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Karhunen–Lòeve Expansion of the WSSUS Channel
Output and Its Application to Efficient Simulation
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Abstract—This paper derives a Karhunen–Lòeve (K–L) expan-
sion of the time-varying output of a multipath Rayleigh fading
wide-sense-stationary uncorrelated-scattering (WSSUS) channel.
It is shown that under the same mean-squared error condition,
the number of terms required by the truncated K–L expansion
is less than that of the series expansion obtained by using the
discrete-path approximation of the channel so that simulation
using the K–L expansion is more efficient. This computational
advantage becomes more significant as higher simulation accu-
racy is required. The derived K–L expansion is applied to develop
an efficient simulation technique for digital transmission over a
multipath Rayleigh fading WSSUS channel using an optimum
receiver. We show that the proposed technique requires shorter
computation time than two other known simulation techniques.

Index Terms—Efficient simulation technique, Karhunen–Loève
expansion, multipath Rayleigh fading WSSUS channel.

I. INTRODUCTION

I N this paper, a new methodology for efficient simulation
of digital communications over a multipath Rayleigh

fading wide-sense-stationary uncorrelated-scattering (WSSUS)
channel is proposed. This methodology is based on the
Karhunen–Lòeve (K–L) expansion of the time-varying channel
output. The K–L expansion of a random process is well known
for its optimal truncation property [1], [2, ch. 4.7]. That is,
the K–L expansion requires the minimum number of terms
among all possible series expansions in representing a random
process for a given mean-squared error. In generating sample
functions of a Gaussian random process in simulation, a
smaller number of terms in the series expansion results in
a smaller computation load. Thus, the optimal truncation
property of the K–L expansion results in the minimization
of computation load required to generate a Gaussian random
process in simulation. This computational advantage motivates
the development of the present work.

We will show later that the channel output due to a symbol
pulse is given by the convolution between the time-varying
channel impulse response, , and the symbol waveform,

. That is, the resultant channel output is given by
, which is a two-dimensional

random process in both timeand delay . In this paper, we
derive the K–L expansion of in the dimension . We
consider only the case that the WSSUS channel is separable
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and Gaussian. A separable WSSUS channel is one whose
fading and channel dispersion characteristics are independent.
Based on the assumption of a separable Gaussian WSSUS
channel it will be shown that coefficients of the resultant K–L
expansion are uncorrelated complex Gaussian random pro-
cesses in and that statistical properties of these random pro-
cesses are determined by the Doppler power spectrum of the
channel. Then can be efficiently computed by applying
a known method to generate sample functions of these uncorre-
lated random processes, followed by substituting the generated
sample functions as coefficients into the K–L expansion.

Previous literature closely related to the present work was
given by Clarket al. [3], and Clark [4]. In [3] and [4], the K–L
expansion was derived for the Fourier transform of on
the variable.1 It follows that the resultant K–L expansion
is expressed in the frequency domain, while the one derived
in this paper is in the domain. The frequency-domain K–L
expansion was used for analytical derivation of the matched
filter bound in [3] and for the implementation of simulation in
a subsequent work [5] (see footnote 3 of [5]). Although not
explicitly stated in [5], the frequency-domain K–L expansion
possesses the optimal truncation property as does the-domain
K–L expansion that is derived in this paper so that simulation
using the frequency-domain K–L expansion is also efficient.
The choice of which K–L expansion to use for simulation
depends on its suitability to one’s application. For instance,
one may prefer using the frequency-domain (-domain) K–L
expansion if system transfer functions, such as the channel
impulse response, symbol pulse shape, etc., are represented in
the frequency domain (domain).

Other related published literature was given by Fechtel [6],
Crespo and Jiḿenez [7], and Visintin [8]. In [6], the channel
output was approximated in the dimension by a
series expansion with a specific choice of basis functions.
It was shown that under typical conditions the number of
basis functions in the series expansion was less than the
number of discrete multipaths in approximating the channel
impulse response (a commonly used technique in simulation)
so that a reduction in the computation load could be achieved.
However, in many cases the series expansion of [6] does not
mean-square converge to the channel output even with an
infinite number of basis functions, and this results in a loss

1The authors of [3] and [4] actually considered
(�) in the derivation so
that coefficients of the expansion are uncorrelated Gaussian random variables
rather than random processes int. In spite of slight confusion that may arise,
we write
(� ; t) instead of
(�) for the sake of notational consistency with
the present work.
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of modeling accuracy. On the other hand, the mean-squared
convergence property of the K–L expansion is well known
and conditions of convergence are usually satisfied in practical
situations. In addition, because of the optimal truncation
property, the K–L expansion requires fewer basis functions
in representing than the series expansion of [6] under
the same mean-squared error condition. Therefore, simulation
using the K–L expansion requires less computational effort.
In [7], it was shown that a complex Gaussian random process
could be efficiently generated by its Fourier series expansion.
The channel output was then computed by using
the discrete-path approximation of the channel, followed by
an application of the Fourier series expansion technique to
generate the time-varying complex path gain. That is, the
discrete-path approximation was used to model in the
dimension and the Fourier series expansion technique was
proposed for efficient generation of in the dimension.
In the present work, we are concerned with modeling
in the dimension by the K–L expansion. This work is
different from the recent work of [8]. In [8], the K–L expansion
was derived for a particular complex Gaussian random process
characterized by the Jakes Doppler power spectrum. The K–L
expansion of [8] is useful for efficient generation of
in the dimension .

The derived K–L expansion is then used to develop an
efficient simulation technique for digital communications via a
multipath Rayleigh fading WSSUS channel using an optimum
receiver for signal detection. This optimum receiver is a
matched filter matched to the combined characteristic of the
channel and the symbol pulse shape [9, ch. 6.3]. By modeling
the communication system as an equivalent discrete-time
model, which can be realized by a finite-impulse-response
(FIR) filter with time-variant tap gains, one can efficiently
simulate the communication system [10], [11]. We derive
the expression of the time-variant tap gain based on the
K–L expansion of the WSSUS channel output, and show
that the proposed technique requires shorter computation time
than the one based on the discrete-path approximation of
the channel and an earlier simulation technique proposed
by Hoeher [10]. The present work is different from the
authors’ previous work in [11]. In [11], we considered a
suboptimum receiver (a matched filter matched to the symbol
pulse shape) and the time-variant tap gains were generated
based on a linear transformation of uncorrelated complex
Gaussian random processes.

The organization of this paper is as follows. Section II
describes the WSSUS channel model. The K–L expansion
of the WSSUS channel output is derived in Section III,
and its simulation efficiency is demonstrated in Section IV.
Section V develops an efficient simulation technique for digital
communications using an optimum receiver, and comparison
with other techniques is also given. Finally, conclusions are
given in Section VI.

II. WSSUS CHANNEL MODEL

Let be the low-pass-equivalent time-varying channel
impulse response, where is the channel output at time

when a unit impulse is applied at time . A multipath
Rayleigh fading WSSUS channel can be characterized by the
autocorrelation function, given by [12], [9, ch. 7.1]

(1)

where is the delay cross-power density function.

In the special case of is known as
the delay power spectrum.

In this paper, it is assumed that the channel dispersion
characteristic and the fading characteristic are statistically
independent. This assumption is usually satisfied in practical
situations because the channel dispersion characteristic most
often depends on the scatterer distribution whereas the fading
characteristic usually depends on the relative motion between
the transmitter and the receiver. Then can be
factored into

(2)

where describes the fading characteristic of the channel
and can be computed from the Doppler power spectrum,,
by [11]

(3)

III. K ARHUNEN–LOÈVE EXPANSION OF THECHANNEL OUTPUT

Consider a digital communication system transmitting a
signal over a multipath Rayleigh fading WSSUS channel with
the low-pass-equivalent channel impulse response . Let

be the transmitted symbol pulse of length . It is
assumed that is real and is time-limited for .
Without loss of generality it is also assumed that

, where is the multipath spread of the
channel. If the channel is slowly varying relative to (at least)

, convolution of and gives the time-
varying received symbol pulse shape , i.e.,

(4)

where is the length of .
It is apparent that is a random process in. In

addition, at times , we can regard ,
as sample functions of in the

parameter , so that is also a random process in.
The autocorrelation function of is given by

(5)

The last expression is obtained by substituting (4) into the left
hand side of (5) followed by applying (1) and (2). Let

(6)
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Since , the expression of can be easily
obtained from (5). Expanding by the K–L expansion
in the parameter gives [2, ch. 4.6], [13, ch. 6.4]

(7)

where

(8)

and the equality of (7) holds in the sense of mean-squared con-
vergence. The , , satisfying
for , form a set of orthonormal basis functions.
Each of these basis functions is an eigenfunction of the integral
equation

(9)

where is the corresponding eigenvalue. The ,
, are independent zero-mean complex Gaussian

random processes with

(10)

Analytical solutions of (9) are known for some forms of
[13], [14]. Numerical solutions can be obtained for a

general continuous2 based on Simpson’s rule as out-
lined in [3] and in Appendix I. Interested readers may also refer
to [15] for other numerical techniques that solve (9). Since

is real symmetric and nonnegative definite, it follows
that ’s are nonnegative, a result that is expected as indicated
by (10). Notice that a knowledge of is
required to statistically characterize the random process .
From (7) and by the orthonormal property of ’s, one gets

(11)

Evaluating using (11) and noting that
is given by (10) yields

(12)

As an additional observation, taking Fourier transform on (12)
and applying (3) reveals that the power spectral density of

is proportional to the Doppler power spectrum of the
channel.

Although is expressed as an infinite series in (7),
it can only be computed with a finite number of terms in
simulation. The mean-squared truncation error, given by

(13)

is useful in controlling the accuracy in simulation. It is known
that [2, ch. 4.7]

(14)

2The K–L expansion is usually applied to simulation whereQ(�) is
continuous or piecewise continuous. In this caseR(�; �) is continuous
provided (�) is continuous over� 2 (0; T ).

It is important to point out that a truncated K–L expansion
can be formed by selecting any basis functions

among all basis functions that satisfy (9). The (optimal) one
that yields the smallest is the one expanded with the
basis functions associated with the firstgreatest eigenvalues
as indicated by (14). This optimal truncated K–L expansion is
selected in the efficient computation of .

IV. COMPARISON RESULTS

We first compare the number of terms required in the
computation of using the truncated K–L expansion and
that using the series expansion obtained via the discrete-path
approximation of . For the discrete-path approximation,

is computed by

(15)

where and are the complex path gain and the
path delay, respectively, of theth path of the approximate
discrete-path channel impulse response, andis the number
of paths. The complex path gain is computed by

where are strictly increasing
with and , satisfying . That
is, the approximate discrete-path channel impulse response
approximates the contribution of for
by a discrete path of complex path gain at a delay ,
where . The mean-squared truncation error
is computed by

(16)

In obtaining the numerical results we considered the specific
case that ’s were uniformly spaced and .
Other details are as follows: rectangular symbol waveform
with for and otherwise
was assumed; a truncated exponentially dispersive channel
with for and zero
elsewhere, where , was considered. The assump-
tion of rectangular symbol waveform, although impractical,
was used in this comparison because of simplicity; similar
comparison results would be obtained for other choices of
symbol waveform, such as Nyquist pulses.

Table I lists the numbers of terms of the truncated K–L
expansion ( ) required to achieve normalized mean-squared
truncation errors of 10, 5, and 1% and those of the series
expansion using the discrete-path approximation (). It is
apparent that the value of is three to six times of the
corresponding value of , which indicates the computational
advantage of using the truncated K–L expansion over the
discrete-path approximation in a simulation. It is also apparent
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TABLE I
NUMBERS OF TERMS REQUIRED TO ACHIEVE GIVEN NORMALIZED

MEAN-SQUARED TRUNCATION ERRORSUSING THE TRUNCATED

K–L EXPANSION (N ) AND THOSE USING THE SERIES EXPANSION

BASED ON THE DISCRETE-PATH APPROXIMATION (Np)

that, as the required degree of simulation accuracy increases,
the computational advantage of using the truncated K–L
expansion becomes more significant.

We did not include the Fechtel’s series expansion [6] in
the comparison because the series expansion of [6] is not
mean-squared convergent to for the communication
system under consideration. There is a nonzero mean-squared
error between and its computed value obtained by
the Fechtel’s series expansion. The minimum mean-squared
error is computed by (19) of [6]. We found that its normalized
value is 33%, so that it is not possible to represent the channel
output by the Fechtel’s series expansion with the accuracy
requirements considered in this comparison.

V. APPLICATION TO EFFICIENT SIMULATION

We now apply the K–L expansion of to simu-
lation of digital communications over a multipath Rayleigh
fading WSSUS channel using an optimum receiver for signal
processing.

A. Communication System Description and
Equivalent Discrete-Time Model

The communication system under consideration is shown in
Fig. 1. Let be the complex transmitted symbol sequence.
The complex envelope of the transmitted signal, , is given
by where is the symbol
transmission rate. The signal is transmitted through the
channel . The complex envelope of the received signal,

, is given by

(17)

where is the baseband-equivalent complex AWGN with
the one-sided power spectral density. An optimum receiver,
which is a matched filter matched to followed by
sampling the matched filter output at a rate of per
second [9, ch. 6.3], is used to process . To implement
an optimum receiver it is required that the channel is slowly
varying relative to so that the channel does not change
appreciably during a time of , i.e.,
where . We assume that this requirement is
satisfied. The complex-valued output of the optimum receiver
at the th sampling instant, , is given by

(18)

Fig. 1. The communication system model.

Since the discrete symbols are sent and the discrete-time
sampled outputs of the receiver are also obtained at the same
rate of per second, one can construct an equivalent
discrete-time (EDT) model that absorbs the combined effects
of transmitter filtering, channel, receiver filtering and sampling
into a single discrete-time input/output relationship. Details
on the construction of the EDT model from the corresponding
continuous-time communication system model are given by [9,
ch. 4.7]. Here, only the results are stated. The EDT colored-
noise filter model (Fig. 2) is realized by an FIR filter with
time-variant tap gains. The output can be expressed as

(19)

where ’s are time-variant tap gains given by

(20)

is the correlated complex Gaussian noise sequence with

and
otherwise

(21)

and is the number of tap gains. Since for
, we get

(22)

For the sake of convenience, one usually whitens the noise
sequence by filtering with a noise whitening
filter. Let and

where satisfies
with roots of inside the unit circle. The output

sequence of the noise whitening filter, , is given by

(23)

where is a statistically independent, zero-mean complex
Gaussian noise sequence with . The discrete-
time model that describes (23) is known as the EDT white-
noise filter model (Fig. 3).

The EDT model has been introduced because of the follow-
ing reasons.

1) Straightforward implementation of simulation based on
the continuous-time communication system model gen-
erally requires oversampling, which usually leads to
considerable demand on computation. As pointed out
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Fig. 2. The EDT colored-noise filter model.

Fig. 3. The EDT white-noise filter model.

by Hoeher [10], the EDT model produces one output
sample per input symbol at each sampling instant so
that oversampling is eliminated in simulation. Hence,
the EDT model is more efficient from the viewpoint of
simulation.

2) The EDT white-noise filter model withdeterministictap
gains is widely used in analytical works dealing with
the presence of intersymbol interference (ISI), e.g., in
the analysis of equalization algorithms [9, ch. 6.4] and
in the study of using trellis coded modulation techniques
for combating ISI [16]–[18]. By applying the results of
these analytical works and by generating sample values
of the tap gains using simulation techniques, one can
obtain desired results for a fading dispersive channel.

B. Implementation of the K–L Expansion for Simulation

It is desired to generate (20) based on the truncated
K–L expansion of , viz. (8). Substituting (8)
into (20) gives

(24)

where is the complex conjugate transpose of the matrix,
is given by

and is an matrix with the ( )th element given by

(25)

Note that so that .

It is apparent that generating in simulation requires
generating the complex Gaussian sequence . The
generation of the latter sequence can be accomplished by a
number of methods such as filtering and linear transformation
methods [19, ch. 3], the Fourier series expansion technique
[7] and the Monte Carlo (MC) technique described in [11].
After , , are generated, ,

can be computed by (24), and
can be easily obtained since . The ,

can be obtained from with some
algebraic manipulations. After the white noise sequence
is generated by a standard technique, can be computed
for a given by using (23).

C. Comparison with Other Simulation Techniques

Simulation runs were performed to compare the computa-
tion times required by: i) the proposed simulation technique
which employs the K–L expansion, ii) the one that ap-
proximates the channel by a number of discrete multipaths
with uniformly spaced ’s, and iii) the Hoeher’s simulation
technique [10]. A 5% normalized mean-squared error in the
generation of was assumed in order to ensure that
accuracy in the generation of by the three techniques
under consideration was (almost) the same. The communi-
cation system we employed in the simulation was the same
as the one we considered in Section IV. In addition, we
assumed that i) (so that ), and ii)

where the maximum Doppler
frequency was given by . Five tap gains
( were generated in a run, and a total
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TABLE II
SET-UP TIMES AND RUN TIMES REQUIRED

BY THE THREE SIMULATION TECHNIQUES

of 10 runs ( ) were performed for each
technique. A SUN SPARC 5 was used, and simulation was
done using MATLAB.

Procedures for generating values using the three
considered techniques are described in Appendix II. It is
shown that for each of these techniques the value can be
computed by an appropriate quadratic form so that the number
of computation roughly depends on where
is the dimension of the matrix in the quadratic form. It is
also shown that values of are 11, 40, and 410 for the
technique using the K–L expansion, the one using the discrete-
path approximation, and the Hoeher’s technique, respectively.
The result that of the first technique is smallest indicates
the computational efficiency of using the K–L expansion over
the other two techniques in simulation. We also remark that
the large difference of values between the K–L expansion
approach and Hoeher’s technique results in a large difference
between their computation requirements, as demonstrated by
the numerical results that follow.

Table II lists the set-up times (times required to compute
eigenvalues, eigenfunctions, fill up matrices, etc.) and run
times (times taken to generate values in 10 simulation
runs) for the three techniques under consideration. Note that
the set-up procedure is done once only so that the set-up time
is a fixed value independent of the number of simulation
runs. As expected, the K–L expansion approach required
the longest set-up time due to the considerable computation
involved in the evaluation of eigenvalues and eigenfunctions.
However, this greater computational requirement was offset by
the significant reduction of the run time required to perform
10 simulation runs. The total computation times (set-up time
+ run time) were 89, 272, and 16 950 s for the K–L expansion
approach, the discrete-path approximation approach, and the
Hoeher’s technique, respectively. The numerical results con-
firm the expected simulation efficiency of the K–L expansion
approach over the other two techniques.

VI. CONCLUSIONS

The K–L expansion of the WSSUS channel output has been
derived. Numerical results have shown that under the same
mean-squared truncation error the number of terms required
by the K–L expansion is less than that required by the discrete-
path approximation of the channel in computing the channel
output. It indicates the computational efficiency of using the
K–L expansion in simulation. It has also been found that
the computational advantage of using the K–L expansion is
more significant if a higher degree of simulation accuracy is
required.

The derived expansion has been applied to develop an effi-
cient simulation technique for digital communications over a
multipath Rayleigh fading WSSUS channel using an optimum
receiver. An expression for computing the time-variant tap
gain of the EDT model of the communication system has been
derived. The simulation efficiency of the proposed technique
over the technique based on approximating the channel by
a number of discrete multipaths and the Hoeher’s simulation
technique has been demonstrated.

APPENDIX I
NUMERICAL SOLUTION OF (9)

The following method is adapted from [3, Appendix] and
[4, ch. 2]. Consider the integral eigenvalue problem

The , , are any sets of
solutions to this problem. It is assumed that ,

, is continuous. Using Simpson’s rule of numerical
integration with points where is an odd
integer, one can express this integral eigenvalue problem as
an algebraic eigenvalue problem

In the expression, and are matrices with ( )th
elements given by

or

respectively, and is an eigenvector with
where , and .
This algebraic eigenvalue problem can be solved by standard
techniques.

APPENDIX II
GENERATION OF BY THE TECHNIQUES

CONSIDERED IN SECTION V-C

In the K–L expansion approach, the method described
in Appendix I with was used to compute
the eigenvalues and eigenfunctions. The value was
computed by (24) with (Table I). Let

. In the discrete-path approximation
approach, was computed by where

and is an
matrix with .

In the computation, was used (Table I). The
and were generated by the MC method described as
follows. For a complex zero-mean Gaussian random process
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that satisfies , it is known
that [11] where

. In the expression,
’s are i.i.d. random variables uniformly distributed over

, and ’s are i.i.d. random variables with
. In the MC method, is generated

by with randomly generated seeds’s and ’s.
The value of determines the accuracy in approximating
a complex Gaussian distribution. We used in
the simulation. In the Hoeher’s method, was computed
by where is an vector with

and is an
matrix with . In the above,

is an integer, and follow the same definitions
in defining , and , , are
i.i.d. random variables with .
Since an expression for computing the mean-squared error
in terms of was not provided by Hoeher [10], and
to the authors’ best knowledge [11] is the only literature
that enables one to compute this parameter, we apply the
result of [11] in its computation. It has been shown [11]
that Hoeher’s method may be regarded as a technique that
generates by the discrete-path approximation of the
channel with ’s selected such that values of
are equal , and by generating the complex
path gain using the MC method. Therefore, (16) can be used
to compute for the Hoeher’s method. Assuming

, we found that . Since
[11], we used in the simulation.
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