
KAI HWANG and ZHlWEl XU

n this article, we assess the state-of-the-art technology in
massively parallel processors (MPPs) and their vari-
ations in different architectural platforms. Architectural

and programming issues are identified in using MPPs for
time-critical applications such as adaptive radar signal proc-
essing.

First, we review the enabling technologies. These include
high-performance CPU chips and system interconnects, dis-
tributed memory architectures, and various latency hiding
mechanisms. We characterize the concept of scalability in
three areas: resources, applications, and technology. Scalable
performance attributes are analytically defined. Then we com-
pare MPPs with symmetric multiprocessors (SMPs) and clus-
ters of workstations (COWS). The purpose is to reveal their
capabilities, limits, and effectiveness in signal processing.

In particular, we evaluate the IBM SP2 at MHPCC [33] ,
the Intel Paragon at SDSC [38], the Cray T3D at Cray Eagan
Center [I] , and the Cray T3E and ASCI TeraFLOP system
recently proposed by Intel [32]. On the software and pro-
gramming side, we evaluate existing parallel programming
environments, including the models, languages, compilers,
software tools, and operating systems. Some guidelines for
program parallelization are provided. We examine data-par-
allel, shared-variable, message-passing, and implicit pro-
gramming models. Communication functions and their
performance overhead are discussed. Available software
tools andcommunication libraries are introduced.

Our experiences in porting the MITLincoln Laboratory
STAP (space-time adaptive processing) benchmark pro-
grams onto the SP2, T3D, and Paragon are reported. Bench-
mark performance results are presented along with some
scalability analysis on machine and problem sizes. Finally,
we comment on using these scalable computers for signal
processing in the future.

Scalable Parallel Computers

A computer system, including hardware, system software,
and applications software, is called scalable if it can scale up
to accommodate ever increasing users demand, or scale down

to improve cost-effectiveness. We are most interested in
scaling up by improving hardware and software resources to
expect proportional increase in performance. Scalability is a
multi-dimentional concept, ranging from resource, applica-
tion, to technology [12,27,37].

Resource scalability refers to gaining higher performance
or functionality by increasing the machine size (i.e., the
number of processors), investing in more storage (cache,
main memory, disks), and improving the software. Commer-
cial MPPs have limited resource scalability. For instance, the
normal configuration of the IBM SP2 only allows for up to
128 processors. The largest SP2 system installed to date is
the 5 12-node system at Come11 Theory Center [141, requiring
a special configuration.

Technology scalability refers to a scalable system
which can adapt to changes in technology. It should be
generation scalable: When part of the system is upgraded
to the next generation, the rest of the system should still
work. For instance, the most rapidly changing component
is the processor. When the processor is upgraded, the
system should be able to provide increased performance,
using existing components (memory, disk, network, OS,
and application software, etc.) in the remaining system. A
scalable system should enable integration of hardware and
software components from different sources or vendors.
This will reduce the cost and expand the system’s usabil-
ity. This heterogeneity scalability concept is called port-
ability when used for software. It calls for using
components with an open, standard architecture and inter-
face. An ideal scalable system should also allow space
scalability. It should allow scaling up from a desktop
machine to a multi-rack machine to provide higher per-
formance, or scaling down to a board or even a chip to be
fit in an embedded signal processing system.

To fully exploit the power of scalable parallel computers,
the application programs must also be scalable. Scalability
over machine size measures how well the performance will
improve with additional processors. Scalability overproblem
size indicates how well the system can handle large problems
with large data size and workload. Most real parallel appli-

50 IEEE SIGNAL PROCESSING MAGAZINE
1053-58S8/96/$5.0001996IEEE

JULY 1996

- _- -

l’able 1: Architectural Attributes of Five Parallel Computer Categories
- - - -

Attribute PVP SMP
~ _ _ _ _ ~

Example Cray C-90, Cray (36400, DASH Berkeley NOW,
Alpha Farm

- ~~

DEC 8000

~~ -~

Distributed
Unshared

-~ ~~ _____

i
Address Space Single Single

Access Model UMA UMA
7- 1 Interconnect Custom Crossbar ~ Bus or Crossbar

I

cations have limited scalability in both machine size and
problem size. For instance, some coarse-grain parallel radar
signal processing program may use at most 256 processors to
handle at most 100 radar channels. These limitations can not
be removed by simply increasing machine resources. The
program has to be significantly modified to handle more
processors or more radar channels.

Large-scale computer systems are generally classified into
six architectural categories [25] : the single-instruction-mul-
tiple-data (SIMD) machines, the parallel vector processors
(PVPs), the symmetric multiprocessors (SMPs), the mas-
sively parallel processors (MPPs), the clusters of worksta-
t ions (COWs) , and the distributed shared memory
multiprocessors (DSMs). SIMD computers are mostly for
special-purpose applications, which are beyond the scope of
this paper. The remaining categories are all MIMD (multiple-
instruction-multiple-data) machines.

Important common features in these parallel computer
architectures are characterized below:

Commodity Components: Most systems use commercially
off-the-shelf, commodity components such as microproc-
essors, memory clhips, disks, and key software.
MIMD: Parallel machines are moving towards the MIMD
architecture for general-purpose applications. A parallel
program running on such a machine consists of multiple
processes, each executing a possibly different code on a
processor autonomously.
Asynchrony: Each process executes at its own pace, inde-
pendent of the speed of other processes. The processes can
be forced to wait for one another through special synchro-
nization operations, such as semaphores, barriers, block-
ing-mode communications, etc.
Distributed Memory: Highly scalable computers are all
using distributed imemory, either shared or unshared. Most
of the distributed memories are acccssed by the none-uni-
form memory access (NUMA) model. Most of the NUMA
machines support no remote memory access (NORMA).
The conventional PVPs and SMPs use the centralized,
unijorm memory access (UMA) shared memory, which
may limit scalability.

Custom Network Custom Network I
Parallel Vector Processors

The structure of a typical PVP is shown in Fig. la. Examples
of PVP include the Cray C-90 and T-90. Such a system
contains a s8mall number of powerful custom-designed vector
processors (VPs), each capable of at least 1 Gflop/s perform-
ance. A custom-designed, high-bandwidth crossbar switch
connects these vector processors to a number of shared
memory (SM) modules. For instance, in the T-90, the shared
memory can supply data to a processor at 14 GB/s. Such
machines normally do not use caches, but they use a large
number of vector registers and an instruction buffer.

Symmetric Mu Iti process0 rs

The SMP architecture is ;shown in Fig. lb. Examples include
the Cray CS6400, the IBM R30, the SGI Power Challenge,
and the DEC Alphaserver 8000. Unlike a PVP, an SMP
system uses commodity microprocessors with on-chip and
off-chip caches. These processors are connected to a shared
memory though a high-speed bus. On some SMP, a crossbar
switch is also used in adldition to the bus. SMP systems are
heavily used in commerlcial applications, such as database
systems, on-line transaction systems, and data warehouses. It
is important for the system to be symmetric, in that every
processor lhas equal access to the shared memory, the I/O
devices, and operating system. This way, a higher degree of
parallelism can be released, which is not possible in an
asymmetric (or master-slave) multiprocessor system.

Massively Parallel Processors

To take advantage of higlher parallelism available in applica-
tions such ,as signal processing, we need to use more scalable
computer platforms by exploiting the distributed memory
architectures, such as MPPs, DSMs, and COWs. The term
MPP generally refers to a large-scale computer system that
has the following features:

It uses commodity microprocessors in processing nodes.
It uses physically distributed memory over processing
nodes.

JULY 1996 IEEE SIGNAL PROCESSING MAGAZINE 51

o It uses an interconnect with high communication band-

o It can be scaled up to hundreds or even thousands of

By this definition, MPPs, DSMs, and even some COWS
in Table 1 are qualified to be called as MPPs. The MPP
modeled in Fig. 1 c is more restricted, representing machines
such as the Intel Paragon. Such a machine consists a number
of processing nodes, each containing one or more micro-
processors interconnected by a high-speed memory bus to a
local memory and a network interface circuitv (NIC). The
nodes are interconnected by a high-speed, proprietary, com-
munication network.

width and low latency.

processors.

Distributed Shared Memory Systems
DSM machines are modeled in Fig.ld, based on the Stan-
ford DASH architecture. Cache directory (DIR) is used to
support distributed coherent caches [30]. The Cray T3D is
also a DSM machine. But it does not use the DIR to
implement coherent caches. Instead, the T3D relies on
special hardware and software extensions to achieve the
DSM at arbitrary block-size level, ranging from words to
large pages of shared data. The main difference of DSM
machines from SMP is that the memory is physically
distributed among different nodes. However, the system
hardware and software create an illusion of a single ad-
dress space to application users.

~ Crossbar Switch I

(a) Parallel Vector Processor (b) Symmetric Multiprocessor

v>-*,;
I

I I H N I C ~ I

LIJ Custom-Designed Network I Custom-Designed Network 1
(c) Massively Parallel Processor

(d) Distributed Shared Memory Machine

Bridge:Interface between

memory bus and U 0 bus
DIR: Cache directory
IOB: U 0 bus
LD: Local disk
LM: Local memory
MB: Memorybus
NIC: Network Interface Circuitry

1 P/C: Microprocessor and cache

r - - - - - i r ; ' , .

I

Brid e 1 &,E,;
I NIC 1 I

L
- -

1 Commodity Network (Ethernet, ATM, etc.) 1 SM: Shared memory

(e) Cluster of Workstations VP: Vector processor

. Conceptual architectures offive categories of scalable parallel computers.

52 IEEE SIGNAL PROCESSING MAGAZINE JULY 1996

MPP Architectural Evaluation Clusters of Workstations

Architectural features of five MPPs are summarized in Table
2. The configurations of SP2, T3D and Paragon are based on
current systems our USC team has actually ported the STAP
benchmarks. Both SP2 and Paragon are message-passing
multicomputers with the NORMA memory access model
[26]. Internode communication relies on explicit message
passing in these NORMA machines. The ASCI TeraFLOP
system is ithe successor of the Paragon. The T3D and its
successor T3E are both MPPs based on the DSM model.

The COW concept is shown in Fig.le. Examples of COW
include the Digital Alpha Farm [161 and the Berkeley NOW
[SI. COWs are a low-cost variation of MPPs. Important
distinctions are listed below [36]:

Each node of a COW is a complete workstation, minus the
peripherals.
The nodes are connected through a low-cost (compared to
the proprietary network of an MPP) commodity network,
such as Ethernet, FDDI, Fiber-Channel, and ATM switch.
The network interface is loosely coupled to the I/O bus. This
is in contrast to the tightly coupled network interface which is
connected to the memory bus of a processing node.

e There is always a local disk, which may be absent in an
MPP node.
A complete operating system resides on each node, as
compared to some MPPs where only a microkernel exists.
The OS of a COW is the same UNIX workstation, plus an
add-on software layer to support parallelism, communica-
tion, and load balancing.
The boundary between MPPs and COWs are becoming

fuzzy these days. The IBM SP2 is considered an MPP. But it
has also a COW architecture, except that a proprietary High-
Perj%rmance Switch is used as the communication network.
COWs have many cost-performance advantages over the
MPPs. Clustering of workstations, SMPs, and or PCs is be-
coming a trend in developing scalable parallel computers [36].

MPP Architectures

Among the three existing; MPPs, the SP2 has the most pow-
erful processors for floating-point operations. Each
POWER2 processor has a peak speed of 267 Mflop/s, almost
two to three times higher than each Alpha processor in the
T3D and each 8 6 0 processor in the Paragon, respectively.
The Pentium Pro processor in the ASCI TFLOPS machine
has the potential to compete with the POWER2 processor in
the future. The successor of T3D (the T3E) will use the new
Alpha 21 164 which has i.he potential to deliver 600 Mflop/s
with a 3001 MHz clock. T3E and TFLOPS are scheduled to
appear in late 1996.

The Intel MPPs (Paragon and TFLOPS) continue using
the 2-D mesh network, which is the most scalable intercon-
nect among all existing MPP architectures. This is evidenced
by the fact that the Paragon scales to 4536 nodes (9072

.

. .

Intel ASCI
TeraFLOPS 1 MPPModels IBM SP2

- _ _ _ _ ~
400-node
100 Gflopls at
MHPCCS

67 MHz 267
Mflop/s POWER2

Cray T3D Cray T3E Intel Paragon I A Large Sample
Configuration

12-node 153
Gflop/s at NSA

Maximal 51 2-node,
1.2 Tflop/s

400-node 40
Gflop/s at SDSC

4536-node 1.8 1
Tflop/s at SNL 1

I CPUType
150 MHz
150 Mflop/s Alpha
2 1064

2 processors, 64
MB memory SO
GB Shared disk

300 MHz, ti00
Mflop/s
Alpha 21 164

4-8 processors,
256MB-16GB
DSM memory,
Shared disk

SO MHz
100 Mflop/s Intel
i860

1-2 processors,
16-128 MB local
memory, 48 GB
shared disk

~~

200 MHz
200 Mflop/s

2 processors

memory shared
disk

32-2.56 MB local
1 Node Architecture 1 processor, 64

MB-2 GB local
memory, 1-4.5GB
Local disk

Interconnect and
memory
Operating System
on Compute Node

Native
Programming

~~ i Mechanism

Multistage
Network, NORMA

3-D Torus DSM 3-D Torus DSM 2-D Mesh
NORMA

Split 2-D Mesh
NORMA i ~ ~ ~ _ _

Microkernel based
on Chorus

Complete AIX
(IBM Unix)

Micirokernel Light-Weighted
Kernel (LWK)

Microkernel

Message passing
W L)

shared variable
and message
passing, PVM

shared variable
and messag,e
passing, P\'M

Message Passing
(Nx)

Message Passing
(MPI based on

Nx, PVM MPI, PVM, HPF,
Linda

MPI. HPF MPI. HPF SUPJMOS, MPI,
PVM

Other
Programming
Models

30 pis 175 MB/s 40 ps 3.5 MB/s 2 ~s 150 MB/s 480 MB/s 10 ks 380 MB/s 1 Point-to-point
latency and
bandwidth

JULY 1996 IEEE SIGNAL PROCESSING MAGAZINE 53

4 Clock Rate 1000000 +Clock Rate

~ H- Total Memory +Total Memory
4 Machine Size -A- Machine Size

X Total Speed +Bandwidth
’ 1OOOOO -+-Processor Speed

10000
Processor Speed

0 *Latency
loooo +Toid Sped U’

/ -
0

/
I / 2

L? ~ / E 1000

d A 100
E

loo0 I
6

2 100 -

J
P

”
a,

/ 5
0

A -
/ A

A

/

, 4 10

2 10

4
-+-

1
1985 1987 1989 1992 1996

iPSC/l iPSCI2 iPSC/860 Paragon TeraFLOP

1979 1983 1987 1991 1995
Cray 1 X-MP Y-MP c-90 T-90

I

(a) Cray vector supercomputers (b) Intel MPPs

2. Improvement trends of various performance attributes in Gray ruperconipiiters and Intel MPPs

Pentium Pro processors) in the TFLOPS. The Cray T3DiT3E
use a 3-D torus network. The IBM SP2 uses a multistage Omega
network. The latency and bandwidth numbers are for one-way,
point-to-point communication between two node processes.
The latency is the time to send an empty message. The band-
width refers to the asymptotic bandwidth for sending large
messages. While the bandwidth is mainly limited by the com-
munication hardware, the latency is mainly limited by the
software overhead. The distributed shared memory design of
T3D allows it to achieve the lowest latency of only 2 pi.

Message passing is supported as a native programming
model in all three MPPs. The T3D is the most flexible machine
in terms of programmability. Its native MPP programming
language (called Cray Craft) supports three models: the data
parallel Fortran 90, shared-variable extensions, and message-
passing PVM [18]. All MPPs also support the standard Mes-
sage-Passing Ifiterface (MPI) library [20]. We have used
MPI to code the parallel STAP benchmark programs. This
approach makes them portable among all three MPPs.

Our MPI-based STAP benchmarks are readily portable to
the next generation of MPPs, namely the T3E, the ASCI, and
the successor to SP2. In 1996 and beyond, this implies that
the portable STAP benchmark suite can be used to evaluate
these new MPPs. Our experience with the STAP radar bench-
marks can also be extended to convert SAR (synthetic aper-
ture radar) and ATR (Automatic target recognition) programs
for parallel execution on future MPPs.

Hot CPU Chips

Most current systems use commodity microprocessors. With
wide-spread use of microprocessors, the chip companies can
afford to invest huge resources into research and develop-
ment on microprocessor-based hardware, software, and ap-
plications. Consequently, the low-cost commodity

microprocessors are approaching the performance of custom-
designed processors used in Cray supercomputers. The speed
performance of commodity microprocessors has been in-
creasing steadily, almost doubling every 18 months during
the past decade.

From Table 3, Alpha 21 164A is by far the fastest micro-
processor announced in late 1995 [171. All high-performance
CPU chips are made from CMOS technology consisting of
5M to 20M transistors. With a low-voltage supply from 2.2
V to 3.3 V, the power consumption falls between 20 W and
30 W. All five CPUs are superscalar processors, issuing 3 or
4 instructions per cycle. The clock rate increases beyond 200
MHz and approaches 417 MHz for the 21 164A. All proces-
sors use dynamic branch prediction along with out-of-order
RISC execution core. The Alpha 21 164A, UltraSPARC 11,
and R 10000 have comparable floating-point speed approach-
ing 600 SPECfp92.

Scalable Growth Trends

Table 4 and Fig.2 illustrate the evolution trends of the Cray
supercomputer family and of the Intel MPP family. Com-
modity microprocessors have been improving at a much
faster rate than custom-designed processors. The peak speed
of Cray processors has improved 12.5 times in 16 years, half
of which comes from faster clock rates. In 10 years, the peak
speed of the Intel microprocessors has increased 5000 times,
of which only 25 times come from faster clock rate, the
remaining 200 come from advances in the processor archi-
tecture. At the same time period, the one-way, point-to-point
communication bandwidth for the Intel MPPs has increased
740 times, and the latency has improved by 86.2 times. Cray
supercomputers use fast SRAMs as the main memory. The
custom-designed crossbar provide high bandwidth and low
communication latency. As a consequence, applications run-

54 I€€€ SIGNAL PROCESSING MAGAZINE JULY 1996

T a b l e : High-Periormance CPU Chips for Building MPPs
- 1 - -

32 kB132 kB FIh: 256 kB on a off-chip
multi-chip module

8 kB/8 kB

1 ClockRate 1 150 MHz 1 133MHz 1 417MHz 1 200MHz 1

8 kBl8 kB 1 16 k B y l 32 kW32 kB

96 kB on-chip 16 MI3 off-chip 16 MB otf-chlp

, 1 Voltage 2.9 V I 3.3 v I 2.2 v I 2.5 v I 3.3 v I

Special Features

20w
Word Length 32 bits

CISCRISC Short pipelines, Highest clock rate Multirmedia and MP cluster bus
hybrid, 2-level large L1 caches and density with graphics supports up to 4
specu I ative on-chip L2 cache instructions CPUS
execution

w 64 bits
,.- 64 bits +E!!

64 bits
+-

64 bits
i

1 Execution Units i 5 units 1 6 units 1 4 units 1 9 unit? 1 s units I

7.4

I 15

8.09 225 11

SPECfu95 6.70 i 300 17

-_

l'oble 4: Evolution of CGy Superyomputerand IntelMPP .- Fa milies - - - -

Memory
Company Computer 'lock Capacity Machine Peak Speed Bandwidth Latency

~ 1 ~ Year ~ (MHz) ~ (MB) ~ Sken ~ (Mflopls) I (MB/s) ~ (ms) ~

ning on Cray supercomputers often have higher utilizations
(15% to 45%) than those (1% to 30%) in MPPs.

Performance Metrics for Parallel Applications

We define below performance metrics used on scalable par-
allel computers. The terminology is consistent with that
proposed by the Parkbench group [25], which is consistent
with the conventions used in other scientific fields, such as
physics. These metrics are summarized in Table 5.

Performance Metrics

The parallel computational steps in a typical scientific or
signal processing application are illustrated in Fig. 3. The
algorithm consisting of a sequence of k steps. Semantically,
all operatic" in a step should finish before the next step can
begin. Step i has a computational workload of W, million
floating-point operations (Mflop), and takes T,(i) seconds to
execute on one processor. It has a degree of parallelism of
DOP,. In other words, when executing on n processors with

JULY 1996 IEEE SIGNAL PROCESSING MAGAZINE 55

lSnSDOP,, the parallel execution time for step i becomes
T,(i) = T,(i)/n. The execution time can not be further reduced
by using more processors. We assume all interactions (com-
munication and synchronization operations) happen between
the consecutive steps. We denote the total interaction over-
head as T(>.

Traditionally, four metrics have been used to measure the
performance of a parallel program: the parallel execution time,
the speed (or sustained speed), the speedup, and the efficiency:
as shown in Table 5. We have found that several additional
metrics are also very useful in performance analysis.

A shortcoming of the speedup and efficiency metrics is that
they tend to act in favor of slow programs. In other words, a
slower parallel program can have higher speedup and efficiency
than a faster one. The utilization metric does not have this
problem. It is defined as the ratio of the measured n-processor
speed of a program to the peak speed of an n-processor
system. In Table 5, Ppeak is the peak speed of a single
processor. The critical path and the average parallelisnz are
two extreme value metrics, providing a lower bound for
execution time and an upper bound for speedup, respectively.

Efficiency

Communication Overhead

Xu and Hwang [43] have shown that the time of a communi-
cation operation can be estimated by a general timing model:

where m is the message length in bytes, the latency to(n)
and the asymptotic bandwidth r J n) can be linear or non-
linear functions of n. For instance, timing expressions are
obtained for some MPL message-passing operations on the
SP2, as shown in Table 6. Details on how to derive these
and other expressions are treated in [43], where the MPI
performance on SP2 is also compared to the native IBM
MPL operations. The total overhead To is the sum of the
times of all interaction operations occurred in a parallel
program.

Parallel Programming Models

Four models for parallel programming are widely used on
parallel computers: implicit, data parallel, message-passing,
and shared variable. Table 7 compares these four models
from a user's perspective. A four-star (***a) entry indi-
cates that the model is the most advantageous with respect to
a particular issue, while a one-star (*) corresponds to the
weakest model.

Parallelism issues are related to how to exploit and man-
age parallelism, such as process creationhermination, context
switching, inquiring about number of processes.

I
3. The sequence of parallel computation and interaction steps in n Vpical scientific and signal processing application program.

I
I Unit Definition I Terminology I

1 Total Workload 1 Mflop

~ Sequential Execution Time

1 Parallel Execution Time
~ 1414k

1 Seconds

1 _ _
Seconds

I Pn = w/T, Speed

Speedup

Mflopls

Dimensionless

1 Dimensionless

1 Dimensionless

Critical Path (or the length of the crkical rr; (i)
,<l<!iD(x

~ T - = Z -

i TIIT,

1 Seconds

I Dimensionless

56 IEEE SIGNAL PROCESSING MAGAZINE JULY 1996

Interaction issues address how to allocate workload and
hot to distribute data to different processors and how to
synchronizelcommunicate among the processors.

Semantic issues consider termination, determinacy, and
correctness properties. Parallel programs are much more
complex than sequential codes. In addition to infinite loop-
ing, parallel programs can deadlock or livelock. They can
also be indeterminate: the same input could produce different
results. Parallel programs are also more difficult to test, to
debug, or to prove for correctness.

Programmability issues refer to whether a programming
model facilitates the development of portable and efficient
application codes.

The Implicit Model

With this approach, programmers write codes using a familiar
sequential programming language (e.g., C or Fortran). The
compiler and its run-time support system are responsible to
resolve all the programming issues in Table 7. Examples of
such compilers include KAP from Kuck and Associates [29]
and FORGE from Advanced Parallel Research [7]. These are
platform-independent tools, which automatically convert a
standard sequential Fortran program into a parallel code.

Table 6: Communication Overhead Expressions
for the SP2 MPL Operations

MPL Command 1 Communication Time in ps

Point-to-point 1 46+0.035m I
Broadcast 1 (521oen) + (0.0291oen)m I
GathedScatter 1 (171ogn + 15) + (0.025n-0.02)m I

Circular Shift 6(logn +60) + (0.003 logn + 0.04) m

941ogn + 10

Reduction 201ogn + 23

parameter (MaxTargets = 10)
complex A(N,M)
integer templ (N,M), temp2(N,M)
integer direction(MaxTargets), distance(MaxTargets)
integer i, j
!HPF$ PROCESSOR Nodes(NUMBER-OF_PROCESSORS()
!HPF$ ALIGN WITH A(i,j):: templ (ij), temp2(i,j)
!HPF$ DISTRIBUTE, A(BLOCK, *) ONTO Nodes

L1:
L2:
L3: forall (i=l:N, j=l:M;

... ...
forall (i=l:N, j=l :M) templ(ij) = IsTarget(A(ij))
temp2 = SUM-PREFIX (templ, MASK=(temp1>0))

temp2(ij)>O .and. temp2(ij)<=MaxTargets)
distance(temp2(ij)) = i

direction(temp2(ij)) = j
end forall

. A data-parallel HPF code for target detection

Some companies also provide their own tools, such as the SGI
Power C Analyzer [35,39 1 for their Power Challenge SMPs.

Compared to explicit parallel programs, sequential pro-
grams have simpler semantics: (1) They do not deadlock or
livelock. (2) They are always determinate: the same input
always produces the same result. (3) The single-thread of
control of a sequential program makes testing, debugging,
and correctness verificatiion easier than parallel programs.
Sequential programs haw better portability, if coded using
standard C or Fortran. All 'we need is to recompile them when
porting to a new machine. However, it is extremely difficult
to develop a compiler that can transform a wide range of
sequential applications into efficient parallel codes, and it is
awkward to specify parallel algorithms in a sequential lan-
guage. Therefore, the implicit approach suffers in perform-
ance. For instance, the NAS benchmark [l l] , when
parallelized by the FORGE compiler, runs 2 to 40 times
slower on MPPs than some. hand-coded parallel programs 171.

The Data Parallel Model

The data parallel programming model is used in standard
languages such as Fortran 90 and High-Performance Fortran
(HPF) [24] and proprietary languages such as CM-5 C*. This
model is characterized by the following features:

Single thread: From the programmer's viewpoint, a data
parallel program is executed by exactly one process with a
single thread of control. In other words, as far as control
flow is concerned, a data parallel program is just like a
sequential program. There is no control parallelism.
Parallel operations on laggregate data structure: A single
step (statement) of a data parallel program can specify multi-
ple operations which are simultaneously applied to different
elements of an array or other aggregate data structure.
Loosely synchronous: There is an implicit or explicit syn-
chronization after every statement. This statement-level
synchrowy is loose, compared with the tight synchrony in
an SIMD system which synchronizes after every instruc-
tion directly by hardware.
Global naming space: All variables reside in a single
address space. All stalements can access any variable,
subject to the usual scoping rules. This is in contrast to the
message passing approach, where variables may reside in
different address spaces.
Explicit data allocation: Some data parallel languages,
such as High-Performance Fortran (HPF), allows the user
to explicitly specify how data should be allocated, to take
advantage of data locallity and to reduce communication
overhead
Implicit communication : The user does not have to specify
explicit communication operations, thanks to the global
naming space.

The Shared Variable Model

The shared-variable programming is the native model for
PVP, SMP, and DSM machines. There is an ANSI standard

JULY 1996 IEEE SIGNAL PROCESSING MAGAZINE 57

1 Issues 1 Implicit 1 DataParallel 1 Messagepassing 1 SharedVariable 1
1 Platform Independent Examples I Kap, Forge 1 Fortran 90, HPF 1 PVM, MPI 1 X3H5 I

Platform Dependent Examples Convex Exemplar 1 CM C*

for shared-memory parallel programming (X3H5) which is
language and platform independent [6]. Unfortunately, the
X3H5 standard is not strictly followed by the computer industry.
Therefore, a shared-variable program developed on one parallel
computer is not generally potable to another machine. This
model is characterized by the following features:
o Multiple threads: A shared-variable program uses either

multiple-program-multiple-data (MPMD), where differ-
ent codes are executed by different processes, or single-
program-multiple-data (SPMD), where all processes
execute the same code on different data domains. In either
case, each process has a separate thread of control.

e Single address space: All variables reside in a single ad-
dress space. All statements can access any variable, subject
to the usual scoping mles.

o Implicit distribution of data and computation: Because of
the single address space, data can be considered to reside
in the shared memory. There is no need for the user to
explicitly distribute data and computation.

e Implicit communication: Communication is done implic-
itly through readinglwriting of shared variables.
Asynchronous: Each process execute at its on pace. Special
synchronization operations (e.g., barriers, locks, critical re-
gions, or events) are used to explicitly synchronize processes.

e Separate Address Spaces: The processes of a parallel pro-
gram reside in different address spaces. Data variables in
one process are not visible to other processes. Thus, a
process can not read from or write to another process’s
variables. The processes interact by executing message-
passing operations.

0 Explicit Interactions: The programmer must resolve all the
interaction issues, including data mapping, communication
and synchronization. The workload allocation is usually
done through the owner-compute rule, i.e., the process
which owns a piece of data performs the computations
associated with it.
Both shared-variable and message-passing approaches

can achieve high performance. However, they require greater
efforts from the user in program development. The implicit
and the data parallel models shift many burdens to the com-
piler, thus reducing the labor cost and the program develop-
ment time. This tradeoff should be based on each specific
application. For signal processing, we often require the high-
est performance. Furthermore, a parallel signal processing
application, once developed, is likely to be used for a long
time. This suggests the use of message-passing model for its
high efficiency and better portability.

Realization Approaches
The Message Passing Model

The message passing programming model is the native model
for MPPs and COWS. The portability of message-passing
programs is enhanced greatly by the wide adoption of the
public-domain MPI and PVM libraries. This model has the
following characteris tics:

Multiple threads (SPMD or MPMD) of control in different

e Asynchronous operations at different nodes.
nodes.

The parallel programming models just described are realized
in real systems by extending Fortran or C in three approaches:
library subroutines, new language con structs, and compiler
directives. More than one of them can be used in realizing a
parallel programming model. We show in Fig.4 an example
HPF code for target detection in radar applications, to illus-
trate the three realization methods (the algorithm in this code
is credited to Michael Kumbera of the Maui High-Perform-
ance Computing Center).

58 IEEE SIGNAL PROCESSING MAGAZINE JULY 1996

New Constructs: The programming language is extended
with some new constructs to support parallelism and inter-
action. An example is the forall construct in Fig.4. This
approach has several advantages: It facilitates portability,
and it allows the compiler to check and detect possible
errors associated with the new constructs. However, it
requires the development of a new compiler. This approach
has been used in Fortran 90, HPF, and Cray MPP Fortran.
Library Subroutines: In addition to the standard libraries
available to the sequential language, a new library of
functions are added to support parallelism and interaction.
The NUMBER-OF-PROCESSORS() function in Fig.4 is
such an example. Due to its ease of implementation, this
library approach isi widely used, with the best known
example being MPI and PVM. However, this approach
leaves error checking to the user.
Compiler Directives: These are formatted comments,
called compiler directives or pragmas, to help the compiler
to do a better job ini optimization and parallelization. The
three !HPF$ lines in Fig.4 are examples of compiler direc-
tives. This approach is a trade-off between the previous two
approaches.
In Fig.4, we want to find the ten closest targets in an array

A. The forall statement L1 simultaneously evaluates every
element of array A, and assign templ(ij)=l if A(ij) is a
target. Suppose there are four targets A(1,3), A(1,4), A(2, I),
and A(4,4). Then temp1 has the value as shown below (as-
suming N=3 and M=4):

templ= 1 0 0 0 , [: 1 :I
temp2=sum_prefix(templ)=

L2 assigns to army temp2 the prefix sum of all positive
elements of templ. The second forall construct updates the
target list (represented by two arrays distance and direction).

of one-dimensional FFT computations are performed. All
end with target detection. The APT performs a Householder
transform to generate a triangular learning matrix, which is
used in a beamforming step to null the jammers and the
clutter; whereas, in the HO-PD program, the two adaptive
beamforming steps are coimbined into one step. The GEN
program consists of four component algorithms to perform
sorting, FFT, vector multiply, and linear algebra. These are
the kernel routines often used in signal processing applica-
tions. The EL-Stag and the BM-Stag programs are similar to
HO-PD, but use a staggered interference training algorithms.

Parallelization of STAP Programs

We have used three MPPs (IBM SP2, Intel Paragon, and Cray
T3D) to exec Ute the STAP benchmarks. Performance results
on SP2 were reported in 1[28]. Performance results on the
Paragon and T3D are yet to be released. In what follows, we
show how to parallelize the HO-PD program and compare
the performance of all three: MPPs. We then show three ways
to scale the APT application over different machine sizes of
the SP2. We then analyze the scalability of three STAP
programs over problem size, which is decided by the radar
parameters and sensor data size.

The sequential HO-PD program was parallelized to run on
the IBM SP2, the Intel Paragon, and the Cray T3D. The
parallel HO-PD application program is shown in Fig.5 for all
three MPP machines. The collection of radar signals forms a
3-dimensional data cube, coordinated by the numbers of
antenna elements (EL), pulse repetition interval (PRI), and
range gates (RNG). This is an SPMD program, where all
nodes execul e the same code consisting of three computation
steps (Doppler Processing. Beamforming, and Target Detec-
tion) and three communication steps (Total Exchange, Cir-
cular Shift, and Target Reduction). The program was run in
batch mode to have dedicated use of the nodes. But the
communication network was shared with other users. The
parallel program uses the IMP1 message-passing library (the
MPICH porl able implementation) for inter-node communi-
cation on Paragon and T3D, and the native MPL library on

STAP Benchmark Performance

To demonstrate the performance of MPPs for signal process-
ing, we choose to port the space-time adaptive processing
(STAP) benchmark programs, originally developed by MIT
Lincoln Laboratory for real time radar signal processing on
UNIX workstations in sequential C code [34]. We have to
parallelize these C codes on all three target MPPs. The STAP
benchmark consists of five radar signal processing programs:
Adaptive Processing Testbed (APT), High-Order Post-Dop-
pler (HO-PD), Element-Space PRI-Staggered Post-Doppler
(EL-Stag), Beam-Space PRI-Staggered Post-Doppler (BM-
Stag), and General (GEN).

These benchmarks were written to test the STAP algo-
rithms for adaptive ratdar signal processing. These programs
start with Dopplerprocessing (DP), in which a large number

0-R-1023
Radar Data C
Distrihu tion

P

L

I t I
I Y Total Exchange arid Shift Y

0-R-1023
Radar Data C
Distrihu tion

L

hhe

5. Mapping qf the parallel Ha3-PDprogram on an SP2, Paragon,
or T3D.

JULY 1996 IEEE SIGNAL PROCESSING MAGAZINE 59

256

SP2. We also used the best compiler optimization options
appropriate for each machine, after experimenting with all
possible combinations of options.

0.1144 0.3625 0.0989 0.4437 3.8203 1.3446

Measured Benchmark Results

Figure 6 shows the measured parallel execution time, speed,
and utilization as a function of machine size. Only the HO-PD
performance is shown here. The SP2 demonstrates the best
overall performance among the three MPPs. With 256 nodes,
we achieved a total execution time of 0.56 seconds on the
IBM SP2, corresponding to a 23 Gflop/s speed. This is partly
due to SP2’s fast processor, with a peak 266 Mflop/s com-
pared to Paragon’s 100 Mflopls and T3D’s 150 Mflop/s
(Table 2). The degradation of Paragon performance when the
number of nodes is less than 16 is due to the use of small local
memory (1 6 MB/node in the SDSC Paragon, of which only
8 MB is available to the user applications). This results in
excessive paging when a few nodes are used.

The SP2’s high performance is further explained by
Fig.6c, which shows the utilization of the three machines. The
SP2 has the highest utilization. In particular, the sequential
performance is very good, with an utilization of 36%. The
relatively high utilization is due to a good compiler, a large
data cache (64-256 kB per processor versus 16 kB in Paragon
and 8 kB in T?D), and a large processor-memory bandwidth
(as high as 654 MB/s compared to T3D’s 384 MB/s according
to the STREAM benchmark results, http://perelan-
dra.cms.ude1.edu: SO/-mccalpin/hpc/stream/).

Execution Timing Analysis

In Table 8, we show the breakdown of the communication
overhead and the computation time of the HO-PD program
in all three MPPs. The parallel HO-PD program is a compu-
tation-intensive application. The communication time is less
than 6% of the total time, not counting the exceptional cases
of 2-8 nodes Paragon runs. There, excessive paging drasti-
cally increases both the computational and communication
times. There is no communication for one node. Afterwards,

the communication time decreases as n increases. This is
attributed to the decreasing message size (m is about 50/n
Mbyte) as the machine size n increases. This phenomenon
was observed in almost all STAP programs executed on all
three MPP machines.

Scalability over Machine §ize

In an MPP, the total memory capacity increases with the
number of nodes available. Assume every node has the
same memory capacity of M bytes. On an n-node MPP, the
total memory capacity is nM. Assume an application uses
all the memory capacity M on one node and executes in W
seconds (e.g., W is the sequential workload). This total
workload has a sequential portion, x, and a parallelizable
portion 1 - a. That is: W = aW + (I - a)W. Three
approaches have been used to get better performance as
the machine size increases, which are formulated as three
scalable performance laws.

Sun and Ni‘s Law

When n nodes are used, a larger problem can be solved due
to the increased memory capacity nM. Let us assume that
the parallel portion of the workload can be scaled up G(n)
times. That is, the scaled workload i s T* = X T + (1-x) G(n)
T . Sun and Ni [41] defined the memory bound speedup as
follows:

sequential time for scaled workload
parallel time for scaled workload

sn =

aW + (1 - a)G(n)W
a W + (1 - a)G(n)W/ n+ T,

- a + (1 - a)G(n)
a+(l -a)G(n) / n + T, / W

- - -

Amdahl’s Law

When G(n) = 1, the problem size is fixed. Then Eq. 2 is called
Amdahl’s law [4] for fixed-workload speedup) and has the

60 IEEE SIGNAL PROCESSING MAGAZINE JULY 1996

http://perelan

following form: Scalability Over Problem Size

1 s, =
a + (1 -a) I n t- r, I w

Gustafson’s Law:

a + (1 - a)n
1+7;,1w

s, =

(3)

(4)

When G(n)>n, the computational workload increases
faster than the memory requirement. Thus, the memory-
bound model (Eq. 2) gives a higher speedup than the fixed-
time speedup (Gustafson’s law) and the fixed-workload
speedup (Amdahl’s law). These three speedup models are
comparatively analyzed in [26].

We are interested in determining how well the parallel STAP
programs sciile over different problem sizes. The STAP
benchmark is designed to cover a wide range of radar con-
figurations. We show the nietrics for the minimal, maximal,
and nominal data sets in Table 9. The input data size and the
workload are given by the STAP benchmark specification
[S,9,10,13]. The maximum parallelism is computed by find-
ing the largesi degree ofparallelism (DOP) of the individual
steps. The critical path (or more precisely, the length of the
critical path) is the execution time when a potentially infinite
number of nodes is used, excluding all communication over-
head. For simplicity, we assume that every flop takes the
same amount of time to execute. Each step’s contribution to
the critical path is its workload divided by its DOP.

Average Parallelism

These speedup models are plotted in Fig.7 for the parallel
APT program running on the IBM sp2, We have calculated
that G(n) = 1.4n+0.37 & > n , thus the fixed-memory
speedup is better than the fixed-time and the fixed-workload
speedups. The Parallel APT Program with the nominal data

The average parallelism is defined as the ratio of the total
workload to the critical path. The average parallelism sets a
hard upper bound on the achievable speedup. For instance,
suppose we the sequential APT program by
a factor of 100. This is impossible to achieve using a minimal

to speed

set has a sequential fraction a = 0.00278. This seemingly
small sequential bottleneck, together with the communica-
tion overhead, limits the potential speed up to only 100 on a
256-node SP2 (the fixed-load curve). However, by increasing
the problem size thus the workload, the speedup can increase
to 206 using the fixed-time model, or 252 using the memory-
bound model.

This example demonstrate that increasing the problem
size can amortize the sequential bottleneck and communica-
tion overhead, thus improve performance. However, the
problem size should not exceed the memory bound. Other-
wise excessive paging will drastically degrade the perform-
ance, as illustrated in Fig.6. Furthermore, increasing the
problem size is profitable only when the workload increases
at a faster rate than communication overhead.

-
data set with an average parallelism of 10, but it is possible
using the nominal or larger problem sizes.

When the data set increases, the available parallelism also
increases. But how many nlodes can be used profitably in the
parallel STAP programs? A. heuristic is to choose the number
of nodes to be higher than the average parallelism. When the
number of nodes is more than twice the average parallelism,
at least SO% of the time the nodes will be idle. Using this
heuristic, the parallel STAP programs with a large data set
can take advantage of thousands of nodes in current and
future generations of MPPs.

For sequential programs, the memory required is twice of
the data set size. But for parallel programs, the memory
required is six times that o/‘ the input data set, or three times
of the sequential memory required. The additional memory
is needed for communication buffers. We have seen (Fig.6)

._ __ - __ __ - -

-- I __ - ._ - - - Table 9: Problem Scalability uf the STAP Benchmark Progra n\

Program

APT (min)

APT (norm)

Input Data Sequential
Size (MB) ~ Mem(MB)

Parallel Mem
(MB)

8.39 16.77

0.72

50

Critical Path
(MflOP)

0.5 1

8.19

12100000 ~ 1 ::)6.05 1 3276 9828

HO (min) 0.16 0.48 21

1 HO(norm) 1 25 1 150 1 12852 1 49.35 I
HO (max) 1638 3276 9828 33263288 ~ ::539 ~ :5;22 1
GEN (min) 0.26 0.78 6

100 300 5326 ~ 49.27

33956 101868 4604101 1 1062.81 {
JULY 1996 IEEE SIGNAL PROCESSING MAGAZllNE 61

that lack of large local memory in the Paragon could signifi-
cantly degrade the MPP performance.

STAP Memory Requirements

Table 9 implies that for large data sets, the STAP programs
must use multiple nodes, as no current MPPs have large
enough memory (3 to 34 GB) on a single node. It further tells
us that existing MPPs has enough memory to handle parallel
STAP programs with the maximal data sets. For instance,
from Table 9, an n-processor MPP should have a 102/n GB
memory capacity per processor, excluding that used by the
OS and other system software. Note that the corresponding
average parallelism is 4332, larger than the maximal machine
sizes of 512 for SP2 and of 2048 for Paragon and T3D. On a
5 12-node SP2, the per-processor memory requirement is
102GB/512 = 200 MB, and each SP2 node can have up to 2
GB memory. On a 2048-node T3D, the per-processor mem-
ory requirement is 102GB12048 = 50 MB, and each T3D
processor can have up to 64 MB memory.

Signal processing applications often have a response time
requirement. For instance, we may want to compute an APT
in one second. From Table 9, this is possible for the norminal
data set on current MPPs, as there are only about 8 Mflop on
the critical path. All the three MPPs can sustain 8 Mflop/s per
processor for APT. To execute HO-PD in a second, we need
each MPP node to sustain 50 Mfloph. On the other hand, it
is impossible to compute APT or HO-PD in one second for
the maximal data sets, no matter how many processors are
used. The reason is that it would require a processor to sustain
500 Mflop/s to 12 Gfloph, which is impossible in any current
or next generation MPPs.

Lessons Learned and Conclusions

We summarize below important lessons learned from our
MPP/STAP benchmark experiments. Then we make a
number of suggestions towards general-purpose signal proc-
essing on scalable parallel computer platforms including
MPPs, DSMs, and COWS.

1000.0

100 0

10.0

1.0 1
t

10.00

1 .oo

0 10

0.1 + I -t- __
--t i

1 4 16 64 256 O o l ~ ~ ~

1 2 4 8 16 32 64 128 256
Number of Nodes

Number of Nodes

(a) Execution time (b) Sustained speed

/Paragon h

0 % - 1 - + I - - - I

1 2 4 8 16 32 64 128 256
Number of Nodes

(c) System utilization

'3D

, Parallel HO-PD performance on the SP2, T3D, and Paragon

STAP Benchmark
Experience on MPPs

Among the three current
MPPs: the SP2, T3D, and
Paragon, we found that SP2
has the highest floating-point
speed (23 Gflop/s on 256
SP2 nodes). The next is T3D
and Paragon shows the low-
est speed performance. The
Paragon architecture is the
most size scalable, the next is
T3D, and the SP2 is difficult
to scale beyond the current
largest configuration of 5 12
nodes at Cornel1 University
[151. It is technically interest-
ing to verify the Terafloph
performance being projected
for Intel ASCI TFLOPS sys-
tem and by the Cray
T3E/T3X systems in the next
few years.

None of these systems is
supported by a real-time op-
erating system. A main prob-
l em i s that due to
interferences from the OS,
execution time of a program
could vary by an order of
magnitude under the same
testing condition, even in
dedicated mode. The Cray
T3D has the best communi-
cation performance, small

62 IEEE SIGNAL PROCESSING MAGAZINE JULY 1996

execution time variance, and little warm-up effect, which are
desirable properties for real-time signal processing applica-
tions.

We feel that the ireported timing results could be even
better, if these MPPs are exclusively used for dedicated,
real-time signal processing. We expect the system utilization
to increase beyond 4O%, if a real-time execution environment
could be fully developed on these MPPs.

Developing an MF’P application is a time-consuming task.
Therefore, performance, portability, and scalability must be
considered during program development. An application,
once developed, should be able to execute efficiently on
different machine sizes over different platforms, with little
modification. Our experiences suggest four general guide-
lines to achieve these goals:
e Coarse Granularity: Large-scale signal processing appli-

cations should exploit coarse-grain parallelism. As shown
in Fig.2, the communication latency of MPPs has been
improving at a much slower rate than the processing speed.
This trend is likely to continue. A coarse-grain parallel
program has better scalability over current and future gen-
erations of MPPs.

e Message Passing: The message passing programming
model has a performance advantage over the implicit and
the data parallel models. It enables a program to run on
MPPs, DSMs, SMPs, and COWs. In contrast, the shared-
variable model is not well supported by MPPs and COWs.
The single address space in a shared-variable model has the
advantage of allowing global pointer operations, which is
not required in most signal processing applications.
Communications Standard The applications should be
coded using standard Fortran or C, plus a standard message
passing library such as MPI or PVM. The MPI standard is
especially advantageous as it has been adopted by almost
all existing scalable parallel computers. It provides all the
main message passing functionalities required in signal
processing applications.

e Topology Independent: For portability reasons, the code
should be independent of any specific topology. A few

years ago,, many parallel algorithms were developed spe-
cifically for the hypercube topology, which has all but
disappeared in current parallel systems.

Major Performance Attributes

Communication is expensive on all existing MPPs. As a
matter of fact, a higher computation-to-communication ratio
implies a higher speedq in an application program. For
example, this ratio is 86 flopbyte in our APT benchmark and
254 flop/byte in our HO-PD benchmark. This leads to a
measured 23 Gflop/s speed on the SP2 for the HO-PD code
versus 9 Gflop/s speed for the APT code. This ratio can be
increased by minimizing communication operations or by
hiding communication latencies within computations via
compiler optimization, data prefetching, or active message
operations. Various latency avoidance, and reduction, and
hiding techniques can be found in [1,26,27,3O]. These tech-
niques may demand algorithm redesign, scalability analysis,
and special hardwarelsoftware support.

The primary reason thlat SP2 outperforms the others is
attributed to the use of POWER2 processors and a good
compiler. Among the high-end microprocessors we have
surveyed in Table 3, we feel that the Alpha 21 164A (or the
future 21264), UltraSPAI;!C 11, and MIPS RlOOOO have the
highest potential to deliver a floating-point speed exceeding
500 Mflopls in the next few years. With a clock rate ap-
proaching 500 MHz and continuing advances in compiler
technology, a superscalar microprocessor with multiple float-
ing-point units has the potential to achieve 1 Gflop/ s speed
by the turn of the century. Exceeding 1000 SPECint92 integer
speed is also possible by then, based on the projections made
by Digital, !Sun Microsystems, and SGUMIPS.

Future MPP Architecture

In Fig.8, we suggest a common architecture for future MPPs,
DSM, and COWS. Such a computer consists of a number of
nodes, which are interconnected by up to three communica-

I Audication Attributes 1 Massivelv Parallel Processors (MIPPs) 1 Clusters of Workstations (COWS) I
I Number of Nodes I Hundreds to thousands I Tens to hundreds I
I Reported Performance (Gfloph) I Tens to hundreds 1 Less than ten I

Task Granularity
Internode communication and security

Node Operating System

Dedicated single-tasking per node
Proprietary network and enclosed
security

Multitasking or multiprocessing per node

Homogeneous microkemel Could be heterogeneous, often
homogeneous; complete Unix

L - ! -- ! ~~~

Strength and Potential

Application Software Signal processing libraries

High throughput with higher memory and Higher availability with easy access of
large-scale database managers

Untested for signal processing
applications
Heavy communication overhead and lack

1 1 real-time OS support I of single system image. I

JULY 1996 IEEE SIGNAL PROCESSING MAGAZINE 63

tion networks. The node usually follows a shell architecfure
[40], where a custom-designed shell circuitry interfaces a com-
modity microprocessor to the rest of the node. In Cray terminol-
ogy [l], the overall structure of a computer system as shown in
Fig.8 is called the macro-architecture, while the shell and the
processor is called the micro-architecture. A main advantage of
this shell architecture is that when the processor is upgraded to
the next generation or changed to a different architecture, only
the shell (the micro-architecture) needs to be changed.

There is always a local memory module and a network
interface circuitry (NIC) in each node. There is always cache
memory available in each node. However, the cache is nor-
mally organized as a hierarchy. The level-I cache, being the
fastest and smallest, is on-chip with the microprocessor. A
slower but much larger level-2 cache can be on-chip or off
the chip, as seen in Table 3.

Unlike some existing MPPs, each node in Fig.8 has its own
local disk and a complete multi-tasking Unix operating system,
instead of just a microkemel. Having local disks facilitates local
swapping, parallel I/O, and checkpointing. Using a full-fledged
workstation Unix on each node allow multiple OS services to
be performed simultaneously at local nodes. On some current
MPPs, functions involving accessing disks or OS are routed to
a server node or the host to be performed sequentially.

The native programming model for this architecture is
Fortran or C plus message passing using MPI. This will yield
high performance, portability and scalability. It is also desir-
able to provide some VLSI accelerators into the future MPPs
for specific signal/image processing applications. For exam-
ple, one can mix a programmable MPP with an embedded
accelerator board for speeding up the computation of the
adaptive weights in STAP radar signal processing.

The Low-Cost Network

Up to three communication networks are used in scalable
parallel computer. An inexpensive commodity network, such
as the Ethernet, can be quickly installed, using existing,
well-debugged TCP/IP communication protocols. This low-
cost network, although only supporting low speed communi-
cations, has several important benefits:
0 It is very reliable and can serve as a backup when the other

networks fail. The system can still run user applications,
albeit at reduced communication capability.

0 It is useful for system administration and maintenance, without
disrupting user communications through the other networks.
It can reduce system development time by taking advan-
tage of concurrent engineering: While the other two net-
works and their communication interface/protocols are
under development, we can use the Ethernet to design,
debug, and test the rest of the system.
It also provide an alternative means for user applications
development: While the high-speed networks are used for
production runs of applications, a user can test and debug
the correctness of his code using the Ethernet.

250 Speed up

2oo - -3- Fixed-Memory
U Fixed-Time 1 150

100

50

0

-I+ Fixed-Load

P

1 2 4 8 16 32 64 128 256
Number of Nodes

7. Comparison oj-three speedup pe formance models.

The High-Bandwidth Network

The high-bandwidth network is the backbone of a scalable
computer, where most user communications take place. Ex-
amples include the 2-D mesh network of Paragon, the 3-D
torus network of Cray T3D, the multi-stage High-Perform-
ance Switch (HPS) network of IBM SP2, and the fat-tree data
network of CM-5. It is important for this network to have a
high bandwidth, as well as short latency.

The Low-Latency Network

Some systems provide a third network to provide even lower
latency to speed up communications of short messages. The
control network of Thinking Machine CM-5 and the bar-
riedeureka hardware of Cray T3D are examples of low-la-
tency networks. There are many operations important to
signal processing applications which need to have small
delay but not a lot of bandwidth, because the messages being
transmitted are short. Three such operations are listed below:

Barrier: This operation forces a process to wait until all
processes reach a certain execution point. It may be needed
in a parallel algorithm for radar target detection, where the
processes must first detect all targets at a range gate before
proceeding to the next farther range gate. The message
length for such an operation is essentially zero.
Reduction: This operation aggregate a value (e.g., a float-
ing-point word) from each process and generate a global
sum, maximum, etc. This is useful, e.g., in aparallel Gauss
elimination or Householder transform program with pivot-
ing, where one needs to find the maximal element of a
matrix row or column. The message length could vary, but
is normally one or two words.

e Broadcasting of a short message: Again, in a parallel House-
holder transform program, once the pivot element is found, it
needs to be broadcast to all processes. The message length is
the size of the pivot element, one or two words.

64 IEEE SIGNAL PROCESSING MAGAZINE JULY 1996

Low-Latency Network 1

r
L I

......

Local

Node N

I
I

High-Bandwidth Network L
8. Common architecture for scalable parallel computers.

Comparison of NlPPs and COWs

We feel that future MPPs and COWs are converging, once
commodity Gigabit/s networks and distributed memory sup-
port become widely used. In Table 10, we provide a compari-
son of these two categories of scalable computers, based on
today's technology. By 1996, the largest MPP will have 9000
processors approaching 1 Tflop/s performance; while any of
the experimental COW system is still limited to less than 200
nodes with a potential 10 Gflop/s speed collectively.

The MPPs are puishing for finer-grain computations, while
COWs are used to satisfy large-grain interactive or multitask-
ing user applications. The COWs demand special security
protection, since they are often exposed to the public com-
munication networks; while the MPPs use non-standard,
proprietary communication network with implicit security.

The MPPs emphasize high-throughput and higher U 0 and
memory bandwidth. The COW offers higher availability with
easy access to large-scale database system. So far, some
signal processing software libraries have been ported to most
MPPs, while untestled on COWs. Finally, we point out that
MPPs are more expensive and lack of sound OS support for
real-time signal processing, while most COWs can not sup-
port DSM or lack 01' single system image. This will limit the
programmability arid make it difficult to achieve a global
efficiency in cluster resource utilization.

Extended Signal Processing Applications

So far, our MPP signal processing has been concentrated on
STAP sensor data. The work can be extended to process SAR
(synthetic aperture radar) sensor data. The same set of soft-
ware tools, programming and runtime environments, and
real-time OS kernel can be used for either STAP or SAR
signal processing on the MPPs. The ultimate goal is to

achieve automatic target recognition (ATR) or scene analysis
in real time. To summarize, we list below the processing
requirements for STAP/SAR/ATR applications on MPPs:

The STAP/SAR/ATR source codes must be parallelized
and made portable on commercial MPPs with a higher
degree of interoperability.
Parallel programming tools for efficient STAP/SAR program
partitioning, communication optimization, and performance
tuning nced to be improved using visualization packages.
Light-weighted OS kernel for real-time application on the
target MPPs, DSMs, and COWs must be fully developed.
Run-time software support for load balancing and insulat-
ing OS interferences are needed.
Portable STAP/SAR/ATR benchmarks need to be developed
for speedy multi-dimensional convolution, fast Fourier trans-
forms, discrete cosine transform, wavelet transform, matrix-
vector product, and matrix inversion operations.

Acknowledgment

This work was carried out by the Spark research team led by
Professor IHwang at the University of Southern California.
The Project was supported by a research subcontract from
MIT Lincoln Laboratory to USC. The revision of the paper
was done a t the Universily of Hong Kong, subsequently. We
appreciate id1 the research facilities provided by the HKU, USC,
and MIT Ldncoln Laboratory. In particular, we want to thank
David Martinez, Robert Eiond and Masahiro Arakawa of MIT
Lincoln Laboratories for their help in this project. The assistance
from Chonling Wang and Mincheng Jin of USC, the User-Sup-
port Group at MHPCC, Richard Frost of SDSC, and the User-
Support team of Cray Research made it possible for the team to
develop the fully portable STAP benchmark suites on three
different hardware platforms in a short time period.

JULY 1996 IEEE SIGNAL PROCESSING MAGAZINE 65

Kai Hwang is Chair Professor of Computer Engineering at
the University of Hong Kong, on leave from the University
of Southern California. He can be contacted at e-mail:
kaihwang@cs.hku.hk.

Zhiwei Xu is a Professor at the National Center for Intelligent
Computing Systems, Chinese Academy of Sciences, Beijing,
China. He can be contacted at e-mail: zxu@diana.usc.edu

References

1. D. Adams, Cray T3D System Architecture Overview Manual, Cray Re-
search, Inc., September 1993. See also http//www.cray.com/PUBLIC/prod-
uct-info/mpp/ClZAY-T3D.html

2. R.C. Agarwal et al., “High-Performance Implementations of the NAS
Kernel benchmarks on the IBM SP2,” IBM System Journal, Vol. 34, No. 2,
1995, pp. 263-272.

3. T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias, and M.
Snir, “SP2 System Architecture,” IBM System Journal, Vol. 34, No. 2, 1995,
PI,. 152- 184.

4. G.M. Amdahl, “Validity of Single-Processor Approach to Achieving Large-
Scale Computing capability,” Proc. AFIPS Con&, Reston, VA., 1967,483-485.

5. T.E. Anderson, D.E. Culler, D.A. Patterson, et al, “A Case for NOW
(Networks of Workstations),” IEEE Micro, February 1995, pp. 54-64.

6. ANSI Technical Committee X3H5, Parallel Processing Model for High h v e l
Programming Languages, 1993, f tp : / / f t p . c s .o r s t .~~s~d /~a r~ /~SI -X3HS/

7. Applied Parallel Research, “APR Product Information,” 1995
http://www.infomall.org/ apri/prodinfo.html

8. M. Arakawa, Z. Xu, and K. Hwang, “User’s Guide and Documentation of
the Parallel HO-PD Benchmark on the IBM SP2,” CENG Technical Report
95-10, University of Southem California, June 1995.

9. M. Arakawa, Z. Xu, and K. Hwang, “User’s Guide and Documentation of
the Parallel APT Benchmark on the IBM SP2,” CENG Technical Report
95-11, University of Southern Califomia, June 1995.

10. M. Arakawa, Z. Xu, and K. Hwang, “User’s Guide and Documentation
of the Parallel General Benchmark on the IBM SP2,” CENG Technical
Report 95-12, University of Southem California, June 1995.

1 1. D.H. Bailey etal., “The NAS Parallel Benchmarks” and related perform-
ance results can be found at http://www.nas.nasa.govD-IAS/NPB/

12. G. Bell, “Why There Won’t Be Apps: The Problem with MPPs,” IEEE
Parallel and Distributed Technology, Fall 1994, pp. 5-6.

13. R. Bond, “Measuring Performance and Scalability Using Extended
Versions of the STAP Processor Benchmarks,” Technical Report, MIT
Lincoln Laboratories, December 1994.

14. Convex, CONVEXExemplarProgramming Guide, Order No. DSW-067,
CONVEX Computer Corp., 1994. See also http://www.usc.edu/
UCS/high_performance/sppdocs. html

15. Come11 Theory Center, IBM RS/6000 Scalable POWERparallel System
(SP), 1995. http:// www.tc.comell.eduKJserDoclHardware/SP/

16. DEC, AdvantageCluster: Digital’s UNIX Cluster, September 1994.

17. J. H. Edmondson and P. Rubinfeld and R. Preston and V. Rajagopalan,
“Superscalar Instruction Execution in the 21 164 Alpha Microprocessor,”
IEEE Micro, April, 1995, pp. 33-43.

18. A. Geist, A. Beguelin, J. Dongma, W. Jiang, R. Mancheck, V. Sunderam,
PVM: Parallel VirtualMachine - A User’s Guide and Tutorial forNetworked
Parallel Computing, MIT Press, Cambridge, MA, 1994. Also see
http://www.epm.ornl.gov/pvm/pvm-home.html.

19. D. Greenley et. al. “UltraSPARC: The Next Generation Superscalar
64-bit SPARC,” Digest of Papers, Compcon, Spring 1995, pp. 4 4 2 4 5 1 .

20. W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel Program-
ming wirh the Message Passing Intersace, MlT Press, Cambridge, MA, 1994.

21. J.L. Gustafson, “Reevaluating Amdahl’s Law,” Comm. ACM,

22. L. Gwennap, “Intel’s P6 Uses Decoupled Superscalar Design,” Micro-
processor Report, February 1995, pp. 5-15.

23. L. Gwennap, “MIPS RlOOOO Uses Decoupled Architecture,” Microproc-
exsor Report, October 1994, pp. 18-22.

24. High Performance Fortran Forum, High Performance Fortran Language
Speci f icat ion, Version 1.1, November IO, 1994,
http://www.erc .msstate.edu/hpff/hpf-reporthpf-reporthpf-re port.htm1.

25. R. W. Hockney, “The Communication Challenge for MPP: Intel Paragon
and Meiko CS-2,” Parallel Computing, Vol. 20, 1994, pp. 389-398.

26. K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,
and Programmability, McGraw-Hill, New York, 1993.

27. K. Hwang and Z. Xu, Scalable Parallel Computers: Architecture and
Programming, McGraw-Hill, New York, to appear 1997.

28. K. Hwang, 2. Xu, and M. Arakawa, “Benchmark Evaluation of the IBM
SP2 for Parallel Signal Processing,” IEEE Transactions on Parallel and
Distributed Systems, May 1996.

29. Kuck and Associates , The KAP Preprocessor,
http://www.kai.codkap/kap-what-ixhtml.

30. D.E. Lenoski and W.-D. Weber, Scalable Shared-Memoly Multiproces-
sing, Morgan Kaufmann, San Francisco, CA, 1995.

3 1. D. Levitan and T. Thomas and P. Tu, “The PowerPC 620 Microprocessor:
A High Performance Superscalar RISC Microprocessor,” Digest of Papers,
Compcon95, Spring 1995, pp. 285-291.

32. T.G. Mattson, D. Scott, and S. Wheat, “A TeraFLOP Supercomputer in
1996: The ASCI TFLOPS System,” Proc. of the 6th Int’l Parallel Processing
Symp., 1996.

33. MHPCC, MHPCC 400-Node SP2 Environment, Maui High-Perform-
ance Computing Center, Maui, HI, October 1994.

34. MITILL, “STAP Processor Benchmarks,” MIT Lincoln Laboratories,
Lexington, MA, February 28, 1994.

35. NCSA, “Programming on the Power Challenge,” National Center for
Supercomputing Applications, http://www.ncsa.uiuc.edu/Pubs/User-
Guides/PowerPower5Prog-l. html

36. G.F. Mister, In Search of Clusters, Prentice Hall PTR, Upper Saddle
River, NJ, 1995.

37. J. Rattner, “Desktops and TeraFLOP: A New Mainstream for Scalable
Computing,” IEEE Parallel andDistributed Technology, August 1993, pp. 5-6.

38. SDSC, SDSC’s Intel Paragon, San Diego Supercomputer Center,
http://www.sdsc.edu/Services/Consult/Paragon/paragon.html

39. SGI, IRIS Power C User’s Guide, Silicon Graphics, Inc., 1989.

40. J. Smith, “Using Standard Microprocessors in MPPs,” presentation at
Int’l. Symp. on Computer Architecture, 1992.

41. X.H. Sun, and L. Ni, “Scalable Problems and Memory-Bounded
Speedup,” Journal of Parallel and Distributed Computing, Vol. 19, pp.27-
37, Sept. 1993.

42. H.C. Tomg and S. Vassiliadis, Instruction-Level Parallel Processors,
IEEE Computer Society Press, 1995.

43. 2. Xu and K. Hwang, “Modeling Communication Overhead: MPI and
MPL Performance on the IBM SP2 Multicomputer,” IEEE Parallel and
Distributed Technology, March 1996.

44. Z. Xu and K. Hwang, “Early Prediction of MPP Performance: SP2, T3D
and Paragon Experiences,” Parallel Computing, accepted to appear in 1996.

3 1(5)(1988)532-533.

66 IEEE SIGNAL PROCESSING MAGAZINE JULY 1996

mailto:zxu@diana.usc.edu
http://www.infomall.org
http://www.nas.nasa.govD-IAS/NPB
http://www.usc.edu
http://www.epm.ornl.gov/pvm/pvm-home.html
http://www.erc
http://www.kai.codkap/kap-what-ixhtml
http://www.ncsa.uiuc.edu/Pubs/User
http://www.sdsc.edu/Services/Consult/Paragon/paragon.html

