation in P. Notice that f = max;cs(j).

The project information of a project manager n is denoted
by J, and E,. The project manager needs to complete the
project before a due date D, given by its customer. When
the due date is violated, the project manager is penalized by a
unit tardiness cost tc,,. In this sense, the due date is, therefore,
a “soft” due date. When an operation is completed earlier
(i.e., a positive slack time with its succeeding operation), a
unit earliness cost ec; is incurred. Each operation ¢ of the
project can be started only after a known release time rp;.
The release time may represent the available date of some
documents or financial arrangement that enables realization of
the operation.

A set of contractors that are capable of performing operation
i is denoted by AC,. Contractor m has a single resource,
which can be a group of machines or workers. The capacity
of the resource in each time period ¢ is denoted by CP,,;.
The contractor can perform more than one operation at a time.
Processing time, resource requirement, and cost of performing
operation ¢ are denoted by l;,, Gim, and c;,,, respectively.
The lead time and cost of transporting the output of operation @
from contractor agent (CA) h to CA k are lt;;; and lc;pg,
respectively. It is assumed that, in the current model, the
transportation task can be performed by some logistic service
providers that have sufficient capacity to perform the task.
Operation ¢ can only be started after a release time rc; given

by the contractor. The release time indicates the availability
of materials and tooling for performing the operation.

A global schedule of a supply chain is defined as S =
{51,...,5.}. §=(X,,Z,) is a local schedule of project
manager n. X, = {Xi,...,X;,..., Xy} is a vector of start
times of operations. Z,, = {Z;,, } represents selection of con-
tractors for operations. Z;,, = 1 indicates contractor m is
selected for operation ¢, Z;,, = 0 indicates that contractor m
is “not” selected for operation i. Only one contractor can
be selected for an operation. X, and Z, represent sched-
uling and configuration decisions of project agent (PA) n,
respectively.

A mathematical programming formulation of SCSP is
shown as

min
neN Lied,, \meAC;
+ ) S ZinZilein + dcn(Xf)]
(i,j)EEn heAC;, ]{?GACJ'
(D
subject to
X+ Z Zinlin + Z ZinZiltine < X
heAC; heAC;, keAC;

Yn € N, Yi,j € Jn, Y(i,7) € E, 2)

2. >

nEN i€Jyp Xi€[t—lim~+1,t]

Qim sz S CPmt

Vm € M, Vt € [1,T) 3)
Z Zim=1 ¥YneN,Viel, “)
meM
X; € |max (rpi, Z Zimrcim> T
meAC;
VYn € N, Vi € J, S
Zim €{0,1} Vn €N, Vi€ J,, Yme M. (6)

The objective of the problem is to minimize the total oper-
ating cost (TC) of the supply chain (1). The first part of TC
is the sum of the costs of performing the operations on the
selected contractor and the earliness cost of each operation as
defined by

ECWL = €eC; Z Z

(ivj)EEn hEACi7 ]fEACj

“Xi— Y Zihlih>-

heAC;

ZinZ1lting

The earliness cost penalizes idle time between consecutive
operations. The second part is the transportation cost between
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two operations. The transportation cost depends on the choices
of contractors. The last part is the tardiness—earliness cost
function of the project as defined by

dn(t) = ten(t+1p — Dyp), t+1lp> Dy
DT Veep(Dy —t—1y), t+1p <D,
where [; = Z Zrmlgm.
mEACf

Constraint (2) represents the precedence constraints between
operations of each project. It means that the start time of an
operation must be greater than the arrival times of the outputs
of its preceding operations. The arrival time is the left part of
constraint (2). The constraint includes the transportation lead
time between contractors, shown in the last term of the left
part. The capacity constraints of contractors in each period are
represented by constraint (3). Constraint (4) restricts that only
one contractor can be selected for each operation. Operations
cannot be divided into batches for separate processing by
different contractors. Constraint (5) indicates that operations
must start equal to or later than the release dates. Constraint
(6) is the domain constraint of decisions variable of contractor
selection. A global schedule S is feasible if and only if X and
Z satisfy constraints (2) to (6).

IV. AGENT-BASED INFORMATION MODELING FOR
SUPPLY CHAIN SCHEDULING

In this study, we model a supply chain as a multiagent
system. An agent is used to model the scheduling process of
an enterprise. It is implemented as a software program that
is located at the enterprise and aims at building a feasible
schedule by coordinating with other agents in the supply chain.
The two types of enterprises, project manager and contractor,
are represented by PA and CA, respectively. Fig. 1(a) shows
an instance of an SCSP that is modeled as a multiagent sys-
tem. Each PA aims at completing a project that consists of a
network of operations. A contractual relationship between a
PA and a CA is said to be established when the PA selects
the CA to perform one of its operations [see the solid lines
in Fig. 1(a)]. A PA determines the schedule of the operations
with respect to the precedence constraints and transportation
constraints between the CAs. Fig. 1(b) shows the transportation
constraints between CAs. The CA constructs its local sched-
ule of operations obtained from PAs based on its capacity
constraint. Each agent has its own scheduling objective and
acts independently to each other. Since the capacity of CA is
limited, there is resource competition among PAs. The sched-
ule of operations is jointly determined by PAs and CAs. This
is done by exchanging bids that contain proposed start time-
sand related information of operations. Moreover, no agent has
global information of other agents and the whole supply chain.

In addition to PA and CA, there is a middle agent (MA)
that facilitates the scheduling process collectively performed
by PAs and CAs. Specifically, MA has four core functional-
ities: 1) registering PAs that use resources in the supply chain;
2) allowing CAs to advertise their capabilities of performing

<4——  Precedence constraint

Alternative contractor

Contractual relationship

Fig. 1. (a) Instance of a supply chain composed of two project agents and ten
contractor agents. (b) Transportation constraints between contractors.

operations; 3) providing directory of CAs’ capability and ser-
vices for PAs; and 4) coordinating the scheduling process.
Fig. 2 depicts the relationship among PAs, CAs, and MAs.
There are many types of MA proposed in the MAS literature
[30]. Different types of MA have different levels of participa-
tion in the interaction among the agents and require different
levels of information sharing from the agents. In the MAS
proposed in this paper, the MA does not know about sched-
ule information of and contractual relationships among PAs
and CAs. The level of participation of MA in the scheduling
process varies with the level of information sharing. Section V
will discuss the role of MA in the scheduling process under
different levels of information sharing.

A. Project Agent’s Model

There are two objectives of a PA n. One objective is to
find a feasible local schedule S,, = (X,,, Z,,) that satisfies all
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Middle agent

Coordinate

Search for
contractor agent

Negotiate proposed start

times of operations

Coordinate
Register
capability
Contractor [
agent P

Project agent

Establish a contractual

relationship

Fig. 2. Agent-based modeling for supply chain scheduling.

precedence constraints between operations. Another objective
is to minimize the operating cost of the project.

PA’s knowledge is defined as KN = {P, D, tc, {ec;,rp;,l; },
{AC;}, {(Mtink,leink)}, {B:i}}, which are the project infor-
mation, contractor capability, transportation lead times and
costs, and bids information (B;) of CAs, respectively. I;
is an estimated processing time of operation i. We assume
that a PA can estimate the process times of its operations
by the experience of the project manager. The capability of
contractors can be obtained from the directory service offered
by the MA. The transportation lead times and costs between
two contractors can be obtained from logistic service providers.
A bid (b) of operation (7) submitted by a CA (m) is defined as a
tuple (i, M, Pim, Yim, lim) Where p;, is the price of performing
the operation, Y;,, is the proposed start time, and l;,, is the
proposed processing time.

States of PA is defined as ST = {5,,, {es;, Is;, Ibs; }, C(Sy),
SchST}, which are the local schedule, temporal information
of the schedule, operating cost of the project, and states of
scheduling process (SchST), respectively. In a feasible sched-
ule, we define an alternative notation of selected contractor
of operation 4 as z(¢). That is, Z;,, = 1 < 2(i) = m, where
m is the selected contractor. Given a feasible local schedule,
a set of temporal information of every operation ¢ can be
derived using (7) shown at the bottom of the page.

Is; is the latest start time and es; is the earliest start time.
A continuous time window of operation ¢ is described by
[esi, Is;]. The start time of operation 4 can be changed within
the time window without affecting other operations. 1bs; is the
lower bound of feasible start time. It is obtained by propa-

gating the release time for beginning operations to the last
operation. It is obvious that lbs; < es; < Is;. The time window
can be violated, but the lower bound of start time is a hard
constraint. The operating cost of PA’s project is defined as

a&gz§:<

ic€Jy,

Z Zimcim + EC’m)

meAC;

+ Y sy + den(Xy),
(1,7)€E,

SchST will be described in Section V.

B. Contractor Agent’s Model

The objectives of a CA are to find a capacity-feasible
schedule for performing operations for PAs and maximize
the revenue obtained by performing operations for PAs.
Knowledge of CA m is defined as KN = {{CP,.:}, {cim,
lim, @im }, RB}, which consists of capacity in each time period,
parameters of performing operations i (i.e., cost, processing
time, and capacity requirement), and a set of bids for perform-
ing operations of PAs (RB).

States of CA is defined as ST = {{V3, cesp,clsp}, Rm,
ACP,,,t,SchST} where {Y;} is a set of start times of opera-
tions in RB. It also represents the local schedule of the CA.
ACP,,,; denotes the available capacity in period ¢t. The avail-
able capacity is obtained by deducting capacity requirement of
operations in period t from total capacity CP,,;. A set of

. Jn
es; = 4 X ((j%g}én (X5 + ) + 15.20).2(0)) ’fpi) v YE B,
ID;, i€ B3
min X’_ltiziz'_lz}zi ’ [
. G (X = Wisa) ~ lisy) » 0# S
max (X]aDn*lhz(z)) s 1=
. Jn
lei — max <(JI?)2%” (lbsj + lj,z(j) + ltj,z(j),z(i)) ’rp’i> S BJ, (7)

TPss

1E
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—
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scheduled

wait_reply
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wait_confirm

Confirming

Scheduled all
operations?

Fig. 3. State transition diagram of MCNP.

temporal information that can be obtained from the local sched-
ule is given as

Terminate

V. MODIFIED CONTRACT-NET PROTOCOL

In this section, we present a distributed approach based on
an MCNP to solve the SCSP. The conventional CNP [13]
is based on the scenario in which one manager announces a

cesp = rc»(b)mag}i) <v, (“ + Udi(p),m > ACPpy task to multiple contractors. In SCSP, this implies that only
R one PA can contract tasks to CAs at any time. We modify
Vt € [va + Liyy.m — 1]) the conventional CNP so that multiple managers (PA) can

simultaneously select contractors for interrelated tasks. Like the

clsy = Ybrgir%T (’U - 1|Qi(b),m > ACPmt

vVt € [’U,U + li(b),m — 1] )

cesy, is the earliest start time and cls;, is the latest start time.
A continuous time window of operation ¢ in bid b is described
by [cesy, clsp]. The start time of the operation can be changed
within the time window without affecting other operations. It
is obvious that we have ces, < Y, < clsy. The subscript of
temporal information of CA is the index of bid (b). It is because
the domain of local scheduling of CA is a set of bids RB.
Using bid as a subscript is equivalent to using operation
(as in PA) as a bid contains one and only one operation in
CAs. When a bid of CA is accessed by a PA, the subscript of
information in the bid is the index of operation and CA (im).
The revenue of CA m is R,,, = ZbeRBm Div)- SchST is a set
of states related to scheduling process that will be described
in Section V.

conventional CNP, there are four phases of contracting an oper-
ation in MCNP.

1) Announcing. Each PA selects an operation that is ready

2)

for scheduling, i.e., the operation’s preceding oper-
ations are scheduled. The PA announces the preferred
time window of the operation to eligible CAs by send-
ing request-for-bid (RFB) or call-for-bid messages.
Bidding. After receiving RFBs from PAs, the CA allo-
cates resource to the operations in the RFBs and sends
bids of the operations to the PAs.

3) Awarding. The PA then selects the best bid for the op-

4)

eration and sends an award message to the selected CA.
Committing. When a CA receives an award message
of its bid from a PA, it considers improving the awarded
bids by reducing the violation of the bid’s time window.
Resource is reserved for the bid and a commitment
message is sent to the PA. The PA confirms the bid
and starts to announce another operation as described in
(1). A PA finishes its scheduling process when all of its
operations are assigned to CAs.
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Unlike the conventional CNP, each PA conducts the
abovementioned process independently and asynchronously.
Moreover, CAs do not know which and when the PAs
will announce operations. MCNP is schematically shown in
Fig. 3. The figure represents scheduling states (circles) and
transitions (rectangles) of MCNP. SchSTs are shown in italic.
Texts linked to arrows describe the conditions of directed states
or transitions. Bolded labels on arrows between PA and CA
are the types of message. Transitions correspond to the four
phases of MCNP. Details of the phases including the states
and transitions will be described in Section V.

A message msg is represented as msgType (senderID, re-
ceiverID, msgContent). msgType indicates the type of message
msg. senderID is the index of agent that sends the message.
receiverID is the index of agent that receives the message.
msgContent is the content of the message, which is a set of in-
formation that is conveyed by the message. Each message has a
unique identifier (not shown in the representation) in the agent.
The message type and content depends on the problem domain.
It is assumed that agents understand the meaning of message
types and information contained in message content. That is,
there exists a common ontology of interpreting the meaning
conveyed in messages. We also assume that the communication
channel through which the agents exchange message is reliable.
It means that a message sent by an agent will be received by the
receiving agent in a finite time. Messages received by an agent
are stored in the agent’s message list before processing.

A. Detailed Description of MCNP

MA initializes protocol and informs PAs to start announcing
operations by sending StartSch messages to the PAs. When a
PA receives a StartSch message, it starts to announce the first
operation to CAs. At the beginning of the protocol, CAs wait
for RFB messages in state wait_RFB.

Announcing Phase: The PA selects an operation of which
the precedent operations have been scheduled for announcing.
If there are more than one operations that are ready, the opera-
tion with the smallest index is selected. The selected operation
is called current operation (current_op). A request for bid or
call for proposal message (RequestBid) is sent to CAs, which
are capable of performing the operation. In the message, the PA
shares time window information {es;, lAsZ} of the operation with
the CAs. The PA computes the earliest start time es;. lAsZ is the
estimated latest start time of the operation beyond which the
due date of the project could be violated. It is given by

~ min (Is; — min
Is; = { (.)€E, heAC; keAC;
Is; = Dy, — 1,

Wink — 1;), i # f
i=f

After sending the RequestBid messages, the PA waits for bids
from the CAs in the awarding phase. State wait_reply then
becomes true.

Bidding Phase: A CA collects RequestBid messages when
state wait_RFB is true. The CA stops collecting the messages
when a time limit at which a period time_waitRFB is passed
after receiving the first RFB is reached. When the time limit

of collecting RequestBid messages is passed, the state the
wait_RFB becomes false and the CA starts assigning start
times to the operations in the received RFBs. Notice that if
a RequestBid message arrives to the CA, i.e., stored in a
message list, when the CA is performing local scheduling, i.e.,
wait_RFB is false, the RequestBid message is not considered
in the local scheduling and will be considered when the state
wait_RFB becomes true later. The order of scheduling op-
erations in the RequestBid messages is based on a priority.
Higher priority should be given to an operation (¢) of which
the possibility of violating the latest start time EL is higher
and the price of performing the operation is higher. The pri-
ority is, therefore, represented as the ratio of the difference
between lgl and capacity-feasible earliest start time ces; over
the price p; of performing the bid. Formally, the priority value
of operation ¢ is defined as (Is; — ces;)/p;. An operation with
the smallest priority value is scheduled first. This rule tries to
schedule operations within the time windows given by PAs in
order to increase the chance of being selected by the PAs and,
hence, the expected revenue. Moreover, operations with higher
price can directly contribute to maximize the revenue. When an
operation is selected, the proposed start time is the capacity-
feasible earliest start time. After assigning the operation, the
CA sends a ReplyBid message to the PA. The message contains
price, start time, and processing time of the operation. The
assignment process continues until all requests are replied.
The CA waits for awards (i.e., state wait_award is true) from
the PAs in the committing phase after all RFBs are replied.

Awarding Phase: When a PA receives the first ReplyBid
message, it starts to collect other ReplyBid messages within a
time limit (¢time_waitReply) counted from the time it receives
the first message when state wait_reply is true. If the PA
receives any ReplyBid message of scheduled operations, it will
reject the bid. When the time limit is passed, the PA stops col-
lecting bids and starts to select the best CA m for performing
the current operation. The best bid is the bid that minimizes
operating costs, which consists of three terms. The first term is
the price of the bid. The second term (BC;,,) is the earliness
and transportation costs with the immediate preceding op-
erations of the current operation. It is defined as BC;,, =
2 Giyer, (€6 (Yim — X5 = 12y = 1652),m) + 165,2(5),m)-
The third term (FC;,,,) is the minimum transportation cost with
the immediate succeeding operations and tardiness cost of the
project if the proposed start time of the CA is later than the
estimated latest start time Is;. This term is given by

>

(i,9)€E,

}/irn - lsi)tcn7 }/im > lbz

FC;,, = min Ic;me + ( .
i keAC, imk 0, otherwise

This rule of selecting CA reflects the PA’s goal of minimizing
the operating cost of the project. After selecting a CA, the PA
sends an AwardBid message to the selected CA and RejectBid
messages to other CAs. The PA then waits for commitment of
the bid (state wait_confirm is true) from the selected CA in the
committing phase.

Committing Phase: A CA keeps collecting AwardBid or
RejectBid messages when state wait_award is true. When the
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number of the collected messages is the same as the num-
ber of received RFBs, the CA will commit the awarded bids
(i.e., wait_award becomes false). The CA checks if the start
time of an awarded operation could be improved by scheduling
closer to the earliest start time and earlier than the latest
start time shared by the PA without affecting the scheduled
operations in the local schedule of the CA. The improvement
is possible if some bids, which were scheduled earlier than the
awarded bid in the bidding phase, are not awarded by PAs.
Some idle time slots will be available for such improvement.
The awarded bids are considered in the order of the proposed
start time. The purpose is to increase the possibility of accept-
ing future bids within their time window. It also reduces the
possibility of violating the due date of the PAs. Once the start
time of the operation is confirmed, the available capacity is
updated and a CommitBid message is sent to the PA. When
all awarded operations are committed, the CA will wait for
new requests and state wait_RFB becomes true.

When a PA receives a CommitBid message of the current
operation, it confirms the bid from the selected CA and the
start time of the operation. The PA then starts seeking bids for
the next operation, which will become the current operation. If
all operations are scheduled, the scheduling process of the PA
terminates, i.e., state Terminate is true.

B. Differences Between MCNP and Conventional CNP

Differences between MCNP and the conventional CNP are
highlighted as follows.

MCNP supports multiple PAs to contract operations to multi-
ple CAs while CNP only supports one manager to assign a task.
In MCNP, PAs can execute the process of contracting opera-
tions simultaneously (the right part of Fig. 3). The scheduling
states of a PA do not depend on the states of other PAs. In the
conventional CNP, only one PA can contract operations at a
time. Another PA can start after the PA finishes selecting PAs
for all its operations.

In the committing phase, when a PA rejects a bid of a CA, the
CA could improve the bids accepted by other PAs by modifying
the start times within the time windows given by the PAs. In the
conventional CNP, CAs cannot improve bids as there is only a
single operation for bidding at a time.

MCNP allows PAs and CAs to work concurrently and asyn-
chronously. PAs schedule their operations independently from
each other. There is no global synchronization among the agents
as required in the conventional CNP [13].

In the bidding phase, local scheduling decision of CAs
considers competition of resource among PAs’ operations. With
the knowledge of time window information of the PAs’ opera-
tions, CAs can make better decisions on resource allocation.
This can lead to improvement on the global objective. In the
conventional CNP [13], a CA can only submit one bid, which
is the most recently received announcement, at a time.

As agents work asynchronously, MCNP needs to guarantee
that the agents would not wait indefinitely for receiving
messages. This liveness property is fundamental and essential
in any distributed algorithms [31]. Lau [32] shows that CAs
and PAs will not stay in intermediate states wait_award and

wait_reply, respectively. Lau also proves the correctness of
MCNP by showing that MCNP can find a feasible solution of
SCSP [32].

VI. CENTRALIZED HEURISTIC FOR SCSP

In this section, we propose a CTR to solve SCSP. The
purpose is to evaluate the performance of MCNP. From an
information sharing perspective, CAs only need to share start
times, prices, and processing times of operations, and PAs only
need to share the time windows of operations in MCNP. In the
CTR, however, every agent (PA and CA) needs to share all of
its local information including states and knowledge to the MA,
which performs the centralized scheduling. CTR can be viewed
as a best-first search heuristic without backtracking.

The heuristic starts scheduling from the beginning opera-
tions, which have no preceding operations. The operations are
put in a ready-for-scheduling list (EJ). An operation is said to be
scheduled if a CA is selected for performing the operation and a
start time of the operation is determined. An operation is ready
for scheduling if all its preceding operations are scheduled.
The heuristic selects an operation in EJ for scheduling. It then
updates EJ by adding operations that are ready for scheduling.
The selection of operations is based on a look-ahead cost
function. The look-ahead cost of an operation (i) function
returns a start time st and a CA m for performing the operation
such that the look-ahead cost of scheduling the operation at
start time st by CA m is minimized. The look-ahead cost
of operation ¢ is the sum of operating costs of temporary
scheduling the unscheduled operations given that operation
is scheduled at start time st and performed by CA m.

The look-ahead cost of operation ¢ scheduled at st and per-
formed by CA m is calculated as follows. 1) Update operating
cost of current schedule of operation 7. 2) Select an unscheduled
operation (j) in EJ for temporary scheduling. The operation
with the minimum slack time is selected. The slack time of an
unscheduled operation j is calculated by the latest start time
minus the earliest precedence- and capacity-feasible start time
among all possible CAs. The latest start time is the time beyond
which the project will become tardy. A CA (m) that gives the
minimum operating cost of performing operation j is selected.
The earliest precedence- and capacity-feasible start time of CA
m becomes the temporary start time of operation j. New ready-
for-scheduling operations are added to EJ and operation j is
removed from EJ. 3) Step 2) is repeated until EJ is empty, i.e.,
all unscheduled operations are temporarily scheduled.

The look-ahead cost function then searches a start time st and
CA m of operation ¢ that minimizes the resulting operating cost
by the abovementioned procedure. After scheduling operation
1, available capacity of the selected CA is updated. New ready-
to-scheduling operations are added in EJ and operation ¢ is
removed from EJ. The heuristic stops when all operations are
scheduled.

VII. COMPUTATIONAL STUDY

This section presents a computation study that evaluates
performances of MCNP and CTR. The computation consists
of two parts. The first part evaluates MCNP by comparing
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TABLE 1
FACTORS OF EXPERIMENT

Factor Name Description Level 1 Level 2

PS Project structure pgggll;ircgi;?;gf)r??hdip Typel Type I

PN Number of PA Number of project agents 4 8

DD Due date factor Tightness ‘;fgj‘:cripletmg the 10% 20%

CL Capacity level Numbf;i?:(g‘z:pt;l;tt;l ave 2 2 3

AC Alternative CA AVZ;@%‘;“;?:;‘; ‘;fp‘é‘r’ggjrf“’r 1-2 2-3
with CTR and the conventional CNP in terms of the global TABLE I
performance (i.e., total operating cost, TC). The second part CASES OF THE EXPERIMENTAL STUDY
aims at evaluating the reactive performance of MCNP and Case PS PN DD AC CL
CTR under different types of unexpected disturbance. In both 1 1 5 1 1 1
parts of the experimental study, the algorithms are imple- 5 1 2 1 5 1
mented by C++ and are executed on a single PC (Pentium III 3 ] ) ) | )
450 MHz, 512 MB RAM). It is due to the fact that control of 4 : 5 . . 5
the experiments and collection of data from the computer in 5 ) 5 5 ) )
centralized implementation are easier than that in distributed

. . . 6 1 2 2 2 1
environment. Moreover, we do not have sufficient computing
resources for performing the experiments in a truly distributed / ! 2 ! 2 2
computer network. 8 1 2 2 2 2
9 2 1 1 1 1
) 10 2 1 1 2 1
A. Experiments—Part | 1" ) ! ) | )
In order to evaluate the advantage of MCNP over conven- 12 2 1 1 1 2

tional CNP, we implement the conventional CNP that allows 13 2 1 2 1 1
PAs to announce their operations sequentially. The implemen- 14 2 1 2 2 1
tation of the conventional CNP is described as follows. The MA 15 D) 1 1 2 2
informs the PAs for scheduling in ascending order of the PAs’ 16 5 ) 5 5 5

indexes. Only one PA can schedule one of its operations at a
time. The RequestBid message only contains the earliest start
time (precedence-feasible) of the operation. Each of the CAs
replies the earliest capacity-feasible start time of the operation
in a ReplyBid message. The PA then selects a CA that mini-
mizes the operating cost of performing the operation and sends
an award of bid to the selected CA. After the PA has found
a feasible schedule of its project, another PA is informed by
the MA for scheduling. The abovementioned process continues
until all PAs have scheduled their projects. In order to have
a fair comparison between CNP and MCNP, we assume that
messages RequestBid and ReplyBid messages are received
within the time limits of CAs and PAs, respectively.

Table I shows the factors studied in the experiments. Two
types of project structures (PS) are considered. Type I is less
complicated than Type II. The average number of operations in
Type I and Type II are 5 and 12, respectively. Three instances
of each type are randomly generated. Two sets of PAs that
belong to the same type are considered in experiments. The
number of PAs (PN) is either 4 or 8. Due dates of projects
are obtained by multiplying the due date factor (DD) (110%
or 120%) on the expected lead time of the project. Capacity
level (CL) indicates the number of CAs that have 2 units of
capacity. AC indicates the average number of alternative CA
that is capable of performing an operation. There are two levels
of AC. The low and high levels indicate that operations have one

to two and two to three alternative CAs, respectively. Different
combinations of the levels of these factors constitute different
cases in the experiments. The cases are shown in Table II.

Fig. 4 shows the performances of CTR, MCNP, and CNP
on TC of supply chain under different cases (see Table II). It
is clear that CTR outperforms MCNP and CNP in most of the
cases. The performance gap is due to the amount of information
used in scheduling. In CTR, before selecting an operation for
assignment, a strong look-ahead heuristic value is computed for
each schedulable operation. The value accounts for the effect
of assigning an operation on other potential operations as the
assignment would occupy some capacity that could have been
used by other unassigned operations. Therefore, the heuristic
value gives a good indication on how well the consequence
(i.e., total supply chain cost) is when a schedulable operation
is assigned. Such global information is very helpful to optimize
the global objective. In MCNP and CNP, however, agents have
no information to guide them to improve the global objective.
They only maximize their own utilities when receiving bid
information from other agents. For example, a PA selects a bid
from CA so that the cost of assigning the current operation
is minimized. However, it does not, and cannot, consider the
impact on its future assignment or even other PA in reality.
We also observe that MCNP outperforms CNP in all cases.
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Fig. 4. Experimental results on global performance.

TABLE III
COMPUTATIONAL TIME (SECOND) OF CTR, CNP, AND MCNP

Case CTR  CNP MCNP  Case CTR CNP MCNP
1 302 023 0.08 9 7721 032 0.15
2 48.51 03  0.14 10 17054 038 022
3 3646 023 0.07 11 77.84 031  0.17
4 2071 023 0.09 12 7398 032 0.5
5 3645 022 0.08 13 9545 031  0.15
6 6273 029  0.15 14 28225 039 023
7 5011 028  0.15 15 13215 039 023
8 59 028  0.141 16 24896 037 022

10 1

It is because, in MCNP, CAs can consider several bids of PAs
at a time. The CA can balance the operating costs of PAs by
minimizing violation of the time window information shared
by the PAs when constructing its local schedule.

When DD is longer, the operating cost is lower as tardiness
of projects is smaller (e.g., cases 10 and 14). The TC is higher
when AC is smaller. More alternative CAs allows PAs to
explore less expensive way to perform operations (e.g., cases
1 and 2). Higher CL leads to lower operating cost (e.g., cases
14 and 16). The difference of TC between high and low CLs is,
however, not very significant especially in cases 1-8. Moreover,
we observe that, in cases 9—-16, MCNP performs very close to
CTR (see Fig. 4). When the complexity of the project is higher,
CTR behaves more heuristically as the problem becomes more
combinatorial with more interrelated operations.

In addition to the performance of total operating cost, we are
also interested in the computational efficiency of CTR, CNP,
and MCNP. Table III shows the computational time in CPU
second taken by CTR, CNP, and MCNP to solve each test case
in a single computer. It is obvious that both CNP and MCNP
are much more efficient than CTR. When alternative CAs are
more (e.g., cases 1, 6-8, 9, and 14-15), CTR, CNP, and MCNP
take more time to find solutions. It is obvious that MCNP
is much more efficient than CTR and is slightly faster than
CNP. In solving larger problems of cases 9-16, CTR takes

8 9 12 13 14 15 16
Case
8000 4|_¢—CTR
% 7000 4__&_MCN /A
o
O 6000 y_a—cNP //%
2 5000 A
€ 4000 i
g
O 3000
:‘g 2000
1000
0 T T T T T T
4 5 6 7 8 10 20
Number of PAs
Fig. 5. Performance under large problems.

TABLE 1V

CPU TIME (SECOND) UNDER LARGE PROBLEMS

Number of PAs CTR MCNP CNP
4 162.96 0.12 0.34
5 503.53 0.24 0.40
6 800.00 0.28 0.46
7 2272.50 0.47 0.56
8 2596.06 0.50 0.77
10 6363.66 0.51 1.06
20 3014.10 1.07 1.94

considerably more time than solving smaller problems of cases
1-8. The increase in computational time in MCNP for solving
larger problems is negligible.

In order to evaluate the performance of MCNP under large
problems, we increase the number of PAs in case 16. When
the number of PAs is between 4 and 7, CL is 2 as described in
Table I. When the number of PAs is 8 and 10, there are six and
two CAs with 2 and 1 units of capacity, respectively. When the
number of PAs is 20, there are four and three CAs with 3 and 4
units of capacity. Fig. 5 shows the performance of CTR, CNP,
and MCNP on total operating cost when problem size becomes
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TABLE V
SETTING OF PART Il EXPERIMENT

Disturbance Example

Levels
Severity Parameters 1 2 3

New projects arrival ~ New customer order

Resource breakdown — Machine breakdown
Increase in processing

times of operations of operation’s outputs

Rework due to quality problem

Number of new PAs=2, 1.2(1) 1.42) 1.6(3)
Due date factor =

Number of CAs =2, 84y 10(5) 12(6)
Downtime =
Number of disturbing 47 5@ 69

operations = 3,
Length of increased
processing time =

larger. The computational times are shown in Table IV. It is
expected that CTR outperforms CNP and MCNP in terms of
total operating cost. MCNP performs better than CNP. On the
other hand, from the perspective of computational efficiency,
MCNP and CNP are superior to CTR. Computational time
of CTR grows exponentially with the problem size. However,
the increase in computational time of MCNP and CNP is
insignificant. We also observe that MCNP can still improve
CNP under large problems.

B. Experiments—Part 11

Due to the dynamic nature of supply chains, unexpected
disturbances always occur after a global schedule is established
by the agents. In this experiment, CTR and MCNP are eval-
uated against three types of unexpected disturbances: arrival
of new project, resource failure, and increase of operation’s
processing time. The initial global (local) schedule is called
global (local) preschedule. An agent that detects disturbances
is called disturbing agent. On the other hand, an agent that is
affected by the change of schedule of the disturbing agent
is called disturbed agent. When a disturbance occurs, some
constraints (precedence or capacity) of the disturbing agent
are violated. The disturbing agent has to reschedule its local
schedule in order to restore the feasibility of its schedule.
Such local rescheduling may affect the local schedules of other
agents. For example, when a new project is launched, the new
PA needs to select CAs to perform its operations. This may
affect the operations that have been scheduled in the CAs as the
capacities that have been assigned to the operations would be
assigned to the new operations. The objectives of the reschedul-
ing problem are to minimize the total operating cost of the new
schedule, deviation of start times, and change of contractual
relationships of the new schedule from the preschedule. The
schedule deviation is the sum of absolute differences between
start times of operations in the new schedule and the presched-
ule. The contractual relationship is changed if a PA decommits
from a bid of a CA confirmed in the preschedule and selects
another CA.

The rescheduling process in MCNP is described as fol-
lows. When a disturbing agent detects a disturbance, the agent
reschedules its operations and sends the modified start times to
the affected (i.e., disturbed) agents. The disturbed agents per-
form rescheduling if their preschedules become infeasible after
receiving the changes from the disturbing agents. The disturbed
agents then send the new start times of their operations to other

affected agents. The agents propagate the changes of schedules
until no more changes are detected. During the rescheduling
process, PAs cannot change the selected CAs.

When a new PA is registered by MA, the PA announces their
operations to CAs. The CAs reply a start time that minimizes
the schedule deviation of committed operations. The PA selects
a bid that minimizes its operating cost. After the selected
CA commits the bid, it initializes the rescheduling process as
described in the previous paragraph where the CA becomes the
disturbing agent.

The centralized approach to rescheduling is simply a com-
plete rescheduling of the global schedule. The disturbing agents
notify the MA about the detected disturbances. The MA then
collects the latest schedule information from other agents. A
“reduced” SCSP is formulated with less to-be-schedule opera-
tions and updated parameters. The CTR is then applied to solve
the “reduced” SCSP by the MA.

The disturbances are tested on case 16 (see Table II). The
preschedule is generated by using CTR. Disturbances are intro-
duced at a time instance called disturbance time (DT). In this
experiment, we set DT to 20. All operations that are scheduled
to be finished before DT are not affected by rescheduling.
We also evaluate the algorithms by testing different levels of
severity of the disturbances. Severity of a disturbance means
the “size” of the disturbance. If the severity of the disturbance
is higher, impacts of the disturbance on the supply chain would
be larger. The severity of disturbance is specified by parameters.
Table VI shows the setting of severity parameters of the three
disturbances in our experiments. We test two new projects
with due dates equal to DT plus expected project lead time
multiplied by the DD. Two CAs are selected for simulating
resource breakdown. Duration of the breakdown is indicated
by downtime. Three operations are selected to have increased
processing time. Due date factor, downtime, and length of
increased processing time are varied at three levels (Table V).
The number in the bracket at each level is the case number.

Fig. 6 shows the total operating cost of the new schedule.
Schedule deviation after rescheduling is shown in Fig. 7. It
is obvious that CTR generally performs better than MCNP in
terms of total operating cost. Schedule deviation of MCNP
is, however, smaller than that in CTR in most of the cases.
When the due date of new PAs is less tight (i.e., DD is larger),
both the total operating cost and the schedule deviation get
smaller (cases 1-3). When facing resource breakdown, the total
operating cost and the schedule deviation increase with the
downtime (cases 4-6). Performance on total operating cost of
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Fig. 6. Total operating cost.

CTR is slightly better than that of MCNP under disturbance
of increased operation’s processing time (cases 7-9). On the
other hand, MCNP outperforms CTR in terms of schedule
deviation. We observe that the performance gap on the total
operating cost between CTR and MCNP is largest under the
arrival of new PAs. In other cases, the performance on total
operating cost of MCNP is quite close to that of CTR. It is
because the number of constraint violations under new projects
arrival is higher than that of resource breakdown and increased
processing time of operations. More search efforts are needed
to reduce the total operating cost. On the other hand, when the
number of constraint violations is small, simple propagation
of constraints among agents in MCNP may produce a fairly
good result as the increase of tardiness due to the propaga-
tion is small. Therefore, the performance of CTR under new
projects arrival is better than that under the other two types
of disturbances. Moreover, the average number of changes of
contractual relationship between CAs and PAs in CTR is about
14 while MCNP does not require any such changes. The change
of contractual relationship implies the costs of withdrawing the
contract and establishing the new one.

C. Comparison of CTR, CNP, and MCNP

Table VI summaries a comparison between the centralized
(CTR) and decentralized (CNP, MCNP) approaches. The first
three criteria are related to the three characteristics of the
supply chains studied in this paper. The criteria concern the
requirements of distributed problem solving by a set of in-
dependent and autonomous enterprises. CNP and MCNP are
certainly better than CTR. Such advantages of CNP and MCNP
inherit from the agent-based modeling features as discussed in
Section IV.

According to the results from part I of the experimental study
(Section VII), the performance of CTR on total operating cost is
better than that of CNP and MCNP as there is complete infor-
mation sharing between agents/enterprises in CTR. However,
the computational efficiency of CNP and MCNP is much better
than CTR. The numbers in Table VI represent the ranking of
the performances. From the experimental results (Table III), the
computational times of CNP and MCNP are less than 1 s when
they are performed on a single PC while CTR takes several
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Fig. 7. Schedule deviation.

minutes to complete the computation. Moreover, when problem
size gets larger, computation efficiency of CNP and MCNP is
not much affected. However, the computational time of CTR
grows exponentially with the problem size.

In terms of concurrency, both CNP and MCNP allow agents
to make decisions concurrently. However, concurrency is not
relevant to CTR as only one agent (MA) makes decisions. In
MCNP, agents can perform asynchronously. In CNP, agents are
synchronized by MA. In terms of modularity, the agent-based
approach is certainly better than the centralized approach [33].
Agents can dynamically join or leave the supply chain with the
aid of MA. Decision rules of an agent can be changed without
affecting other agents. In CTR, MA needs to maintain changes
of knowledge or states of individual agents as it is the only
decision maker in the supply chain.

According to part II of the experimental study, we observe
that CTR performs better than MCNP in terms of the total
operating cost under expected disturbances. In terms of sched-
ule stability, MCNP performs better than CTR. Less operations
need to be changed, and no changes of contractual relationship
between PAs and CAs are required in MCNP. This property is
very desirable when changes on the established schedule are
very costly in supply chains. Moreover, as MCNP is much
faster than CTR, MCNP can offer a very quick response to
unexpected disturbances.

VIII. CONCLUSION

This research has discussed an agent-based approach to
solving distributed supply chain scheduling problems (SCSPs).
The contributions of this paper can be observed from several
aspects. First, we propose a mathematical model of an SCSP
that includes the following features. 1) A multiproject envi-
ronment in which projects are held by a set of independent
and autonomous enterprises. 2) A set of contractors that can
perform different operations of the projects and every operation
can be performed by a set of alternative contractors. 3) Con-
tractors have multiple capacities and different operations have
different requirements on capacity, processing times, and costs.
4) Lead times and costs of transportation between two con-
tractors are different. 5) Decisions of the model are selection



860

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 5, SEPTEMBER 2006

TABLE VI
SUMMARY OF COMPARISON BETWEEN CTR, CNP, AND MCNP
Criteria CTR CNP MCNP
Agents need to Agents share PAs shares

Information sharing share all start times of time windows
information operations of operations
Multiobjectives Only global Yes
objective

Independency and autonomy of

No (MA makes all decisions

PAs and CAs can make their own decisions

decision making for PAs and CAs)
Total operating cost 1 3 2
Computational efficiency 3 2 1
Concurrency and asynchrony No Synchronous Asynchronous
Modularity Low Yes
Total operating cost under disturbances Good Not good
Stability of schedule Low High

of contractors (or configuration of projects) and scheduling
of operations. Each configured project represents a supply
chain with a network structure. 6) The objective of the model
is to minimize the sum of tardiness costs of the projects,
costs of selected contractors, transportation costs, and slacks
between operations to achieve just-in-time philosophy. To the
best of our knowledge, these features have not been investigated
in the literature of project scheduling under a supply chain
context. Second, an agent-based model has been proposed to
address the distributed project scheduling problem. Informa-
tion privacy and distributed decision making of agents are
respected in the model. Third, we develop a modified contract-
net protocol (MCNP) to solve SCSP in a distributed manner
based on the agent-based model. MCNP allows agents to work
concurrently and asynchronously. A project agent needs to
share time window information of an operation with contractor
agents when the project agent seeks a contractor agent for
performing the operation. Finally, we compare the proposed
MCNP with the conventional CNP and a CTR through com-
putational experiments. CNP and CTR represent minimal and
full information sharing between PAs and CAs. We show that
MCNP outperforms CNP in terms of total operating cost and
computational efficiency. It also performs closely to CTR when
project complexity is high in terms of the performance on
total operating cost of the supply chain. Moreover, MCNP
is much more efficient than CTR. The result is encouraging
as the proposed distributed approach with appropriate level
of information sharing can achieve comparable performance
to the centralized approach, which requires full information
sharing, when problem size is large. We also evaluate MCNP
with CTR under unexpected disturbances in the supply chain.
We show that although CTR is better than MCNP in terms
of total operating cost, MCNP yields good schedule stability
after rescheduling.

In theory, the centralized approach is generally superior in
terms of global performance over the distributed approach. The
main reason is that complete information sharing in the central-
ized approach allows better search for optimal or near-optimal
solution. The requirement of complete information sharing in
the centralized approach is, however, virtually impractical in
a real-life supply chain that comprises a set of independent
enterprises. In contrast, we discuss some attractive charac-
teristics (e.g., concurrency, modularity, and stability) of the

distributed approach, which are suitable for solving scheduling
problem in supply chains. A compromise must be made under
the circumstance where only limited information sharing is
possible for practical reasons. This paper reports our attempt
on investigating what kind of information should be shared
and how the shared information aids the distributed scheduling
process. Our research interest is now focused on the impact of
the increased information sharing among the enterprise agents
on global performance of the supply chain scheduling. Study
on information sharing has been a growing interest in supply
chain management [34]. However, issues like what kind of and
how information should be shared among agents to improve the
performance of the distributed approach of the supply chain
scheduling have not been investigated in literature The agent-
based information modeling and the distributed algorithm pro-
posed in this paper will be enhanced to deal with this question
in our next research work, which will be reported separately.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for critical but
constructive comments.

REFERENCES

[1] S. Bradley and R. Nolan, Sense and Respond: Capturing Value in the
Network Era. Boston, MA: Harvard Bus. Sch. Press, 1998.

[2] M. A. Razzaque and C. C. Sheng, “Outsourcing of logistics functions: A
literature survey,” Int. J. Phys. Distrib. Logist. Manage., vol. 28, no. 2,
pp. 89-107, 1998.

[3] N. Kakabadse and A. Kakabadse, “Critical review—Outsourcing: A

paradigm shift,” J. Manage. Dev., vol. 19, no. 8, pp. 670-728, 2000.

S. J. Mason, M. H. Cole, B. T. Ulrey, and L. Yan, “Improving electronics

manufacturing supply chain agility through outsourcing,” Int. J. Phys.

Distrib. Logist. Manage., vol. 32, no. 7, pp. 610-620, 2002.

M. A. Cohen and H. L. Lee, “Strategic analysis of integrated production-

distribution systems: Models and methods,” Oper. Res., vol. 36, no. 2,

pp- 216-228, 1988.

K. Ertogral, S. D. Wu, and L. I. Burke, “Coordination production and

transportation scheduling in the supply chain,” Dept. IMSE, Lehigh

Univ., Bethlehem, PA, Tech. Rep. #98T-010, 1998.

E. Sabri and B. M. Beamon, “A multi-objective approach to simulta-

neous strategic and operational planning in supply chain design,” Omega,

vol. 28, no. 5, pp. 581-598, 2000.

V. Jayaraman and H. Pirkul, “Planning and coordination of production

and distribution facilities for multiple commodities,” Eur. J. Oper. Res.,

vol. 133, no. 2, pp. 394-408, 2001.

Y. H. Lee, C. S. Jeong, and C. Moon, “Advanced planning and scheduling

with outsourcing in manufacturing supply chain,” Comput. Ind. Eng.,

vol. 43, no. 1-2, pp. 351-374, 2002.

[4]

[5]

[6]

[7]

[8

[t}

[9]



LAU et al.: AGENT-BASED MODELING OF SUPPLY CHAINS FOR DISTRIBUTED SCHEDULING 861

[10] S. S. Erenguc, N. C. Simpson, and A. J. Vakharia, “Integrated produc-
tion/distribution planning in supply chains: An invited review,” Eur. J.
Oper. Res., vol. 115, no. 2, pp. 219-236, 1999.

[11] R.Gaonkar and N. Viswanadham, “Collaboration and information sharing
in global contract manufacturing networks,” IEEE/ASME Trans. Mecha-
tronics, vol. 6, no. 4, pp. 366-376, Dec. 2001.

[12] E. H. Durfee, “Distributed problem solving and planning,” in Multi-
Agent Systems: A Modern Approach to Distributed Artificial Intelligence.
Cambridge, MA: MIT Press, 1999, ch. 3.

[13] R. G. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” IEEE Trans. Comput., vol. COM-
29, no. 12, pp. 1104-1113, Dec. 1980.

[14] J. Vancza and A. Markus, “An agent model for incentive-based production
scheduling,” Comput. Ind., vol. 43, no. 2, pp. 173-187, 2000.

[15] R. Macchiaroli and S. Riemma, “A negotiation scheme for autonomous
agents in job shop scheduling,” Int. J. Comput. Integr. Manuf., vol. 15,
no. 3, pp. 222-232, 2002.

[16] P. Sousa and C. Ramos, “A distributed architecture and negotiation pro-
tocol for scheduling in manufacturing systems,” Comput. Ind., vol. 38,
no. 2, pp. 103113, 1999.

[17] D. Ouelhakj, C. Hanachi, B. Bouzouia, A. Moualek, and A. Farhi, “A
multi-contract net protocol for dynamic scheduling in flexible manufactur-
ing systems (FMS),” in Proc. IEEE Int. Conf. Robotics and Automation,
Detroit, MI, 1999, pp. 1114-1119.

[18] A. D. Baker, “Metaphor or reality: A case study where agents bid with
actual costs to schedule a factory,” in Market-Based Control: A Paradigm
for Distributed Resource Allocation, S. H. Clearwater, Ed. River Edge,
NJ: World Scientific, 1996, ch. 8, p. 184.

[19] A. Saad, K. Kawamura, and G. Biswas, “Performance evaluation of
contract net-based heterarchical scheduling for flexible manufacturing
systems,” Intell. Autom. Soft Comput., vol. 3, no. 3, pp. 229-248, 1997.

[20] D. Xue, J. Sun, and D. H. Norrie, “An intelligent optimal production
scheduling approach using constraint-based search and agent-based col-
laboration,” Comput. Ind., vol. 46, no. 2, pp. 209-231, 2001.

[21] K. Fischer, B. Chaib-draa, J. P. Muller, M. Pischel, and C. Gerber,
“A simulation approach based on negotiation and cooperation between
agents a case study,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 29, no. 4, pp. 531-545, Dec. 1999.

[22] D. Naso and B. Turchiano, “A coordination strategy for distributed
multi-agent manufacturing systems,” Int. J. Prod. Res., vol. 42, no. 12,
pp. 2497-2520, 2004.

[23] P. Sousa, C. Ramos, and J. Neves, “The Fabricare system: A multi-
agent-based scheduling prototype,” Prod. Plan. Control, vol. 15, no. 2,
pp. 156-165, 2004.

[24] X. Q. Zhang, “Sophisticated negotiation in multi-agent systems,” Ph.D.
thesis, Dept. Comput. Sci., Univ. Massachusetts, Amherst, 2002.

[25] J. Collins, “Solving combinatorial auctions with temporal constraints in
economic agents,” Ph.D. thesis, Comput. Sci. Dept., Univ. Minnesota,
Minneapolis, 2002.

[26] J. Reis, N. Mamede, and H. O’Neill, “Locally perceiving hard global
constraints in multi-agent scheduling,” J. Intell. Manuf., vol. 12, no. 3,
pp. 223-236, 2001.

[27] Y. H. Lee, S. R. T. Kumara, and K. Chatterjee, “Multiagent based dy-
namic resource scheduling for distributed multiple projects using a market
mechanism,” J. Intell. Manuf., vol. 14, no. 5, pp. 471-484, 2003.

[28] T. Wagner, V. Guralnik, and J. Phelps, “TAEMS agents: Enabling dynamic
distributed supply chain management,” Electron. Commer. Res. Appl.,
vol. 2, no. 2, pp. 114-132, 2003.

[29] N. R. Jennings and M. Wooldridge, “Applications of intelligent agents,”
in Agent Technology: Foundations, Applications, and Markets. Berlin,
Germany: Springer-Verlag, 1998, pp. 1-27.

[30] K. Sycara, “Multi-agent infrastructure, agent discovery, middle agents for
web services and interoperation,” in Mutli-Agents Systems and Applica-
tions, M. Luck et al., Eds. New York: Springer-Verlag, 2001, pp. 17-49.
ACAI 2001, LNAI 2086.

[31] G. Tel, Introduction to Distributed Algorithm. Cambridge, U.K.: Cam-
bridge Univ. Press, 2000.

[32] J. S. K. Lau, “Impacts of sharing production information on supply chain
dynamics,” Ph.D. dissertation, Dept. Ind. Mfg. Sys. Eng, Univ. Hong
Kong, Hong Kong, 2004.

[33] Y. Yuan, T. P. Liang, and J. J. Zhang, “Using agent technology to
support supply chain management: Potentials and challenges,” Working
Paper, Hamilton, ON, Canada: School of Business, McMaster University,
2001.

[34] G. Q. Huang, J. S. K. Lau, and K. L. Mak, “The impacts of sharing
production information on supply chain dynamics: A review of the
literature,” Int. J. Prod. Res., vol. 41, no. 7, pp. 1483-1517, 2003.

Jason S. K. Lau received the B.Eng. and Ph.D. degrees in industrial engi-
neering from the University of Hong Kong, Hong Kong, in 2000 and 2004,
respectively.

Since 2004, he has been a Research Assistant in the Department of
Industrial and Manufacturing Systems Engineering, University of Hong Kong.
His research interests are agent-based manufacturing, production planning
and control, meta-heuristics optimization techniques, and enterprise resources
planning (ERP). He has published five journal articles and five proceedings.

Dr. Lau is a member of the Institution of Electrical Engineers (IEE) and
committee member of the Specialized Section in Manufacturing and Systems
Engineering, IEE (HK).

George Q. Huang received the B.Eng. and Ph.D. degrees in mechanical
engineering from Southeast University, Nanjing, Jiangsu, China, and Cardiff
University, Cardiff, U.K., in 1983 and 1991, respectively.

Dr. Huang joined the Department of Industrial and Manufacturing Systems
Engineering, University of Hong Kong, Hong Kong, in 1997 after a few years
of researching and teaching at British universities. His main research interests
include agent-based collaborative environments for complex engineering and
business systems and computational game theory. He has published extensively
in these topics, including over 60 journal papers, two monographs entitled
Cooperating Expert Systems in Mechanical Design and Internet Applications
in Product Design and Manufacturing respectively, and an edited reference
book entitled Design for X: Concurrent Engineering Imperatives.

Dr. Huang is a Chartered Engineer and a member of the Institution of
Electrical Engineers (IEE), HKIE, IIE, and ASME. He is the Editor-in-Chief
of the International Journal of Mass Customization.

K. L. Mak received the M.Sc. degree in manufacturing engineering and
the Ph.D. degree in systems engineering from the University of Salford,
Salford, U.K.

He is a Professor in the Department of Industrial and Manufacturing Systems
Engineering, University of Hong Kong. He has accumulated substantial expe-
rience in industry by working in several U.K. engineering enterprises including
the Pilkinggton Brothers Limited, the T.S. Harrison and Sons Limited, as well
as in some enterprises in Hong Kong. Indeed, he has wide exposure to industry
and is well connected with enterprises in the local and overseas communities.
His current research interest focuses mainly on production and operations
management, and manufacturing systems design and control, and has published
extensively in these areas.

Prof. Mak is a Chartered Engineer, a fellow of HKIE, and a Member of
IMechE. He also serves on the editorial boards of a number of journals in
engineering.

L. Liang received the M.Sc. degree in computer science from Hefei Poly-
technic University, Hefei City, Anhui Province, China, in 1987 and the Ph.D.
degree in systems engineering from the Southeast University of China, Nanjing,
China, in 1991.

He is a Professor in Business School, The University of Science and
Technology of China. His main research interests include multiple objective
optimization, data envelopment analysis, and supply chain theory and practice.
He has served many local enterprises in management diagnosis and consulta-
tion, and published more than 80 journal papers, and two monographs entitled,
Evaluation Theory and Application and Modern Management Methods and
Its Practice.

Prof. Liang also serves on the editor boards of the International Journal of
Mass Customization and Asian-Pacific Business Reviews.



