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Karhunen—-Leve Expansion of the WSSUS Channel
Output and Its Application to Efficient Simulation

Kun-Wah Yip, Member, IEEE and Tung-Sang Ng

_Abstract—This paper derives a Karhunen-Lave (K-L) expan- and Gaussian. A separable WSSUS channel is one whose
sion of the time-varying output of a multipath Rayleigh fading fading and channel dispersion characteristics are independent.
wide-sense-stationary uncorrelated-scattering (WSSUS) channel. Based on the assumption of a separable Gaussian WSSUS

It is shown that under the same mean-squared error condition, o .
the number of terms required by the trur?cated K—L expansion channel it will be shown that coefficients of the resultant K-L

is less than that of the series expansion obtained by using the €Xpansion are uncorrelated complex Gaussian random pro-
discrete-path approximation of the channel so that simulation cesses irt, and that statistical properties of these random pro-
using the K—L expansion is more efficient. This computational cesses are determined by the Doppler power spectrum of the
advantage becomes more significant as higher simulation accu- sphannel. The®(r; ¢) can be efficiently computed by applying

racy is required. The derived K-L expansion is applied to develop K thod t t le functi fth
an efficient simulation technique for digital transmission over a axnown method to generate samplie functions orthese uncorre-

multipath Rayleigh fading WSSUS channel using an optimum lated random processes, followed by substituting the generated
receiver. We show that the proposed technique requires shorter sample functions as coefficients into the K—L expansion.

computation time than two other known simulation techniques. Previous literature closely related to the present work was
Index Terms—Efficient simulation technique, Karhunen-Logve given by Clarket al.[3], and Clark [4]. In [3] and [4], the K-L
expansion, multipath Rayleigh fading WSSUS channel. expansion was derived for the Fourier transfornf¢f; ¢) on

the 7 variable! It follows that the resultant K-L expansion
is expressed in the frequency domain, while the one derived
in this paper is in the- domain. The frequency-domain K—L

N this paper, a new methodology for efficient simulatiogxpansion was used for analytical derivation of the matched

of digital communications over a multipath RayleigHilter bound in [3] and for the implementation of simulation in
fading wide-sense-stationary uncorrelated-scattering (WSSUSgubsequent work [5] (see footnote 3 of [5]). Although not
channel is proposed. This methodology is based on thgplicitly stated in [5], the frequency-domain K—L expansion
Karhunen-Leve (K-L) expansion of the time-varying channepossesses the optimal truncation property as does-tiwnain
output. The K-L expansion of a random process is well KNnow-| expansion that is derived in this paper so that simulation
for its optimal truncation property [1], [2, ch. 4.7]. That isysing the frequency-domain K—L expansion is also efficient.
the K-L expansion requires the minimum number of termphe choice of which K-L expansion to use for simulation
among all possible series expansions in representing a rand@$pends on its suitability to one’s application. For instance,
process for a given mean-squared error. In generating samgl@ may prefer using the frequency-domairdomain) K—L
functions of a Gaussian random process in simulation, egpansion if system transfer functions, such as the channel
smaller number of terms in the series expansion results jifipulse response, symbol pulse shape, etc., are represented in
a smaller computation load. Thus, the optimal truncatiafe frequency domainr-(domain).
property of the K-L expansion results in the minimization Other related published literature was given by Fechtel [6],
of computation load required to generate a Gaussian rand@¥espo and Jignez [7], and Visintin [8]. In [6], the channel
process in simulation. This computational advantage motiva@sput Q(r; t) was approximated in the dimensianby a
the development of the present work. series expansion with a specific choice of basis functions.

We will show later that the channel output due to a symb@l was shown that under typical conditions the number of
pulse is given by the convolution between the time-varyingasis functions in the series expansion was less than the
channel impulse responsg(r; ¢), and the symbol waveform, number of discrete multipaths in approximating the channel
(7). Thatis, the resultant channel outgitr; ¢) is given by impulse response (a commonly used technique in simulation)
Q(r; t) = [h(7; )p(r—7") dr’, which is a two-dimensional so that a reduction in the computation load could be achieved.
random process in both timeand delayr. In this paper, we However, in many cases the series expansion of [6] does not
derive the K-L expansion dR(7; ¢) in the dimensionr. We mean-square converge to the channel output even with an
consider only the case that the WSSUS channel is separghfgite number of basis functions, and this results in a loss
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of modeling accuracy. On the other hand, the mean-squartedhen a unit impulse is applied at time— 7. A multipath
convergence property of the K—L expansion is well knowRayleigh fading WSSUS channel can be characterized by the
and conditions of convergence are usually satisfied in practieaitocorrelation function, given by [12], [9, ch. 7.1]

situations. In addition, because of the optimal truncation

property, the K—L expansion requires fewer basis functions 3 E{A(7; HR*(& t+ At)} = Qu(r; ADSE - 7) (1)

in representing?(; ¢) than the series expansion of [6] under ) ) .
the same mean-squared error condition. Therefore, simulati§f€re @r(7: At) is the delay cross-power density function.
using the K—L expansion requires less computational effol the special case aht = 0, Q(7) = Qx(7; 0) is known as

In [7], it was shown that a complex Gaussian random procel§¢ delay power spectrum.

could be efficiently generated by its Fourier series expansionIn this paper, it is assumed that the channel dispersion
The channel outpuf(r; t) was then computed by usingcharacteristic and the fading characteristic are statistically
the discrete-path approximation of the channel, followed Bjdependent. This assumption is usually satisfied in practical
an application of the Fourier series expansion technique fguations because the channel dispersion characteristic most
generate the time-varying complex path gain. That is, tiften depends on the scatterer distribution whereas the fading
discrete-path approximation was used to mddet; ¢) in the characteristic usually depends on the relative motion between
dimensionr and the Fourier series expansion technique wie transmitter and the receiver. Thep,(r; At) can be
proposed for efficient generation &{r; ¢) in the dimensior. factored into

In the present work, we are concerned with modelil(g; ¢

in the dimensionr by the K-L expansion. Thisn\fvork) is Qn(t; At) = Q(r) D(A?) (2)
dlfferent_ from the recent work of [8]. In [8], th_e K-L eXpanS'or\NhereD(At) describes the fading characteristic of the channel
was derlv_ed for a particular complex Gaussian random Process: - nbe computed from the Doppler power spectrif),
characterized by the Jakes Doppler power spectrum. The KE [11]

expansion of [8] is useful for efficient generation Qfr; ¢)

in the dimensiont. o
727 f(At
The derived K-L expansion is then used to develop an /_Oo S(f)e S0 df
efficient simulation technique for digital communications via a D(At) = ES . ®3)
multipath Rayleigh fading WSSUS channel using an optimum / S(f)df

receiver for signal detection. This optimum receiver is a
matched filter matched to the combined characteristic of the .
channel and the symbol pulse shape [9, ch. 6.3]. By modelil KARHUNEN-LOEVE EXPANSION OF THECHANNEL OUTPUT
the communication system as an equivalent discrete-timeConsider a digital communication system transmitting a
model, which can be realized by a finite-impulse-responsegnal over a multipath Rayleigh fading WSSUS channel with
(FIR) filter with time-variant tap gains, one can efficientlythe low-pass-equivalent channel impulse respdr{se ¢). Let
simulate the communication system [10], [11]. We derivg¢(r) be the transmitted symbol pulse of lengiy. It is
the expression of the time-variant tap gain based on thesumed thap(r) is real and is time-limited for € [0, T};).
K—L expansion of the WSSUS channel output, and showithout loss of generality it is also assumed thdt; t) =
that the proposed technique requires shorter computation tilmer ¢ [0, Ths), where T, is the multipath spread of the
than the one based on the discrete-path approximation abiannel. If the channel is slowly varying relative to (at least)
the channel and an earlier simulation technique proposgg; + 7,,, convolution of h(; t) and () gives the time-
by Hoeher [10]. The present work is different from thearying received symbol pulse shaf¥r; ¢), i.e.,
authors’ previous work in [11]. In [11], we considered a
. . . T

suboptimum receiver (a.matche_d filter matghed to the symbqlzéﬁ t) = / h(r'; Ot — ') dr, 0<7<Th (4)
pulse shape) and the time-variant tap gains were generate 0-
based on a linear transformation of uncorrelated complex )
Gaussian random processes. whereTp, = Ti + T is the length of2(r; ¢). .

The organization of this paper is as follows. Section Il lt_',s appar(_ant that}(r; t) is a random process i In
describes the WSSUS channel model. The K-L expansiéfid't'on’ at timesty, ta, -+, ty, We can regardd(r; #1),
of the WSSUS channel output is derived in Section WEATs £2), -+, Q75 ¢,) @s sample functions d¥(7; ¢) in the
and its simulation efficiency is demonstrated in Section \Parameterr, so that((r; #) is also a random process in
Section V develops an efficient simulation technique for digita—lhe autocorrelation function d&(r; ¢) is given by
cc_)mmunications_using_an optimum rec_eiver, and comparison E{Q(1; ) (&; t + AD))
with other techniques is also given. Finally, conclusions are

given in Section VI. = D(AY) /fM 20 Vilr — Y — Ve, (5)

The last expression is obtained by substituting (4) into the left

Il WSSUS GiANNEL MODEL hand side of (5) followed by applying (1) and (2). Let
Let h(7; ) be the low-pass-equivalent time-varying channel

impulse response, whefdr; t) is the channel output at time R(r, &) = E{Q(7; ) (&; t + At) }H ar=o0. (6)
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Since D(0) = 1, the expression of(r, £) can be easily It is important to point out that a truncated K-L expansion

obtained from (5). Expandin@(7; ¢t) by the K-L expansion Qx(7; t) can be formed by selecting any basis functions

in the parameter gives [2, ch. 4.6], [13, ch. 6.4] among all basis functions that satisfy (9). The (optimal) one

L ) that yields the smallest'{<%} is the one expanded with the

s 1) = Algréo n(rs t), 0s7<To (7) basis functions associated with the fitétgreatest eigenvalues

where as indicated by (14). This optimal truncated K—L expansion is

N selected in the efficient computation 8{r; ¢).

Qn(Ti t) = W (E)on (T (8)

i ) nz::l (E)¢n(7) IV. COMPARISON RESULTS

and the equality of (7) holds in the sense of mean-squared conWe first compare the number of terms required in the

vergence. The, (), n =1, 2, ---, N, satisfying¢,(r) =0 computation of2(7; ¢) using the truncated K-L expansion and

for 7 € [0, Tg), form a set of orthonormal basis functionsthat using the series expansion obtained via the discrete-path

Each of these basis functions is an eigenfunction of the integégproximation ofx(7; ¢). For the discrete-path approximation,
equation Q(r; t) is computed by

To Np
/ _ B(7, () dE = Angpn(T) 9) AUrs ) =Y an(Bp(r — ) (15)
n=1
where ), is the corresponding eigenvalue. Thg(t), n =
1,2 ..., N, are independent zero-mean complex Gaussi
random processes with

gﬁmere an(t) and 7, are the complex path gain and the

path delay, respectively, of theth path of the approximate

discrete-path channel impulse response, &pds the number
E{w,(t)wi(t)} = A (10) of paths. The complex path gain is computed dy(t) =

Analytical solutions of (9) are known for some forms offf:_1~h(“ t) dr wherefo, 7y, -, 7, are strictly increasing

R(r, £) [13], [14]. Numerical solutions can be obtained for it 7o = 07 and7y, = Ty, satisfyingr,,—1 < 7, < 7. That

general continuodsR(r, ¢) based on Simpson’s rule as outiS: the_approxmate dls_cre_te-path channel impulse response

lined in [3] and in Appendix I. Interested readers may also reféPProximates the contribution @i(r; t) for 7 & [7—1, 7n)

to [15] for other numerical technigues that solve (9). Sind®/ & discrete path of complex path gain(t) at a delayr,,

R(r, £) is real symmetric and nonnegative definite, it follow¥/Nere 7,1 < 7, < 7. The mean-squared truncation error

that\,,’s are nonnegative, a result that is expected as indicat§gcomputed by

by (1_0)(.j Notice_th_at lzlsl kr;lowledgg (Eﬁwn(t)g]:(t + Angg} i)s - N, 2

required to statistically characterize the random proeggs). 2 .

From (7) and by the orthonormal property®f(7)’s, one gets E{ENP} E /_ s t) - nz_:l an(OP(r = )| dr

T
wp(t) = Qr; ) (r) dr. (11) No i,
/ ) =2 / 20(r)
Evaluating E{w, (t)w’ (¢t + At)} using (11) and noting that n=1 TT”—I
E{w,(H)w:(t)} is given by (10) yields / “ [(r =) = (r — r)Pdrdr’.  (16)

E{w,(t)w,(t+ At)} = A, - D(At). (12)
. ) . . In obtaining the numerical results we considered the specific
As an additional observation, taking Fourier transform on (1%233e thaf:,’s were uniformly spaced and, — % (Fre1 + 7).

and applying (3) reveals that the power spectral density gner details are as follows: rectangular symbol waveform
wy(t) is proportional to the Doppler power spectrum of the ., W(r) = 1 for € [0, T,) and4(r) = 0 otherwise
channel. ) L . was assumed; a truncated exponentially dispersive channel
Although Q(7; t) is expressed as an infinite series in (7),i, O(r) = Tt exp(—7/Ty) for 7 € [0, Ths) and zero
it can only be computed with a finite number of terms "%Isewhere, WhgrépM _ 4Twr,wwas conside;ed. The assump-
simulation. The mean-squared truncation error, given by  tjon of rectangular symbol waveform, although impractical,
Ta was used in this comparison because of simplicity; similar
E{ey} = E{/ (7 1) — Qn (73 1) dT} (13) comparison results would be obtained for other choices of
- symbol waveform, such as Nyquist pulses.
is useful in controlling the accuracy in simulation. It is known Table | lists the numbers of terms of the truncated K—L

that [2, ch. 4.7] expansion ) required to achieve normalized mean-squared
To N truncation errors of 10, 5, and 1% and those of the series
E{ed) = R(r, 7)dr — Z A (14) expansion using the discrete-path approximatiof)( It is
0- oy apparent that the value a¥, is three to six times of the

2 o . ) ) _corresponding value a¥, which indicates the computational
The K-L expansion is usually applied to simulation whe&pgr) is d f . h d KL . h
continuous or piecewise continuous. In this caBér,&) is continuous a' vantage o usmg_t e.tru_ncate_ - eXpa_-nS|0n over the
provided<:(7) is continuous over € (0, Ty). discrete-path approximation in a simulation. It is also apparent
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TABLE | Transmitter Ch 1 Matched Samnl
NuMBERS OF TERMS REQUIRED TO ACHIEVE GIVEN NORMALIZED Filter anne Filter ampler
MEAN-SQUARED TRUNCATION ERRORS USING THE TRUNCATED 5(0) r(t) s -
K-L ExPANSION (N) AND THOSE USING THE SERIES EXPANSION 1 2 v h{T;1) ’ ? Q* (1) Sk

BASED ON THE DISCRETEPATH APPROXIMATION (IV},)

n(t)

normalized mean-squared N N, Receiver
{runcation error Fig. 1. The communication system model.
10% 7 22
5% 11 40
1% 33 200

Since the discrete symbols are sent and the discrete-time
sampled outputs of the receiver are also obtained at the same

that, as the required degree of simulation accuracy increas ge of 1/.T5 per second, one can construct an_equwalent
. : iStrete-time (EDT) model that absorbs the combined effects
the computational advantage of using the truncated K-

. A of transmitter filtering, channel, receiver filtering and sampling
expansion becomes more significant.

We did not include the Fechtel's series expansion [6] |'rr1]t0 a single d|§crete time input/output relationship. Deteyls
. . : . on the construction of the EDT model from the corresponding
the comparison because the series expansion of [6] is not .. : L .
... continuous-time communication system model are given by [9,
mean-squared convergent f&7; ¢) for the communication

. . : ch. 4.7]. Here, only the results are stated. The EDT colored-
system under consideration. There is a honzero mean-squared . . . . . .
. : noise filter model (Fig. 2) is realized by an FIR filter with
error between{(r; t) and its computed value obtained by X )
i . X - time-variant tap gains. The outpH}. can be expressed as
the Fechtel's series expansion. The minimum mean-square

error is computed by (19) of [6]. We found that its normalized _ L
value is 33%, so that it is not possible to represent the channel =k =Nyt Z Im, kdk—m (19)
output by the Fechtel's series expansion with the accuracy m=—L
requirements considered in this comparison. whereg,,, ;’s are time-variant tap gains given by
To
V. APPLICATION TO EFFICIENT SIMULATION G,k = / QO (7; kT)QUr + mTy; KTy) dr (20)

We now apply the K-L expansion of(r; t) to simu- ) ) ) )
lation of digital communications over a multipath Rayleigi 7} is the correlated complex Gaussian noise sequence with
fading WSSUS channel using an optimum receiver for signa_ilE{nunf}
processing. 2 v

_ [ Nogo—w i, Ju—v|<Landk—L<u,v<k+L
10, otherwise

A. Communication System Description and
Equivalent Discrete-Time Model

The communication system under consideration is shownafid 2L + 1 is the number of tap gains. Singg, = 0 for

(21)

Fig. 1. Let{/;} be the complex transmitted symbol sequence? ¢ {—L. -+, L}, we get
The complex envelope of the transmitted sigsét), is given T
. Q
by s(t) = 3°°°__ I.¢(t —mT,) wherel/T, is the symbol L= [?w -1 (22)

transmission rate. The signaf¢) is transmitted through the _ _ _
channelh(r; t). The complex envelope of the received signaFor the sake of convenience, one usually whitens the noise

r(t), is given by sequence{n;} by filtering {=,} with a noise whitening
. filter. Let Gp(z) = Y. E__, gmaz™™ and Fi(z) =
r®) =+ S Lt —mTyi t) (17) Tom—o fm,xz"™ Where Fy(z) satisfies Fy(z)F(z"1) =

Moo G (z) with roots of I} (2~1) inside the unit circle. The output

) _ _sequence of the noise whitening filtde\; }, is given by
wheren(t) is the baseband-equivalent complex AWGN with

the one-sided power spectral dens¥y. An optimum receiver, L

which is a matched filter matched @(r; ¢) followed by A = + Z Frn, ble—m (23)
sampling the matched filter output at a rate of7, per m=0

second [9, ch. 6.3], is used to proceg$). To implement Where{n,} is a statistically independent, zero-mean complex
an optimum receiver it is required that the channel is slowfgaussian noise sequence Wittt {m:7;:} = No. The discrete-
varying relative t027, so that the channel does not changéme model that describes (23) is known as the EDT white-
appreciably during a time diTy, i.e., Q(7; t) ~ Q(r; mT;) noise filter model (Fig. 3).

where [t — mT,| < Tq. We assume that this requirement is The EDT model has been introduced because of the follow-
satisfied. The complex-valued output of the optimum receivélg reasons.

at the kth sampling instantZy, is given by 1) Straightforward implementation of simulation based on
KTo+To the continuous-time communication system model gen-

=N :/ r()Q(t — kTy; ET,) dt. (18) erally requires oversampling, which usually leads to

KT, considerable demand on computation. As pointed out
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’@/ > E‘k
Fig. 2. The EDT colored-noise filter model.
-1 -1 -1
L z ” z z
fox f1x Frk Fre

Fig. 3. The EDT white-noise filter model.

by Hoeher [10], the EDT model produces one output Itis apparent that generatiq@.,, x }+ in simulation requires

sample per input symbol at each sampling instant generating the complex Gaussian sequepog(kT;)}x. The

that oversampling is eliminated in simulation. Hencegeneration of the latter sequence can be accomplished by a

the EDT model is more efficient from the viewpoint ofnumber of methods such as filtering and linear transformation

simulation. methods [19, ch. 3], the Fourier series expansion technique
2) The EDT white-noise filter model wittleterministictap [7] and the Monte Carlo (MC) technique described in [11].

gains is widely used in analytical works dealing withAfter {w, (kT;)}x, n =1, 2, ---, N, are generated g, i},

the presence of intersymbol interference (ISl), e.g., im = 0, 1, ---, L can be computed by (24), ard_.,, « }x

the analysis of equalization algorithms [9, ch. 6.4] andan be easily obtained singe.,.x = g, - The {fim, }x,

in the study of using trellis coded modulation techniques = 0, 1, ---, L can be obtained frodg,, . with some

for combating S| [16]-[18]. By applying the results ofalgebraic manipulations. After the white noise sequefgg

these analytical works and by generating sample valuissgenerated by a standard techniqfi&; } can be computed

of the tap gains using simulation techniques, one cdor a given{I;} by using (23).

obtain desired results for a fading dispersive channel.

B. Implementation of the K—L Expansion for Simulation ~ C- Comparison with Other Simulation Techniques

It is desired to generatg,, j, (20) based on the truncated_ Simulation runs Were_performed to compare_the computa-
K-L expansion ofX(r; t), viz. Qx(7; ) (8). Substituting (8) t|0n times required by: i) the prop_osed__smulatlon technique
into (20) gives whm_h employs the K-L expansion, ii) th_e one that_ ap-

proximates the channel by a number of discrete multipaths
G,k = Wi R Wi, (24)  with uniformly spacedr,’s, and iii) the Hoeher's simulation
where(-)# is the complex conjugate transpose of the matri>t<eChniql.Je [10]. A 5% normalized mean-squared error in the
wy, is given by g’enerat|or_1 ofQ2(7; t) was assumed in order to ensure that
accuracy in the generation @f,, , by the three techniques
wi = [wi(kTs), wo(kTs), -+, wn (kTs)]F under consideration was (almost) the same. The communi-
and@®,, is anV x N matrix with the (i, v)th element given by cation system we employed jn the ;imulation was .the same
™ ’ as the one we considered in Section IV. In addition, we
o assumed that iY}, = T (so thatL = 4), and ii) S(f) =
Qo u(m) = o $u(T)$u(r +my) dr. @5 rfp. /T=(f/fpo)?"" where the maximum Doppler
frequencyfp, . was given byf,;nlm = 1007}. Five tap gains

Note that®,,,(—m) = &7 ,(m) s0 thatg—m, ik = g7, - (gm, x>, m =0, 1,---, 4) were generated in a run, and a total
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TABLE I The derived expansion has been applied to develop an effi-
Ser-Up TT'MES ANSD Run T'M?S REQUIRED cient simulation technique for digital communications over a
BY THE |HREE SIMULATION | ECHNIQUES . . . . .
N multipath Rayleigh fading WSSUS channel using an optimum
Set-up time Runtinﬁc receiver. An expression for computing the time-variant tap
_ for 10 gain of the EDT model of the communication system has been
simulation runs . . . .. .
K-L expansion 565 76 5 derived. The S|mulat|on efficiency of the p.roposed technique
Discrete-path approx. 0.1s 272s over the technique based on approximating the channel by
Hoeher's technique 5.85s 16944 s a number of discrete multipaths and the Hoeher's simulation

technique has been demonstrated.

of 10* runs ¢ = 1, 2, ---, 10*) were performed for each
technique. A SUN SPARC 5 was used, and simulation was
done using MATLAB.

Procedures for generating,, , values using the three The following method is adapted from [3, Appendix] and
considered techniques are described in Appendix II. It |4, ch. 2]. Consider the integral eigenvalue problem

APPENDIX |
NUMERICAL SOLUTION OF (9)

shown that for each of these techniquesdhg;, value can be T

computed by an appropriate quadratic form so that the number R(T, £)p(&) d& = Ap(T).

of computation roughly depends aN2, where N,,, x N,, 0-

is the dimension of the matrix in the quadratic form. It iShe M, ¢u(m}y n = 1,2, .-+, N, are any N sets of

also shown that values a¥,, are 11, 40, and 410 for thesolutions to this problem. It is assumed titr, ¢), 7, & €
technique using the K-L expansion, the one using the discrefg:-Ty,), is continuous. Using Simpson’s rule of numerical
path approximation, and the Hoeher’s technique, respectivéiyegration with N; (N; > N) points whereN; is an odd

The result thatV,,, of the first technique is smallest indicat6$nteger’ one can express this integral eigenvalue problem as
the computational efficiency of using the K-L expansion oveih algebraic eigenvalue problem

the other two techniques in simulation. We also remark that

the large difference aiV,, values between the K—-L expansion RD¢ = A¢.

approach and Hoeher’s technique results in a large dif'I‘erer]ﬁethe expressiorD andR. are N; x N; matrices with §, £)th
between their computation requirements, as demonstr:’;\tedeli)é(ments given by ’
the numerical results that follow.

Table II lists the set-up times (times required to compute (A . o,

. . . . ; —, k=f=1lork=/=N;
eigenvalues, eigenfunctions, fill up matrices, etc.) and run 3
times (times taken to generagg, » values in 16 simulation @ E—l =946 - N»—1
runs) for the three techniques under consideration. Note that [D]x.e =< 3’ I
the set-up procedure is done once only so that the set-up time % E—/_35 7 Ny — 9
is a fixed value independent of the number of simulation 30 CTET S L AT

runs. As expected, the K—L expansion approach required
the longest set-up time due to the considerable computation
involved in the evaluation of eigenvalues and eigenfunctions. Rk ¢ = R(m, &)

However, this greater computational requirement was offset by

the significant reduction of the run time required to perforfespectively, ang is anN; x 1 eigenvector withg];, = ¢(7x)

10* simulation runs. The total computation times (set-up tim&hereA = 1o /(Nr — 1), 7 = (k= 1)A and§, = (£ = 1)A.

+ run time) were 89, 272, and 16 950 s for the K—L expansiokhis algebraic eigenvalue problem can be solved by standard
approach, the discrete-path approximation approach, and t@ehniques.

Hoeher’s technique, respectively. The numerical results con-

0, k£

firm the expected simulation efficiency of the K-L expansion APPENDIX I
approach over the other two techniques. GENERATION OF ¢y, » BY THE TECHNIQUES
CONSIDERED IN SECTION V-C
VI. CONCLUSIONS In the K-L expansion approach, the method described

The K-L expansion of the WSSUS channel output has beh Appendix | with N; = 101 was used to compute
derived. Numerical results have shown that under the sath@ eigenvalues and eigenfunctions. Thg » value was
mean-squared truncation error the number of terms require@mputed by (24) withV = 11 (Table I). Let Ry () =
by the K-L expansion is less than that required by the discretf;@’ P(r)w(r + £)dr. In the discrete-path approximation
path approximation of the channel in computing the chanrapproachg,, , was computed by, = a,{{Ymak where
output. It indicates the computational efficiency of using the, = [ai(KT}), az(kT%), -+, an, (KT,)]* and Y, is an
K-L expansion in simulation. It has also been found thdy, x N, matrix with [Y,,]u v = Ryw(ta — 70 + mTy).
the computational advantage of using the K-L expansionlis the computation,V,, = 40 was used (Table I). Thev;
more significant if a higher degree of simulation accuracy &nd «; were generated by the MC method described as
required. follows. For a complex zero-mean Gaussian random process



646 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 4, MAY 1997

New York: McGraw-

c(t) that satisfiesE{c(t)c*(t + At)} = D(At), it is known
thétl /[21 1 JC\SFE)AY: hH%NRAY_’OO cNRAY(t) where cNRAY(t) : [10] P. Hoeher, “A statistical discrete-time model for the WSSUS multipath
Nray 2onop” exp j(fn — 2mpnt). In the expression, channel,"|EEE Trans. Veh. Technolvpl. 41, pp. 461-468, Nov. 1992.
6,’s are ii.d. random variables uniformly distributed oveflll K. W. Yip and E S. ’l\'gy “Efficient S'mU|at'0”|0f digital transmission
[0, 27), and p,,’s are i.i.d. random variables witp(y,,) = g‘fcr. Vlvgsgssgs channels/EEE Trans. Comm.yol. 43, pp. 2907-2913,
S(un)/ |22, S(w)dp. In the MC methodc(t) is generated [12] P.A. Bello, “Characterization of randomly time-variant linear channels,”
. i ! ’ IEEE Trans. Commun. Sywol. 11, pp. 360-393, Dec. 1963.
by cARAY(t) with randoml.y generated seeﬂg s and Hn S: . é13] W. B. Davenport, Jr. and W. L. Roofn Introduction to the Theory
The value ofNgay _deter_rn|r_‘es _the accuracy in approan_atln of Random Signals and NoiseNew York: McGraw-Hill, 1958 (also
a complex Gaussian distribution. We us@& sy = 10 in » reprint?]d by thehIEEE Pr?ss, New York, 19d87). | .
; ; , 14] H. Cohen, Mathematics for Scientists and Engineer&nglewoo
the 5|mulat|0rlli In the Hoehers.metho@%k was compu.ted Cliffs. NJ: Prentice Hall, 1992,
bY gm. 1 = By ZmB), Where g, is an Ny x 1 vector with [15] C. T. H. Baker,The Numerical Treatment of Integral EquationsOx-
_ n—1/2 i ; ford, England: Oxford Univ. Press, 1977.
[ﬂk]"_ - NH €Xp J(9"+27ru"kT5) andZ,, is anNy x Ny [16] P. R. Chevillat and E. Eleftheriou, “Decoding of trellis-encoded signals
matrix with [Z,,]u, v = Ry (vu — 7w + mTs). In the above, in the presence of intersymbol interference and noi¢EEE Trans.
Ny is an integer,d,, and p, follow the same definitions Comm.,vol. 37, pp. 669-676, July 1989.
in defining ey, (t), and ~v,, n = 1,2,---, Ny, are

[9] J. G. ProakisDigital Communications2nd ed.
Hill, 1989.

17] W. H. Sheen and G. L. 8ber, “Error probability of reduced-state
R

o 3 ) oo sequence estimation for trellis-coded modulation on intersymbol inter-
i.i.d. random variables with(v,) = Q(vn)/ [__ Q(7) dy. ference channels/EEE Trans. Communvol. 41, pp. 1265-1269, Sept.
Since an expression for computing the mean-squared error 1993. . , , , ,
in t fFN as not provided by Hoeher [10], and ] S. J. Simmons, “Alternative trellis decoding for coded QAM in the
In terms o H W p y o presence of ISI,”IEEE Trans. Commun.yol. 42, pp. 1455-1459,
to the authors’ best knowledge [11] is the only literature Feb./Mar./Apr. 1994.

i ] M. C. Jeruchim, P. Balaban, and K. S. Shanmug&mulation of
that enables o.ne. to compute' this parameter, we apply I[H% Communication SystemsNew York: Plenum, 1992.
result of [11] in its computation. It has been shown [11]
that Hoeher's method may be regarded as a technique that

generatesg,, , by the discrete-path approximation of the

channel with7,,’s selected such that values 567f”_1 Q(r)dr
are equaVn =1, 2, ---, N, and by generatiné the complex
path gain using the MC method. Therefore, (16) can be us
to compute E{sirp} for the Hoeher's method. Assuming
Tw = 3(Faz1 + ), we found thatyN, = 41. Since
Ny = Nravy N, [11], we usedNy = 410 in the simulation.
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