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Mass transport in water waves over a thin layer
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A theory is presented for the mass transport induced by a small-amplitude progressive
wave propagating in water over a thin layer of viscoelastic mud modelled as a Voigt
medium. Based on a sharp contrast in length scales near the bed, the boundary-layer
approximation is applied to the Navier–Stokes equations in Lagrangian form, which
are then solved for the first-order oscillatory motions in the mud and the near-bed
water layers. On extending the analysis to second order for the mass transport, it is
pointed out that it is inappropriate, as was done in previous studies, to apply the
complex viscoelastic parameter to a higher-order analysis, and also to suppose that a
Voigt body can undergo continuous steady motion. In fact, the time-mean motion of
a Voigt body is only transient, and will stop after a time scale given by the ratio of the
viscosity to the shear modulus. Once the mud has attained its steady deformation, the
mass transport in the overlying water column can be found as if it were a single-layer
system. It is found that the near-bed mass transport has non-trivial dependence on
the mud depth and elasticity, which control the occurrence of resonance. Even when
the resonance is considerably damped by viscosity, the mass transport in water over a
viscoelastic layer can be dramatically different, in terms of magnitude and direction,
from that over a rigid bed.

1. Introduction
Wave–mud interaction is one of the key mechanisms controlling the transport of

sediments in coastal and estuarine waters. In the presence of cohesive sediments
or marine muds, which are composed primarily of very fine particles and act as
an effective energy dissipator, wave damping is enhanced; surface waves can be
attenuated appreciably in a finite number of wave periods or wavelengths. Frequency
modulation may also occur to waves propagating over a muddy bottom. Meanwhile,
the sediments will undergo various processes such as resuspension, fluidization and
mass transport under the forcing of surface waves. The erosion, transport and depos-
ition of cohesive sediments are known to pose various problems that are of concern
to the environmental as well as coastal engineering. These problems have motivated
extensive studies into the mechanics of mud in a wave-dominated marine environment.

Cohesive sediments are made up of very tiny particles, typically less than O(10) µm

in size, and their properties are much determined by the micro-structure which is
dominated by many physico-chemical effects. Since the mineralogical make-up is
so complex and susceptible to change in response to the local geo-environment, a
mud tends to exhibit vastly different rheological behaviours depending on the site
conditions. For the sake of analysis, it is common in the modelling of wave–seabed
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interaction that the bottom material is treated simply as a linear medium: either a
Newtonian viscous fluid (e.g. Dalrymple & Liu 1978; Ng 2000), or a linear elastic
soil (e.g. Mallard & Dalrymple 1977; Wen & Liu 1995a). Experimental observations,
however, reveal that a wave-fluidized mud can be highly non-Newtonian (e.g. Maa &
Mehta 1988; Verreet & Berlamont 1988; Chou, Foda & Hunt 1993). Using a nonlinear
rheological model based on their laboratory measurements, Foda, Hunt & Chou
(1993) performed a theoretical study on the fluidization of marine mud under waves.
Their experiments demonstrate that a cohesive mud will respond to oscillatory shear
according to a nonlinear function of the strain. There is a lower limit of elastic
yield strain, below which the mud behaves as an elastic solid, and an upper limit of
viscous critical strain, above which the mud behaves as a pure viscous fluid. For an
intermediate strain amplitude between these two limits, the mud exhibits both viscous
and elastic behaviours and can be described as a viscoelastic material.

These three response regimes correspond to the three states in which a cohesive
sediment may exist in nature (Whitehouse et al. 2000): it is viscous when completely
fluidized to form the so-called fluid mud; it is viscoelastic when freshly deposited to
form a partially consolidated bed; and it is elastic when completely settled to form
a consolidated bed. In other words, the superficial sediment in which particles are
fluid-supported tends to behave more like a viscous fluid, while the deeper sediment
that is consolidated behaves more like an elastic solid. To describe this stratification
structure, it is desirable, as far as modelling is concerned, that the cohesive mud
be generalized into a material possessing both viscous and elastic characteristics. In
this connection, the viscoelastic Voigt model has been increasingly adopted in studies
on the wave–mud interaction, as in Hsiao & Shemdin (1980), MacPherson (1980),
Maa & Mehta (1990), Piedra-Cueva (1993), and Hill & Foda (1999). In particular,
Maa & Mehta (1990) pointed out the possibility of resonance of the system arising
from the viscoelasticity, and Piedra-Cueva (1993) found that the wave damping may
be enhanced by some orders of magnitude when resonance occurs. In these previous
studies, the focus is on the effects of viscoelasticity on the wave transformation, and
therefore it suffices to consider only the first-order oscillatory motion.

The Voigt model, which has been considered to describe viscoelastic muds better
than the Maxwell model (Maa & Mehta 1988), has been commonly adopted in the
literature. The constitutive equation for a Voigt body under simple shear can be
written as

τ = ρνγ̇ + Gγ, (1.1)

where τ is shear stress, γ and γ̇ are, respectively, the strain and strain rate, G is the
elastic modulus, ρ is the density, and ν is the kinematic viscosity. If the disturbance
is further assumed to vary sinusoidally in time, such as e−iσ t , where i is the complex
unit, σ is the oscillation frequency, and t is the time, then the strain and strain rate
can be related to each other by

γ̇ = −iσγ, (1.2)

and the constitutive equation can be simplified to

τ = ρν†γ̇ , (1.3)

where ν† is a complex parameter which conveniently combines the viscosity and
elasticity and can be expressed as

ν† = ν + iG/ρσ. (1.4)
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The introduction of the complex viscoelastic parameter allows an analysis for a
viscoelastic medium to be performed in exactly the same manner as that for a
pure viscous fluid. This approach has been extensively followed, as in Tchen (1956),
MacPherson (1980), Hsiao & Shemdin (1980), and Piedra-Cueva (1993).

We emphasize that the complex viscoelastic parameter, as introduced in (1.4), is
applicable only to a motion that is simple harmonic. Such a limitation seems not to
have been appreciated by some workers. For example, Shibayama, Okuno & Sato
(1990), Lian, Zhao & Zhang (1999) and Soltanpour, Shibayama & Noma (2003) have
used the viscoelastic parameter to determine the second-order mean drift (or mass
transport) induced by waves in a layer of viscoelastic mud. Such an application of
the viscoelastic parameter is obviously questionable, since the second-order motion
comprises higher harmonic and steady components, for which the strain and strain
rate are no longer related to each other by (1.2). Moreover, a viscoelastic material will
behave differently from a viscous fluid when subjected to a steady load. For a material
possessing elasticity and viscosity in parallel, the shear deformation in response to a
constant shear stress cannot go on continuously, but will stop once a finite limit is
attained. Therefore, a steady particle drift cannot be sustained in a Voigt material. This
phenomenon has been examined and confirmed theoretically by Zhang & Ng (2006b).

Mass transport, also known as Lagrangian or particle drift, is a time-mean current
induced in a wave boundary layer owing to the convective inertia of the waves. It
is therefore a quantity of second order in wave steepness. Longuet-Higgins (1953)
presented a detailed exposition of the basic theory of mass transport in water waves
over a rigid impermeable bed. Since then, many works have studied the effects of a
non-rigid or deformable bed on the mass transport in the water column. Examples
are: mass transport in a two-layer viscous system (Dore 1970; Piedra-Cueva 1995;
Wen & Liu 1995b; Ng 2004b), in water over a finite layer of non-Newtonian mud
(Sakakiyama & Bijker 1989; Isobe, Huynh & Watanabe 1992; Ng, Fu & Bai 2002),
in water over a porous bed (Liu 1977), and in water over an infinitely deep elastic
medium (Wen & Liu 1995a).

Although viscoelasticity is increasingly recognized as an important property of a
muddy bed, and has been extensively studied for its first-order effects on the waves, its
effects on the second-order mass transport in waves are by contrast much less studied.
Some workers, such as Shibayama et al. (1990), Lian et al. (1999) and Soltanpour
et al. (2003), have attempted to work out the transport rate of viscoelastic mud
under wave action, but, as pointed out above, they have inappropriately applied the
complex viscoelastic parameter to the second-order problem. Despite these studies,
no work in the literature has specifically examined mass transport in water waves
over a viscoelastic bed. This forms the motivation and objective of the present study.

This paper aims to present a theory of mass transport in water waves in a two-layer
system, in which the upper layer is clear water and the lower layer is a thin layer
of soft viscoelastic mud modelled as a Voigt medium. The key assumptions are as
follows. (i) Conditions corresponding to a mild wave environment or slack water are
supposed to prevail so that the bed materials will only be subjected to small-amplitude
stresses, well below that for plastic yield. As a result, a linear viscoelastic model with
constant coefficients can be applied here. (ii) The environment is also conducive to the
formation of a lutocline (i.e. strong gradient in concentration), or a persistent sharp
interface between the water column and the muddy bed. Across the lutocline, the dry
mass concentration may change abruptly from O(1) kg m−3 in the water column to
O(100) kg m−3 in the near-bed fluid mud (Mehta 1996). As remarked by Winterwerp
(1999), any suspension of intermediate concentrations can only be transient and will
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not be stable, and a jump may persist in the density profile (see also Whitehouse
et al. 2000). The sharp density gradient causes the Richardson number to exceed
amply the critical value required for stable stratification, even under some wave
agitation. Consequently, turbulence is largely damped out on crossing the interface,
and therefore the entrainment of fluid mud into the overlying water is suppressed.
The mud flow, if any, is dominated by molecular viscous force, while water can
be turbulent in the boundary layer above the interface. The condition under which
interfacial mixing is insignificant for waves over a mud with yield stress has been
examined by Mei & Liu (1987). (iii) The viscoelastic layer in the present problem is
to represent a layer of partially fluidized mud or under-consolidated soil with weak
elasticity resulting from dewatering of the fluid mud. A more realistic model, such
as Chou et al. (1993), should of course have the system divided into several discrete
layers: the water column, viscous fluid-like mud, viscoelastic soft mud, and elastic
stiff mud, where the depths of the fluid and soft mud layers are not known a priori
and are found as part of the solution depending on the hydrodynamic forcing. Such
a nonlinear approach is, however, algebraically and computationally intensive and is
not followed here. Instead, we consider a simplified stratification structure, in which
a clear water column is underlain by a single viscoelastic mud layer resting on a rigid
bottom, where the mud depth and properties are prescribed constants.

At slack water, there is a strong tendency for the fluid mud to dewater and
consolidate to form a weak soil when the stress falls below 0.1 Nm−2 (Whitehouse et al.
2000). Li & Mehta (2001) remarked that in the density range of 1200–1300 kgm−3, a
fluid mud that has virtually no elasticity or shear strength, in the absence of drastic
agitation, will develop into a weakly elastic particulate matrix with a measurable shear
strength. In the present problem, the fluidized mud is taken to be a weak soil at most,
possessing only the lowest measurable viscoelastic strength, namely, the viscosity in
Pa s, and the elastic modulus in Pa, are both of O(10) (Mehta 1996).

The fluidized mud is typically O(10) cm deep, as has been reported in many field and
laboratory studies (e.g. Mehta 1996; Rodriguez & Mehta 1998). This mud thickness is
comparable with the surface-wave amplitude under fair weather conditions. Also, for
a gravity wave of frequency σ = O(1) s−1 propagating in a medium of density ρm =
O(103) kg m−3, viscosity µm = O(10) Pa s and elastic modulus Gm = O(10) Pa, the
thickness of the oscillatory (or Stokes) boundary layer, (2µm/ρmσ )1/2, and the
wavelength of induced elastic waves, (Gm/ρmσ 2)1/2, are both of O(10) cm. It is
therefore assumed in the present model that the mud depth, the mud Stokes
boundary-layer thickness, and the wavelength of elastic waves are all comparable
with the surface-wave amplitude, which in turn is much smaller than the surface
wavelength and the water depth. Based on this assumption of sharp contrast in length
scales, the two-layer Stokes boundary-layer model of Ng (2000) can be invoked. The
first-order oscillatory solutions valid within the entire viscoelastic layer and in the
interfacial boundary layer of water are first worked out. Second-order solutions are
then developed to determine the mass transport velocity field across the entire (i.e.
the surface and bottom boundary layers and the core region) water layer. To simplify
the analysis, we may consider an instant of time at which the viscoelastic mud has
already stopped undergoing mean motion, or the mean deformation of the mud has
already attained its equilibrium state. In other words, the focus here is primarily on
the mass transport in the water layer, and the objective is to find out how it is affected
by the viscoelastic oscillatory motion of a compliant mud on the bed.

Following Ünlüata & Mei (1970), Piedra-Cueva (1995), and Ng (2004a), we base
our analysis on the Lagrangian description. The use of Lagrangian coordinates will
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nw = 0

Upper layer
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Lower layer
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d
nm = 0
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Figure 1. Definition sketch of the problem.

enable boundary conditions to be specified exactly on the moving boundaries (i.e.
the free-surface and the water–mud interface) rather than their mean levels as in an
Eulerian analysis. This requirement must be fulfilled in order to cater for the condition
that the displacement amplitude of these moving boundaries is usually much larger
than the boundary-layer thickness. If Eulerian coordinates are used instead, and the
boundary conditions are to be specified upon a Taylor expansion about the mean level
of the moving boundaries, the solutions so obtained will be limited to waves of a very
small amplitude (Longuet-Higgins 1953). The Lagrangian approach is alternative to
the curvilinear coordinate system introduced by Longuet-Higgins (1953). Also, mass
transport and material deformations are by definition Lagrangian quantities, and it
will be more natural and convenient if a Lagrangian formulation is used directly.
Monin & Yaglom (1971) can be consulted for a derivation of the Navier-Stokes
equations in Lagrangian form.

2. Basic formulation
As in figure 1, we consider a two-layer system in which a layer of clear water overlies

a thin layer of viscoelastic mud; the depths of the two layers are h and d , respectively,
where h � d . As discussed above, it is assumed that stable stratification prevails, and
the two layers are separated by a sharp interface. We refer the equations of motion to
Lagrangian coordinates (α, β), which are the undisturbed horizontal/vertical positions
of a material particle. The α- and β-axes are, respectively, directed along the surface-
wave propagation, and vertically upward from the equilibrium level of the free water
surface. The instantaneous position of a particle, denoted by (x, z), is a function of α,
β and t � 0. We also introduce, for the convenience of expressing the boundary-layer
solutions to be developed below, two local boundary-layer coordinates nm ≡ β + h + d

and nw ≡ β +h = nm −d , which point upward from the bottom of the mud layer, and
from the water–mud interface, respectively (figure 1). Two distinct local coordinates
are required, since the Stokes boundary-layer thicknesses in the two layers are in
general of disparate orders of magnitude (see below).
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A train of small-amplitude progressive waves propagates on the free surface β = 0,
whose displacement is given by

η(α, t) = aei(kα−σ t), (2.1)

where a is the wave amplitude, k is the wavenumber, and σ is the angular frequency.
Moderate wavelengths are considered such that kh = O(1). The mud depth d , and
the Stokes boundary-layer thickness in the mud δm ≡ (2νm/σ )1/2, where νm = µm/ρm

is the kinematic viscosity of the mud, are both of the same order of magnitude
as the surface-wave amplitude a, which is much smaller than the wavelength. Two
comparable small parameters can be defined as follows:

ε ≡ ka ∼ εm ≡ kδm � 1, (2.2)

where ε is the wave steepness. The mud layer is so shallow that the entire layer is
driven by viscous forcing.

Immediately above the water–mud line, the water is also subject to boundary-
layer viscous flow, which can be laminar or turbulent depending on the near-bottom
Reynolds number. If turbulent, the mixing coefficient, or eddy viscosity, is known to
vary with depth and time in a wave boundary layer. We, however, follow Mei (1989,
p. 420) and adopt the assumption of constant eddy viscosity, based on the argument
that the varying component of the eddy viscosity should not have significant effects on
the flow under consideration. It has been reported that under long waves, the temporal
variation of the eddy viscosity may lead to dramatic change to the second-order flow
field (Trowbridge & Madsen 1984); this aspect is ignored in the present study.

The value of eddy viscosity is scale dependent, and for a typical seabed in a mild
wave environment, the eddy viscosity can be as much as νw = O(1) cm2 s−1, i.e. 100
times the molecular viscosity. Accordingly, the Stokes boundary-layer thickness in
water is given by δw = (2νw/σ )1/2 = O(1) cm, which is smaller than that in the mud,
δm = O(10) cm, as has been estimated above. A third small parameter can be defined
in terms of δw:

εw ≡ kδw � 1. (2.3)

It follows that, for both the mud and the near-bottom water, we may apply the
boundary-layer approximation to the equations of motion based the following scalings
of the variables:

(x, α) = O(h) = O(k−1), (zf , nf ) = O(δf ), t = O(σ −1),

pf = O(ρf gh), (τf xx, τf zz) = O(µf σ ), τf xz = O(ε−1
f µf σ ),

}
(2.4)

where ρ is the density, µ = ρν is the dynamic viscosity, p is the pressure, and τij are
the stress components. The subscript f = (w, m) is used to denote the association of
a quantity with the water or mud, or to distinguish between the two material domains

f =

{
w for water in nw > 0,

m for mud in d > nm > 0.
. (2.5)

The two local coordinates are scaled by the corresponding Stokes boundary-layer
thicknesses.

The Navier–Stokes equations in Lagrangian form, which are obtainable from
Pierson (1962), Monin & Yaglom (1971) and Piedra-Cueva (1995), are expressible as
follows, in which the small parameter εf = kδf is inserted for identification of the
order of the subdominant terms. Using the standard notation for a Jacobian, the
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conservation of mass is governed by

∂(xf , zf )

∂(α, nf )
= 1, (2.6)

and the horizontal and vertical momentum equations are

∂2xf

∂t2
= − 1

ρf

∂(pf , zf )

∂(α, nf )
+

1

ρf

[
ε2

f

∂(τf xx, zf )

∂(α, nf )
+

∂(xf , τf xz)

∂(α, nf )

]
, (2.7)

ε2
f

∂2zf

∂t2
= − 1

ρf

∂(xf , pf )

∂(α, nf )
+

ε2
f

ρf

[
∂(τf zx, zf )

∂(α, nf )
+

∂(xf , τf zz)

∂(α, nf )

]
− εf g. (2.8)

Here we assume that the viscoelastic mud is an isotropic Voigt body, for which the
stress is a linear combination of viscous and elastic parts, where the elastic part of the
stress is linearly proportional to the Lagrangian finite-strain tensor (e.g. Lai, Rubin &
Krempl 1993; Hutter & Jöhnk 2004):

Eij =
∂ui

∂Xj

+
∂uj

∂Xi

+
∂um

∂Xi

∂um

∂Xj

, (2.9)

where ui is the displacement vector of a particle that is originally positioned at Xi . It
follows that we may express the Lagrangian stress components as follows:

τf xx = 2µf

∂(ẋf , zf )

∂(α, nf )
+ Gf

[
2
∂(xf − α)

∂α
+

∂(xf − α)

∂α

∂(xf − α)

∂α

+ ε2
f

∂(zf − nf )

∂α

∂(zf − nf )

∂α

]
, (2.10)

τf zz = 2µf

∂(xf , żf )

∂(α, nf )
+ Gf

[
2
∂(zf − nf )

∂nf

+
1

ε2
f

∂(xf − α)

∂nf

∂(xf − α)

∂nf

+
∂(zf − nf )

∂nf

∂(zf − nf )

∂nf

]
, (2.11)

and

τf xz = τf zx = µf

[
∂(xf , ẋf )

∂(α, nf )
+ ε2

f

∂(żf , zf )

∂(α, nf )

]
+ Gf

[
∂(xf − α)

∂nf

+ ε2
f

∂(zf − nf )

∂α

+
∂(xf − α)

∂α

∂(xf − α)

∂nf

+ ε2
f

∂(zf − nf )

∂α

∂(zf − nf )

∂nf

]
, (2.12)

where the overdot denotes time derivative, Gw = 0 for water is a pure Newtonian
fluid, and Gm is the modulus of rigidity of mud.

The boundary and matching conditions are as follows. The no-slip at the solid
bottom requires that

xm = zm = ẋm = żm = 0 on nm = 0. (2.13)

The water–mud interface, nm = d , will have a displacement ξ (α, t) that is expected
to be an order of magnitude smaller in amplitude than the free-surface wave. The
continuity of particle displacements and stress components along this interface gives

xm = xw, zm − d = zw = ξ on nm = d or nw = 0, (2.14)

Tm = Tw, Nm = Nw on nm = d or nw = 0, (2.15)
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where T and N are, respectively, the tangential and normal stress components on a
material surface (Piedra-Cueva 1995):

Tf = εf
2(τf zz − τf xx)

∂xf

∂α

∂zf

∂α
+ τf zx

[(
∂xf

∂α

)2

− ε2
f

(
∂zf

∂α

)2
]

, (2.16)

Nf = −pf

[(
∂xf

∂α

)2

+ εf
2

(
∂zf

∂α

)2
]

+ εf
2

[
ε2

f τf xx

(
∂zf

∂α

)2

+ τf zz

(
∂xf

∂α

)2

− 2τf xz

∂xf

∂α

∂zf

∂α

]
. (2.17)

The particle displacements are primarily caused by a perturbation of order ε = ka,
and therefore the variables can be expanded into powers of ε:

(xf , zf ) = (α, nf ) + ε(xf 1, zf 1) + ε2(xf 2, zf 2) + · · · , (2.18)

pf = ρwgh − εf ρf g(nm − d) + εpf 1 + ε2pf 2 + · · · , (2.19)

(η, ξ ) = ε(η1, ξ1) + ε2(η2, ξ2) + · · · , (2.20)

τf zz = τf zz0 + ετf zz1 + · · · , (2.21)

(τf xz, τf xx) = ε(τf xz1, τf xx1) + ε2(τf xz2 + τf xx2) + · · · , (2.22)

where

τf zz0 = Gf

(
ε

εf

)2 (
∂xf 1

∂nf

)2

, (2.23)

τf zz1 = 2µf

∂żf 1

∂nf

+ 2Gf

[
∂zf 1

∂nf

+

(
ε

εf

)2
∂xf 1

∂nf

∂xf 2

∂nf

]
, (2.24)

τf xz1 = µf

∂ẋf 1

∂nf

+ Gf

∂xf 1

∂nf

, (2.25)

τf xz2 = µf

(
∂ẋf 2

∂nf

+
∂xf 1

∂α

∂ẋf 1

∂nf

− ∂xf 1

∂nf

∂ẋf 1

∂α

)
+ Gf

(
∂xf 2

∂nf

+
∂xf 1

∂α

∂xf 1

∂nf

)
, (2.26)

τf xx1 = 2µf

∂ẋf 1

∂α
+ 2Gf

∂xf 1

∂α
, (2.27)

τf xx2 = 2µf

(
∂ẋf 2

∂α
+

∂ẋf 1

∂α

∂zf 1

∂nf

− ∂ẋf 1

∂nf

∂zf 1

∂α

)
+ Gf

[
2
∂xf 2

∂α
+

(
∂xf 1

∂α

)2
]

. (2.28)

Let us recall the relationships between the three small parameters, as estimated
earlier:

εw � εm ∼ ε � 1. (2.29)

The existence of two disparate small parameters in the water boundary layer would,
in principle, require the water variables to be further expanded in terms of εw . For
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example,

(xw1, zw1) = (xw1,0, zw1,0) + εw(xw1,1, zw1,1) + · · · , (2.30)

and so on. However, as pointed out by Wen & Liu (1995a), the terms of O(εεw) can
be safely ignored, since neglecting these terms will cause only insignificant errors of
O(ε2εw) in the mass transport problem of O(ε2).

Now, upon substitution of the expansions (2.18)–(2.22) into the equations of motion
(2.6)–(2.8) and boundary conditions (2.13)–(2.15), and collection of terms of powers
of ε and ε2, we may obtain the first- and second-order problems as detailed below.

3. First-order solutions
At O(ε), the continuity and momentum equations are

∂xf 1

∂α
+

∂zf 1

∂nf

= 0, (3.1)

∂2xf 1

∂t2
= − 1

ρf

∂pf 1

∂α
+

1

ρf

∂τf xz1

∂nf

, (3.2)

0 = − 1

ρf

∂pf 1

∂nf

, (3.3)

where τf xz1 is given by (2.25).
The first-order boundary and matching conditions are

xm1 = zm1 = 0 on nm = 0, (3.4)

xm1 = xw1, zm1 = zw1 = ξ1 on nm = d or nw = 0, (3.5)

τmxz1 = τwxz1, pm1 = pw1 on nm = d or nw = 0. (3.6)

At the outer edge of the water boundary layer, the particle displacements and pressure
are asymptotically equal to the near-bottom values of the core flow:

(xw1, pw1) → (XI , PI ) as nw � δw, β → −h, (3.7)

where the near-bottom core flow is governed by

∂2XI

∂t2
= − 1

ρw

∂PI

∂α
as β → −h. (3.8)

It is clear from (3.3) and the matching and boundary conditions that pf 1, which is
the leading-order dynamic pressure, is constant across the layers and equal to

pf 1 = PI . (3.9)

Therefore, on using (3.8), (3.2) can be written as

∂2xf 1

∂t2
=

ρw

ρf

∂2XI

∂t2
+

1

ρf

∂τf xz1

∂nf

. (3.10)

Let us now express the first-order quantities in the same harmonic form as the
free-surface wave

(xf 1, zf 1, pf 1, XI , ξ1) = (x̃f , z̃f , p̃f , X̃I , b)ei(kα−σ t), (3.11)

where x̃f = x̃f (nf ), z̃f = z̃f (nf ) and p̃f = p̃f (nf ) are complex functions of nf only.
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Equation (3.10) then yields, for the two domains,

d2x̃w

dn2
w

= − iσ

νw

(x̃w − X̃I ) in nw > 0, (3.12)

d2x̃m

dn2
m

= − iσ

ν
†
m

(x̃m − γ X̃I ) in d > nm > 0, (3.13)

where

γ ≡ ρw/ρm < 1 (3.14)

is the density ratio, and

ν†
m = νm + iGm/ρmσ (3.15)

is the complex viscoelastic parameter for the mud. After using (3.7), the general
solutions to (3.12) and (3.13) are, as deduced by Ng (2000),

x̃w = (1 + De−λwnw )X̃I in nw > 0, (3.16)

x̃m = (γ + E cosh λmnm + H sinh λmnm) X̃I in d > nm > 0, (3.17)

where D, E and H are constants,

λ2
w = −iσ/νw or λw = (1 − i)/δw, (3.18)

and

λ2
m = −iσ/ν†

m or λm =
[
λ−2

v − λ−2
e

]−1/2
, (3.19)

in which

λ2
v = −iσ/νm = (1 − i)2/δ2

m, λ2
e = ρmσ 2/Gm. (3.20)

Recall that δw,m = (2νw,m/σ )1/2 are the respective Stokes boundary-layer thicknesses
in the water and mud layers. Further using the boundary conditions (3.4)–(3.6), we
may determine the constants as follows:

D =
−γ ζ − (1 − γ )ζ cosh λmd

ζ cosh λmd + γ sinh λmd
, (3.21)

E = −γ, (3.22)

H =
γ (1 − γ ) + γ 2 cosh λmd + γ ζ sinh λmd

ζ cosh λmd + γ sinh λmd
, (3.23)

where

ζ ≡ λw/λm = (ν†
m/νw)1/2 (3.24)

is a complex parameter equal to the square root of the ratio of the viscoelastic
parameter of mud to the viscosity of water. Now, the vertical displacement for each
layer can be found from the continuity equation (3.1) as follows:

z̃m(nm) = −ik

∫ nm

0

x̃m dnm in d > nm > 0, (3.25)

z̃w(nw) = z̃m(d) − ik

∫ nw

0

x̃w dnw in nw > 0. (3.26)

On substituting x̃w and x̃m into the integrals, the equations above give

z̃m(nm) = −ikλ−1
m [γ (λmnm − sinh λmnm) + H (cosh λmnm − 1)] X̃I , (3.27)

z̃w(nw) = z̃m(d) − i
[
knw − kDλ−1

w (e−λwnw − 1)
]
X̃I . (3.28)
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The dynamic pressure in the mud layer can be deduced from (3.8) and (3.9):

p̃m(n) = −iρwσ 2k−1X̃I . (3.29)

We have so far found the boundary-layer solutions in terms of XI , which is the
near-bottom horizontal displacement of the core flow.

We may now adopt from Ng (2004a) the most general first-order solution that
is valid for the entire water column (0 > β > −h), including the free-surface and
interfacial boundary layers:

x̃w(β) =
[
cosh k(h + β) + B sinh k(h + β) + De−λw(h+β) + Ceλwβ

]
X̃I , (3.30)

z̃w(β) = − i
[
sinh k(h + β) + B cosh k(h + β) − kλ−1

w (De−λw(h+β) − Ceλwβ)
]
X̃I , (3.31)

where D is already given by (3.21), and B and C are constants to be determined
below. The terms associated with C and D are appreciable only in the free-surface
and interfacial boundary layers, respectively. By matching the asymptotic limit of
(3.31) as β → −h with (3.28), B is found to be

B = iz̃m(d)/X̃I + kD/λw

= kλ−1
m [γ (λmd − sinh λmd) + H (cosh λmd − 1)] + kλ−1

w D, (3.32)

or the interfacial wave amplitude can be expressed in terms of B:

b = z̃m(d) = −i
(
B − kλ−1

w D
)
X̃I . (3.33)

One can readily check that, normally, B = O(εm) and b = O(εma), confirming that
the interfacial wave amplitude is an order of magnitude smaller than the surface wave
amplitude. The constant C can be found by imposing the condition of zero shear
stress on the free surface:

∂ẋw1

∂β
+

∂żw1

∂α
= 0 on β = 0, (3.34)

which on substituting (3.30) and (3.31) gives

C = −2kλ−1
w [sinh kh + B cosh kh] + O(εw)2. (3.35)

Using the kinematic free-surface condition that z̃w = a on β = 0, we may obtain
an expression for X̃I :

X̃I =
ia

sinh kh + B cosh kh
+ O(εw)2. (3.36)

Further using the condition of zero normal stress on the free surface (Ng 2004a):

−pw1 + 2µw

∂żw1

∂β
= 0

⇒ gz̃w + σ 2 (kλw)−2
[
z̃′′′

w −
(
2k2 + λ2

w

)
z̃′

w

]
= 0 on β = 0, (3.37)

we may obtain an eigenvalue relation for k:

σ 2

gk
=

tanh kh + B

1 + B tanh kh
+ O(εw)2. (3.38)

Since B = O(εm), we may expand the wavenumber into k = k1 + k2 + · · · , where
ki = O(εm)i−1. While the leading-order wavenumber is real and determined by the
familiar dispersion relation

σ 2 = gk1 tanh k1h, (3.39)
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the next order k2 is complex and given by

k2 = − Bk1

sinh k1h cosh k1h + k1h
. (3.40)

The imaginary part of k2 corresponds to the rate of spatial attenuation of the wave:

Dm/w ≡ Im(k2) = − k1Im(B)

sinh k1h cosh k1h + k1h
= − 2k1Im(B)

sinh 2k1h + 2k1h
, (3.41)

where Im stands for the imaginary part. In the limiting case of clear water only (i.e.
d = 0), the classical wave attenuation rate may be recovered:

Dw =
δwk1

2

sinh 2k1h + 2k1h
. (3.42)

The effects of mud viscoelasticity on the transformation of the surface and interfacial
waves, including wave attenuation, have been examined by Zhang & Ng (2006a).

At this point, we have solved the first-order problem for the oscillatory particle
displacements in the mud and water layers, and also for the surface and interfacial
wave characteristics. The Newtonian limit (i.e. Gm = 0) of the present boundary-layer
model, as presented by Ng (2000), has been tested by comparing results on the wave
damping factor for an example case of deep water as considered by Dalrymple & Liu
(1978), who solved the problem using a complete model theory. In the example case,
h = 4m, σ = 1.2566 s−1, γ = 0.57, εm = 0.09 and εw = 4.6 × 10−4. The comparison
in this example reveals that the boundary-layer model can agree very well with the
complete model as long as the mud depth is not thicker than 30% of the water depth.

Let us now proceed to the second order to determine the steady drift or mass
transport velocity in the water layer. Since our interest is in a horizontal length
scale comparable to the wavelength, the higher-order wave-attenuation effects can be
ignored. From here on, we shall not distinguish k1 from k, which is simply taken as a
real quantity.

4. Second-order solutions
As was remarked by MacPherson (1980), the mechanical representation of the

Voigt model is a spring and a dashpot operating in parallel. When subjected to a
steady load, the system will initially deform at a rate controlled by the damping of
the dashpot, but the deformation will ultimately approach a finite value depending
on the elasticity of the spring, as the dashpot gradually loses its effect. Zhang & Ng
(2006b) studied the mass transport due to wave forcing undergone by a single layer
of viscoelastic mud modelled as a Voigt body. They confirmed that a steady mass
transport velocity cannot be sustained in such a medium. The second-order time-mean
motion will instead die out exponentially over a time scale equal to the ratio of the
viscosity to the shear modulus, µm/Gm. Therefore, for a mud with sufficient strength
such that Gm/µm � O(σ ), the time-mean motion of the mud is short lived, as the
ultimate mean deformation can be attained readily within several wave periods or
so. Here, we have assumed that Gm/µm = O(1) s−1, and therefore the condition can
be met as long as σ � O(1) s−1 (i.e. the wave period is 6 s or longer). The period
of transient mean motion will then be of no appreciable significance and we may
consider an instant of time when the mud has already stopped undergoing mean
motion and attained the equilibrium steady deformation. As a result, the present
problem is reduced to finding only the mass transport taking place in the water
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layer, which is influenced by the mud viscoelasticity through the first-order oscillatory
motion of the water itself.

In the absence of mean motion of the mud, the mass transport problem can be
handled as if the system consisted only of clear water. The analysis therefore resembles
that for mass transport in a single layer of water, as has been presented by Ünlüata &
Mei (1970) and Ng (2004a).

The mass transport velocity, which is the steady component of the second-order
Lagrangian velocity, is purely horizontal when induced by a progressive surface wave.
Let us denote it by

uL(β) ≡ ¯̇xw2, (4.1)

where the overbar denotes time average over one wave period. This mass transport
velocity is governed by the time-averaged second-order horizontal momentum
equation:

∂

∂α

(
p̄w2

ρ
+ gz̄w2

)
− νw

d2uL

dβ2
= X̄w2, (4.2)

where

X̄w2 = νwσk
[

1
2
k2|z̃w|2 − 2Re(x̃∗

wx̃ ′′
w) − kIm(z̃∗

wx̃ ′
w) − 3

2
|x̃ ′

w|2
]
, (4.3)

in which the asterisk denotes complex conjugate. From the second-order vertical
momentum equation, we may obtain, after taking time averages,

p̄w2

ρ
+ gz̄w2 = gη̄2 +

∫ β

0

Z̄w2dβ, (4.4)

where η̄2(α) is the set-up or mean displacement of the free surface, and Z̄w2 is a
function of β only. Therefore, substituting (4.4) into (4.2), we obtain

νw

d2uL

dβ2
= g

dη̄2

dα
− X̄w2, (4.5)

where, as will be determined in (4.12), the spatial gradient of the free surface set-up,
dη̄2/dα, corresponds to a counter-balancing flux when the domain is closed; this term
is nevertheless subdominant in the boundary layers.

Following Ünlüata & Mei (1970) and Ng (2004a), we may derive from (4.5) the
mass transport velocity in the entire water layer as follows. First, in the bottom
boundary layer (β ∼ −h),

uL = σk
∣∣X̃I

∣∣2 {
2Re

[
D

(
e−λw(h+β) − 1

)]
+ 3

4
|D|2

(
e−2(h+β)/δw − 1

)}
, (4.6)

which tends to the following limit at the outer edge of the boundary layer:

uL|h+β�δw
= −σk|X̃I |2

[
2Re(D) + 3

4
|D|2

]
. (4.7)

Secondly, in the free-surface boundary layer (β ∼ 0),

duL

dβ
= 2σk|X̃I |2Re[λwC(cosh kh + B∗ sinh kh)(eλwβ − 1)], (4.8)

which tends to the following limit at the outer edge of the boundary layer

duL

dβ

∣∣∣∣
−β�δw

= 2σk2|X̃I |2[(1 + |B|2) sinh 2kh + 2Re(B) cosh 2kh]. (4.9)

Finally, in the water core region that is far away from the bottom and free-surface
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boundary layers,

uL(β) =
g

2νw

dη̄2

dα
(β2 − h2) + 1

2
σk|X̃I |2

{
(1 + |B|2)[cosh 2k(h + β)

− 1 + 2k(h + β) sinh 2kh] + 2Re(B)[sinh 2k(h + β)

+ 2k(h + β) cosh 2kh] − 4Re(D) − 3
2
|D|2

}
. (4.10)

The surface set-up gradient is zero when the domain is unbounded, but is to be
associated with a return current when the domain is closed. The return current is to
balance the forward flux so that the net discharge is zero. This can be worked out as
follows. The total flux due to the mass transport is

Q =

∫ 0

−h

uLdβ

= −gh3

3νw

dη̄2

dα
+ 1

2
σkh|X̃I |2

[
(1 + |B|2)

(
sinh 2kh

2kh
− 1 + kh sinh 2kh

)

+ 2Re(B)

(
cosh 2kh − 1

2kh
+ kh cosh 2kh

)
− 4Re(D) − 3

2
|D|2

]
, (4.11)

which is equal to zero when the set-up gradient is given by

gh2

2νw

dη̄2

dα
= 3

4
σk|X̃I |2

[
(1 + |B|2)

(
sinh 2kh

2kh
− 1 + kh sinh 2kh

)

+2Re(B)

(
cosh 2kh − 1

2kh
+ kh cosh 2kh

)
− 4Re(D) − 3

2
|D|2

]
. (4.12)

On substituting this back into (4.10), we may obtain an expression for the mass
transport velocity encompassing the two possible far end conditions for the domain:

uL(β) = 1
2
σk|X̃I |2

{
(1 + |B|2)[cosh 2k(h + β) − 1 + 2k(h + β) sinh 2kh]

+ 2Re(B)[sinh 2k(h + β) + 2k(h + β) cosh 2kh] − 4Re(D) − 3
2
|D|2

+
3Y

2

(
β2

h2
− 1

)[
(1 + |B|2)

(
sinh 2kh

2kh
− 1 + kh sinh 2kh

)

+2Re(B)

(
cosh 2kh − 1

2kh
+ kh cosh 2kh

)
− 4Re(D) − 3

2
|D|2

]}
, (4.13)

where Y is an integer parameter switching on or off the closed-domain condition:

Y =

{
0 if domain is open ended,

1 if domain is bounded.
(4.14)

Let us check the limiting case when the mud layer does not exist, or d = 0, to which the
following relationships apply: (i) in the absence of resonance, all terms associated with
B are always subdominant and can be ignored, (ii) D = −1, and (iii) X̃I ≈ ia/ sinh kh.
By virtue of these limiting relationships, we readily find that (4.13) reduces to

uL(β) =
σka2

4 sinh2 kh

[
3 + 2 cosh 2k(h + β) + 4k(h + β) sinh 2kh

+ 3Y

(
β2

h2
− 1

)(
3
2

+ kh sinh 2kh +
sinh 2kh

2kh

)]
for d = 0, (4.15)
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which accords with the one deduced by Ünlüata & Mei (1970) for mass transport due
to progressive waves in a one-layer system. The expression (4.13) is for a two-layer
system, where the mass transport in the upper-layer fluid is affected, through the
parameters B and D, by the viscoelasticity of the lower-layer material. The mass
transport is purely horizontal under a progressive wave, and the expressions deduced
above are hence good, even when the surface-wave amplitude is much larger than
the Stokes boundary-layer thickness in water (e.g. Wen & Liu 1995a).

5. Numerical results and discussions
In this section, we will use numerical examples to examine the effects of

viscoelasticity on the mass transport in the water layer. Let us first introduce the
following normalized variables, which are distinguished by an overhead caret:

(ûw1, v̂w1) = (ẋw1, żw1)/|ẊI |, ûL = uL/εσa, t̂ = σ t/π,

Q̂ = Q/σa2, k̂ = kh, β̂ = β/h, b̂ = b/εδw,

(λ̂m, λ̂v, λ̂e) = δw (λm, λv, λe) , (n̂w, d̂, δ̂m) = (nw, d, δm)/δw.

⎫⎪⎬
⎪⎭ (5.1)

Note that δw has been chosen as the normalization scale even for the mud layer, since
it is desirable to leave δm as a free parameter. By this normalization, we may further
express

λ̂m =
(
λ̂−2

v − λ̂−2
e

)−1/2
, (5.2)

λ̂v = (1 − i)/δ̂m, λ̂e = δw(ρmσ 2/Gm)1/2 = (2µwσ/γGm)1/2 , (5.3)

and

ζ = (1 − i)/λ̂m. (5.4)

In terms of the normalized variables and parameters, we may express the quantities
of interest as follows. The normalized interfacial wave amplitude is

|b̂| =

∣∣∣∣∣γ (λ̂md̂ − sinh λ̂md̂) + H (cosh λ̂md̂ − 1)

λ̂m(sinh k̂ + B cosh k̂)

∣∣∣∣∣ . (5.5)

The mass transport velocity in the bottom boundary layer as given by (4.6) is

ûL = | sinh k̂ + B cosh k̂|−2
{
2Re

[
D

(
e−(1−i)n̂w − 1

)]
+ 3

4
|D|2(e−2n̂w − 1)

}
. (5.6)

The mass transport velocity in the core region as given by (4.13) is

ûL(β̂) = 1
2
|sinh k̂ + B cosh k̂|−2

{
(1 + |B|2)[cosh 2k̂(1 + β̂) − 1 + 2k̂(1 + β̂) sinh 2k̂]

+ 2Re(B)[sinh 2k̂(1 + β̂) + 2k̂(1 + β̂) cosh 2k̂] − 4Re(D) − 3
2
|D|2

+
3Y

2
(β̂2 − 1)

[
(1 + |B|2)

(
sinh 2k̂

2k̂
− 1 + k̂ sinh 2k̂

)

+ 2Re(B)

(
cosh 2k̂ − 1

2k̂
+ k̂ cosh 2k̂

)
− 4Re(D) − 3

2
|D|2

]}
, (5.7)
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and the total flux for an open-ended domain as given by (4.11) is

Q̂ =
k̂

2
|sinh k̂ + B cosh k̂|−2

[
(1 + |B|2)

(
sinh 2k̂

2k̂
− 1 + k̂ sinh 2k̂

)

+ 2Re(B)

(
cosh 2k̂ − 1

2k̂
+ k̂ cosh 2k̂

)
− 4Re(D) − 3

2
|D|2

]
. (5.8)

In the expressions above, the parameters B , D and H are as follows:

B = εw

{
λ̂−1

m [γ (λ̂md̂ − sinh λ̂md̂) + H (cosh λ̂md̂ − 1)] +
(1 + i)

2
D

}
, (5.9)

D =
−γ ζ − (1 − γ )ζ cosh λ̂md̂

ζ cosh λ̂md̂ + γ sinh λ̂md̂
, (5.10)

and

H =
γ (1 − γ ) + γ 2 cosh λ̂md̂ + γ ζ sinh λ̂md̂

ζ cosh λ̂md̂ + γ sinh λ̂md̂
. (5.11)

To evaluate the quantities above, we must specify six basic input parameters:

(i) γ for the density ratio, (ii) λ̂e for the elasticity of the mud, (iii) δ̂m for the viscosity
of the mud, (iv) d̂ for the mud depth, (v) k̂ for the ratio of the water depth to
the wavelength, and (vi) εw for the ratio of the Stokes boundary-layer thickness in
water to the wavelength. To be consistent with the assumptions stated earlier, these
parameter should be so chosen that |λ̂md̂| = O(1), k̂ = O(1) and εw � 1. Also, for
the mean motion of the mud to die out within a relatively short period of time, we

require (λ̂eδ̂m)2 � O(1).
Recall that we have been considering a partially fluidized mud or a weak soil with

a bulk density 1.2–1.3 times that of clear water, and with the lowest measurable
viscoelastic coefficients, i.e. both the viscosity, µm (Pa s), and the shear modulus
of elasticity, Gm (Pa), are O(10). Based on these physical estimates, we choose in
our numerical calculations the following input values: (i) γ = 0.8, corresponding
to a ratio of ρm/ρw = 1.25; (ii) δ̂m = 8, corresponding to µm/µw = O(102) or

µm = O(10) Pa s if the eddy viscosity of water νw = O(1) cm2 s−1; and (iii) λ̂e =
0.3, 0.15, 0.1, corresponding to Gm = O(10) Pa, as can be estimated from (5.3). It

follows that λ̂m = O(0.1), which allows us to consider a mud depth as thick as
d̂ = O(10), corresponding to a physical mud depth of d = O(10) cm, which accords
with the field observation (e.g. Kirby, Hobbs & Mehta 1989). Finally, since the
wavelength is typically several orders of magnitude longer than the Stokes boundary-
layer thickness in water, εw = 10−3 is used in our computations.

Let us, for the sake of subsequent discussions, consider two mathematical limits of
the present theory. The first limit is when the mud is purely elastic or its viscosity

is zero: νm = 0. In such a limiting case, δ̂m = 0 implying λ̂m = iλ̂e. It follows that,
since |ζ | � 1, the denominators of the two parameters D and H , as given by (5.10)

and (5.11), are both approximately equal to cos λ̂ed̂ . Therefore, the two parameters

will blow up when λ̂ed̂ = π/2, 3π/2, 5π/2, . . . , corresponding to the occurrence of
resonance. We have numerically confirmed that, in the case of a pure elastic mud,
the interfacial wave amplitude |b̂| will indeed shoot up abruptly at specific values

of the mud depth d̂R = π/2λ̂e, 3π/2λ̂e, . . . . The resonant response is sharper and

higher for smaller λ̂e (i.e. stronger elasticity), when the resonance occurs to a thicker
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Figure 2. Interfacial wave amplitude |b̂|/δ̂m, and mass transport velocity at the outer edge of

the bottom boundary layer ûLB , as functions of d̂ and λ̂e .

mud layer. The presence of water overlying the mud (γ �= 0) will keep the resonant
amplitude from being blown up to infinity. Nevertheless, the oscillatory motion of
mud can be amplified significantly when resonance occurs. We caution that, however,
the resonance can only be treated as a singular solution to the present theory if it
gives rise to an excessively large amplification, as this may grossly violate the original
assumption of small particle displacements and linear elastic response. The present
theory will break down when the mud begins to yield plastically.

Practically, fluidized mud is not purely elastic, but has fairly large viscosity that will
substantially diminish the resonance amplification. This viscoelastic property of the
mud allows us to examine the effects of resonance within the range of validity of the
present theory. Figure 2 shows that even when the mud viscosity is as large as δ̂m = 8,
the resonance can still be appreciable for sufficiently strong elasticity of the mud, say

λ̂e < 0.15. We have found that for weaker elasticity such that λ̂e � 0.3, resonance is
completely suppressed and the interfacial wave amplitude |b̂| increases monotonically

with d̂ in the same manner as when the mud is purely viscous (e.g. Ng 2000). For

λ̂e � 0.15, resonance manifests itself as the interfacial wave amplitude exhibits a local
peak at values of d̂ close to d̂R given above (e.g. a local peak occurs at d̂R ≈ 16 for

λ̂e = 0.1). The damped resonance gives rise to only an order of unity amplification,
and therefore it is legitimate for us to look into its effect on the mass transport velocity.

The second mathematical limit, which has significant implications, is when the
parameter D in (3.16) vanishes identically. The first implication is, as is obvious
in (3.30) and (3.31), that the boundary layer above the water–mud interface will
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disappear completely. The second implication is, as is obvious in (4.6), that the near-
bottom mass transport velocity will vanish too. From (5.10), D = 0 happens when

cosh λ̂md̂ = −γ /(1 − γ ). Since the fluidized mud is practically no more than 30%
denser than clear water, the density ratio γ can be limited to the range 0.5 < γ < 1,

for which the equation above has no roots when λ̂m is real or imaginary. In other
words, D = 0 will not happen when the mud is purely viscous or elastic. The condition

can be satisfied, however, when the mud is viscoelastic such that λ̂m has non-zero real

(λ̂mr ) and imaginary (λ̂mi) parts. On substituting λ̂m = λ̂mr + iλ̂mi , the equation above
can be written as

cosh λ̂mr d̂ cos λ̂mid̂ + i sinh λ̂mr d̂ sin λ̂mid̂ = −γ /(1 − γ ). (5.12)

Obviously, this equation can be satisfied when

λ̂mr d̂ = ± cosh−1

(
γ

1 − γ

)
, (5.13)

and

λ̂mid̂ = ±π, ±3π, ±5π, . . . , (5.14)

so that cos λ̂mid̂ = −1 and sin λ̂mid̂ = 0. By (5.2) and (5.3), we may express

λ̂m = λ̂e

[
−1 − iλ̂2

e δ̂
2
m/2

1 + (λ̂2
e δ̂

2
m/2)2

]1/2

, (5.15)

from which λ̂mr and λ̂mi can be obtained readily. After some algebra, the two conditions
(5.13) and (5.14) can be shown to be equivalent to

λ̂2
e δ̂

2
m = 2

(
S2

j − 1
)1/2

, (5.16)

and

λ̂2
e d̂

2 = 2(Sj − 1)−1

[
Sj cosh−1

(
γ

1 − γ

)]2

, (5.17)

where

Sj =
1 + ξj

1 − ξj

, (5.18)

ξj =

[
(jπ)−1 cosh−1

(
γ

1 − γ

)]2

(j = 1, 3, 5, . . .). (5.19)

For given γ and one of the three parameters d̂ , δ̂m and λ̂e, (5.16) and (5.17) can be
used to determine the other two parameters corresponding to D = 0. As in the present
example, when γ = 0.8 and δ̂m = 8, the first solutions given by the two equations are

λ̂e = 0.27 and d̂ = 22.2. The parameter D vanishes when this set of values is met,
implying that xw1(nw = 0) = XI or the interface will oscillate in exactly the same phase
with the same amplitude as the near-bottom water particles; this will eliminate the
need for a boundary layer to exist above the interface. This is a distinct phenomenon
that can happen only to a viscoelastic mud. The disappearance of the interfacial
boundary layer will cause the mass transport velocity to vanish there as well. A slight
departure from D = 0 will turn the real part of D to either positive or negative,
which according to (4.7) (where |D|2 is negligible for a small departure from zero) will
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make the near-bottom mass transport velocity negative or positive, respectively. The
possibility of zero or negative mass transport velocity in a progressive wave boundary
layer (which will not happen when the bottom material is purely viscous) is indeed
remarkable and deserves further examination. Of course, for the near-bottom mass
transport velocity to vanish, D = 0 is only a sufficient, but not necessary condition;
the more general condition is, according to (4.7), Re(D) = −3|D|2/8.

Let us revisit figure 2, which shows also the mass transport velocity at the outer
edge of the bottom boundary layer ûLB ≡ ûL(β̂ = −1) as a function of mud depth
d̂ and elasticity λ̂e. First note that for a rigid bed (i.e. in the absence of the mud
layer, d̂ = 0), the near-bed mass transport velocity ûLB = (5/4) sinh2 k̂ = 0.905 for
k̂ = 1. As was noted by Ng (2000), the existence of a layer of viscous mud is to
decrease ûLB; the larger the mud depth d̂ , the smaller ûLB . Figure 2 suggests that

such a trait is also exhibited by the viscosity-dominated case of λ̂e = 0.3, in which
ûLB decreases monotonically with increasing d̂ . By contrast, the cases with stronger

elasticity λ̂e = 0.15, 0.1 exhibit qualitatively different dependence of ûLB on d̂ . When
the mud is not deep enough for resonance to occur, an elasticity-dominated mud
layer can lead to an increased ûLB . Similar findings have been reported by Wen & Liu
(1995a), who found that, for an infinitely deep elastic bed, the near-bed mass transport
velocity can be enhanced by as much as twice that for a rigid bed. We here consider
a very thin mud layer, and therefore the enhancement of the near-bed mass transport
velocity is relatively negligible (e.g. for λ̂e = 0.1, ûLB is only increased to a maximum
value of 0.953 when d̂ = 0.7). More dramatic and reversed effects are seen, however,
when the resonance mud depth is approached: the near-bed mass transport velocity
ûLB drops significantly to cross the value of zero to reach a minimum that is negative
and can be several times larger in magnitude than that for a rigid bed. It is clear that
a larger magnitude of the local minimum ûLB is associated with a stronger resonant
response resulting from a larger value of the elastic modulus of the mud layer.

That an elasticity-induced resonance amplification of the mud motion can lead to
reversed mass transport of water in the interfacial boundary layer can be understood
with the aid of figure 3. This figure serves to provide a comparison of the boundary-
layer profiles of the amplitude of the first-order horizontal velocity |ûw1|(n̂w) for three
cases: (a) a resonance case with negative mass transport, d̂ = 16 and λ̂e = 0.1; (b) a
case with practically zero mass transport, d̂ = 16 and λ̂e = 0.3; (c) positive mass
transport in the limiting case of a rigid bottom, d̂ = 0. From the correlation between
the horizontal and vertical components of the first-order velocity at n̂w = 1 (shown in
the left-hand column of the figure), it can be inferred that in each case a water particle
will follow a clockwise closed trajectory in one wave period at the first order. In other
words, a particle will be at a slightly higher elevation when it moves forward than when
it moves backward. A net particle drift of second order will result if there is a velocity
differential with height. The drift will be positive/negative if the velocity amplitude
increases/decreases with height. In case (a), the resonance amplification causes the
interface to oscillate with a larger horizontal amplitude than that at the outer edge of
the boundary layer: |xw1|(n̂w = 0) > |XI |. As a result, the velocity amplitude decreases
with height, and the mass transport velocity is negative. In case (b), xw1(n̂w = 0) ≈ XI

in terms of both phase and amplitude, and the velocity is almost uniform across the
boundary layer. This is a case in which the boundary layer virtually disappears. In the
absence of an appreciable velocity gradient, the mass transport is nearly zero in this
case. In the limiting case (c), the mud is absent and the water bottom is stationary.
The velocity amplitude, which is zero on the bottom, then increases with height, and
the mass transport velocity is positive, as is well known in the literature.
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Figure 3. Horizontal (solid) and vertical (dashes) components of first-order velocity (ûw1, v̂w1)
at n̂w = 1 as functions of t̂ (left-hand column); amplitude of first-order horizontal velocity |ûw1|
as a function of n̂w (right-hand column), where (a) d̂ = 16 and λ̂e = 0.1, (b) d̂ = 16 and λ̂e = 0.3,

(c) d̂ = 0.

Figure 4 shows the mass transport velocity profiles ûL(β̂) across the water column,
for mud depths d̂ = 8, 12 and 16, when the system is unbounded (Y = 0). To facilitate
comparison, the profiles for a rigid bed or d̂ = 0 are shown by dashes in these
and the following figures. In an open system, the mass transport velocity increases
monotonically with height above the water bed, and therefore the profile is essentially
controlled by its near-bottom value. Here, we see again the depth-dependent resonance
effects discussed above. At mud depth d̂ = 12 (figure 4b), it is the one with elasticity

λ̂e = 0.15 that is subject to a strong amplification of the interfacial displacement, while

at mud depth d̂ = 16 (figure 4c), it is the one with elasticity λ̂e = 0.1 whose interfacial
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Figure 4. Mass transport velocity profiles ûL(β̂) in an open system (Y = 0) as a function of

λ̂e , where (a) d̂ = 8, (b) d̂ =12, (c) d̂ = 16. The profiles for the limiting case of a rigid bed

(d̂ = 0) are shown by dashes for comparison.

displacement is the most amplified among the cases shown. When the mud motion is
sufficiently amplified, the mass transport velocity is negative immediately above the
water–mud interface. As it increases with height, the mass transport velocity may turn
from negative in the lower part of the water column to positive in the upper part of
the water column. However, when the bottom drift velocity is strongly negative, the
mass transport will remain negative across the entire water column. The overall mass
transport velocity profile turns out to be very dependent on the extent of resonance
amplification of the mud motion, and therefore it varies in a non-monotonic manner

with the mud depth d̂ and elasticity λ̂e.
The mass transport velocity profiles for the counterpart of a closed system (Y = 1)

are shown in figure 5. Let us compare again our results with those of Wen & Liu
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of λ̂e , where (a) d̂ = 8, (b) d̂ = 12, (c) d̂ = 16. The profiles for the limiting case of a rigid bed

(d̂ = 0) are shown by dashes for comparison.

(1995a). On considering an infinitely deep bed of strong elasticity, G = O(103−108) Pa,
Wen & Liu found that the elastic deformation of the bed is to enhance both the
forward drift in the lower part of the water column and the backward drift in the
upper part of the water column. Here, we consider a thin layer of soft viscoelastic
mud, and find that the opposite effect is true: the near-bed drift is decreased to the
extent that it becomes reversed in direction (as has been discussed above), while the
near-surface forward drift is appreciably enhanced. While Wen & Liu (1995a) found a
factor of as large as 2 in the effect of elasticity on the mass transport velocity, we here
find that the mass transport velocity can be affected by a much larger factor, primarily
owing to the resonance amplification of the interfacial displacement. The comparison
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suggests that a thin layer of very soft bottom mud can have a greater impact than a
thick layer of stiff soil deposits on the mass transport in the water column.

Finally, we show in figure 6 the net mass transport discharge Q̂ as a function of k̂,
corresponding to the cases shown in figure 4, when the system is open. As is expected,
a viscoelastic bed is to lead to a smaller forward mass flux, or even a backward flux,
when compared with the flux over a rigid bed. Clearly, the effect of the bed is larger
for smaller k̂ or a shallower water layer. It is remarkable that when k̂ = 0.5, the
negative mass flux over an viscoelastic bed can be several times larger in magnitude
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than the forward flux over a rigid bed. The longer the wave, the greater the effect of
a viscoelastic bed on the mass transport in the water layer.

6. Concluding remarks
We have developed analytical expressions for the mass transport in a progressive

water wave over a thin layer of viscoelastic material, and shown that the results
are qualitatively different from the cases when the material is purely viscous or
purely elastic with infinite depth. A pure viscous muddy bottom only mildly decreases
the mass transport, which remains in the same direction as the wave propagation.
In sharp contrast, a viscoelastic material can lead to a significant change in the
magnitude of the mass transport in the water column, and even a change in the
drift direction. We further remark that mass transport over a finite viscoelastic layer
can be dramatically different from that over an infinitely deep elastic bottom, since
resonance can occur in the former, but not in the latter. An elastic bed of infinite
depth always increases the mass transport in the water layer, while a viscoelastic bed
of finite depth may increase or decrease the mass transport, depending on the depth
and elasticity of the bed layer. We have explained that the particle drift in the
interfacial boundary layer can be zero or negative, as a result of amplification of the
horizontal oscillatory displacement of the interface due to resonance. We have also
demonstrated that resonance, when occurring in the bottom layer, can play a pivotal
role in determining the magnitude as well as the direction of the mass transport in
the water layer, whether the system is open or closed.

The present work is limited to progressive waves over a very thin viscoelastic layer.
It is possible to extend the scope of the work to include (i) partially standing waves,
(ii) a viscoelastic layer comparable in thickness with the water layer, (iii) a stratified
bed layer with viscoelastic properties varying as a function of depth, (iv) time-varying
eddy viscosity of water in the interfacial boundary layer, (v) a sloping bottom, and
so on. Most of these tasks would, however, involve considerable numerical effort.

It is also of interest to investigate the additional effects on the mass transport
due to a contaminated water surface. Weber & Christensen (2003) and Christensen
(2005) have studied the mean drift induced by waves on a surface covered by a
monomolecular layer of surfactant modelled as an elastic film. They found that when
the film is stationary, the mean drift velocity can be in the opposite direction to the
wave propagation for certain values of the film elasticity. It is worth finding out how
the elasticity of a surface film interacts with the elasticity of a bottom material in
determining the mean drifts in the interior of a water layer.
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