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Abstract—This paper presents a new estimation approach for
the battery residual capacity (BRC) indicator in electric vehicles
(EVs). The key of this approach is to model the EV battery by
using a neural network (NN) with a newly defined output and
newly proposed inputs. The inputs are the discharged and regen-
erative capacity distribution and the temperature. The output is
the state of available capacity (SOAC) which represents the BRC.
Various SOACs of the nickel-metal hydride (Ni-MH) battery are
experimentally investigated under different EV discharge current
profiles and temperatures. The corresponding data are recorded
to train and verify the proposed NN. The results indicate that the
NN can provide an accurate and effective estimation of the BRC.
Moreover, this NN can be easily implemented as the BRC indicator
or estimator for EVs by using a low-cost microcontroller.

Index Terms—Electric vehicle (EV), neural network (NN),
nickel-metal hydride (Ni-MH), battery residual capacity (BPC)
indicator.

I. INTRODUCTION

N RESPONSE to the ever-increasing concerns on environ-
mental protection and energy conservation, research and de-
velopment of various technologies for electric vehicles (EVs)
are being actively conducted [1]-[8]. Among those EV tech-
nologies, the battery technology is the key to possible commer-
cialization and popularization of EVs. In the present status of
battery technology, the range of EVs per charge is only about
100 km for urban driving which is much lower than that of gaso-
line vehicles. So, the corresponding battery capacity needs to be
fully utilized, and hence, the estimation accuracy of its indicator
is highly essential, aiming to achieve an error less than 3%.
Many types of batteries can be selected as energy sources in
EVs. Nevertheless, recent development of EV batteries is mainly
focused on the lead-acid, nickel-metal hydride (Ni-MH), and
lithium-ion (Li-ion) batteries [9]-[14]. Due to mature technol-
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TABLE I
COMPARISON OF BACs UNDER DIFFERENT DISCHARGE CURRENT PROFILES
Discharge current profiles BAC (Ah)
15 A for first 3600 s, 45 A for next 1200 s, 90 A for last 207 s 352
90 A for first 207 s, 15 A for next 3600 s, 45 A for last 1447 s 38.2
45 A for first 1447 s, 90 A for next 207 s, 15 A for last 5211 s 44.9

ogy and low cost, the lead-acid battery has been widely accepted
in EVs. But, it suffers from low-specific energy and short-cycle
life. In contrast, the Li-ion battery offers high-specific energy
and long-cycle life. However, its high cost limits its practical
application to EVs. Meanwhile, the Ni-MH battery has higher
specific energy and longer cycle life than the lead-acid battery
as well as lower cost than the Li-ion battery. It can also offer the
advantages of environmental friendliness, rapid charge capabil-
ity and maintenance-free operation. Thus, the Ni-MH battery
is superseding the lead-acid battery as the most popular energy
source for modern EVs [11]. It should be noted that the nickel-
cadmium (Ni-Cd) battery can offer characteristics, such as the
nominal voltage, energy density, power density, and cycle life,
similar to the Ni-MH battery. However, the scarcity of metallic
cadmium is impeding the Ni-Cd battery from becoming a major
energy source in modern EVs [14].

The Ni-MH battery converts its electrical energy into chemi-
cal energy based on the following reversible reaction [15]:

MH + NiOOH < M + Ni(OH)s;. (1)

Its active materials are hydrogen in the form of a metal hy-
dride for the negative electrode and nickel oxyhydroxide for the
positive electrode. An aqueous solution of potassium hydrox-
ide works as the electrolyte. When the battery is discharged, the
metal hydride is oxidized to form metal alloy and the nickel oxy-
hydroxide is reduced to nickel hydroxide. When the battery is
charged, the reverse reactions occur. Both the discharge current
profile and the temperature significantly affect these chemical
reactions.

Due to the dependence of the EV driving range on the battery
available capacity (BAC), the influences of discharge current
profile and temperature on the BAC are experimentally investi-
gated. The adopted Ni-MH battery has the rated capacity of 45
Ah at three-hour discharge rate, cycle life of 1500, cost of USD
$1100, nominal voltage of 24 V, and cutoff voltage of 20 V. In
order to investigate the influence of discharge current profile on
the BAC, three different discharge current profiles are selected
to discharge the battery under the same temperature of 25° C. As
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TABLE II
COMPARISON OF BACs UNDER DIFFERENT TEMPERATURES
BAC (Ah)
15A 45 A 90 A 1125 A
10°C 44.0 43.5 42.1 41.5
25°C 452 442 432 42.8
40°C 46.9 454 449 44.1

shown in Table I, the resulting BACs under these three discharge
current profiles are very different. On the other hand, in order
to investigate the influence of temperature on the BAC, four
constant discharge currents are used to discharge the battery
under the temperatures of 10° C, 25° C, and 40° C. As shown in
Table II, the resulting BACs significantly vary with tempera-
tures. Thus, both the discharge current profile and temperature
should be taken into account during the development of battery
residual capacity (BRC) indicators for Ni-MH batteries. Also,
since the driving style directly relates to the discharge current
profile of EVs, it definitely influences the corresponding BRC,
and hence, the driving range.

Within the last three decades, the BRC estimation for the
lead-acid battery in EVs has been intensively investigated by
using different approaches as summarized in [16], such as the
approaches based on the impedance [17], [18], discharge cur-
rent [19], [20], loaded terminal voltage [21]-[24], mathematical
model [25]-[27], ampere-hour counter [28], and neural net-
work [29], [30]. Recently, an attempt has been made to extend
the approaches of impedance and neural network (NN) to BRC
estimation of Ni-MH batteries in EVs. For the impedance ap-
proach in [31], a small amplitude ac signal (stimulus) is injected
into the battery, and the terminal voltage (response) is mea-
sured. Then, the impedance is calculated by the ratio of the
response to the stimulus. However, the impedance obtained un-
der such condition does not include the characteristic due to
the large discharge current which often occurs in the EV dis-
charge current profile. Another impedance approach [32] is to
inject a modulation current, namely a small amplitude ac sig-
nal superimposed on a large current, into the battery and then
measure the terminal voltage. The impedance is deduced from
the ratio of the change of terminal voltage to the amplitude of
modulation current. Since the modulation current is set to be
the same as the discharge current, the characteristic due to the
large discharge current can be taken into account. Nevertheless,
the impedance generally indicates the battery state of charge
(SOC), which is actually different from the BRC in EVs. For
the NN approach in [33], a NN with three layers (input, hid-
den, and output layers) has been applied. At the input layer,
there are four neurons to represent the battery terminal voltage,
discharge current, temperature, and discharged capacity. At the
hidden layer, five neurons are adopted as a result of compromise
between the estimation accuracy and complexity of the NN. At
the output layer, there is only one neuron to indicate the BRC.
The selected experimental data that reflect the features of the
Ni-MH battery are adopted to train the NN, whereas the whole
set of experimental data obtained from routine operation of EVs
is used to verify the NN. The estimation error of this NN can
be as small as 5%. However, this NN does not take into account

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 5, SEPTEMBER 2005

the influence of the EV discharge current profile on the BRC
estimation. Also, to the best of the authors’ knowledge, there is
no analytic or semi-analytic Ni-MH circuit model available for
BRC estimation in EVs.

In this paper, a new NN-based approach that can incorporate
the effect of discharge current profile into the BRC estimation
of Ni-MH batteries for EVs is proposed. To achieve the goal,
two new concepts are introduced. First, the state of available
capacity (SOAC) is defined to represent the BRC, which can be
written as

p(t) =1—-q(t)/Ca 2)

where p(t) denotes the SOAC, C, refers to the BAC at the fully
charged state for a given discharge current profile of the battery,
and ¢(t) is the discharged capacity as expressed by

a0~ [ Lt 3

where I;(t) is the discharge current. Second, the discharged and
regenerative capacity distribution is proposed to describe the dis-
charge current profile for SOAC estimation. Consequently, a NN
with the inputs of capacity distribution and temperature is newly
applied to estimate the SOAC. Based on experimentation under
various EV discharge current profiles at different temperatures,
the proposed NN for SOAC estimation can be established. This
NN, which extracts the knowledge from experimental data in
terms of its weights and biases, essentially represent the map-
ping from discharged current profiles and temperatures to the
SOAC. In this sense, the forthcoming discharge current profile
has been considered in the trained NN. Moreover, this NN can
be easily implemented as the BRC indicator for EVs by using
a low-cost microcontroller (such as the Intel 80C96). The total
cost is only about a few hundred United States dollars.

Since the proposed BRC indicator is to be installed in EVs,
it is too difficult to measure battery chemical parameters. As a
result, all the inputs of the NN model are electrical parameters,
and the proposed NN is an indirect way to describe chemical
behaviors by using electrical parameters. Also, the BRC can be
considered as a nonlinear function of multivariables, namely, the
discharged and regenerative capacity at different current ranges
and temperatures. However, the influence of these multivariables
on the BRC is not explicit, leading to difficulty in formulating
a model based on polynomial regression or multidimensional
scaling techniques.

II. EXPERIMENTATION

The NN for SOAC estimation requires plentiful experimental
data of the EV battery. To obtain these data, a battery evalu-
ation and testing system is built at the International Research
Center for Electric Vehicles, The University of Hong Kong. As
shown in Fig. 1, it consists of five main parts, namely, pro-
grammable battery charger, programmable electronic load, pro-
grammable temperature chamber, power controller, and com-
puter control and data acquisition subsystem. The resolution of
data acquisition is +15 bits. Based on this system, the battery
can be tested under different charge and discharge currents at
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Fig. 1. Battery evaluation and testing system.

predefined temperatures. The aforementioned Ni-MH battery is
adopted for this experimentation.

Since discharge current profiles strongly influence on the
BAC and hence the EV driving range, different discharge cur-
rent profiles that emulate the battery operating conditions in
EVs are employed for experimentation. They correspond to the
U.S. federal urban driving schedule (FUDS), U.S. federal high-
way driving schedule (FHDS), European reference driving cycle
(ECE), and Japanese standard driving cycle (Mode 10.15). The
average current of all these discharge current profiles is approx-
imately equal to Cy /3, where Cly is the rated capacity of the
Ni-MH battery under investigation.

To carry out experimentation, the BAC is defined as the quan-
tity of electricity that can be delivered at given discharge cur-
rent profile and temperature until the specified cutoff voltage is
reached. Mathematically, it can be written as

Co = f(V (), La(t), T()|v (1)=Vors “)

where V (t) is the battery terminal voltage, T'(t) is the tem-
perature, and Vg is the specified cutoff voltage. With different
combinations of EV discharge current profiles and temperatures
(ranging from 10° C to 40° C), totally 32 tests are carried out.
In each test, the battery at the fully charged state (p(t) = 1) is
discharged until the specified cutoff voltage of 20 V is reached
(p(t) = 0). The experimental data are automatically recorded.
Fig. 2 shows four typical sets of data, namely, the FUDS, FHDS,
ECE, and Mode 10.15, at the temperature of 25° C. From the
discharged capacity of each test, the corresponding BAC can
readily be deduced. Then, the corresponding SOAC can be cal-
culated by using (2).

III. NN FOR SOAC ESTIMATION

The essence of the NN for SOAC estimation is the rela-
tionship between the SOAC and its input parameters. These
parameters should be chosen from the easily measurable ones,
such as battery terminal voltage, discharge current, and temper-
ature, as well as the easily calculated ones, such as discharged
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TABLE III
LOWER AND UPPER CURRENT BOUNDS FOR CAPACITY DISTRIBUTION

i

1 2 3 4
I'(A) 0 Cyl2 Cy C, 10.75
I“(A) Cy/2 Cy C,/075 C,/05

capacity and regenerative capacity. Intuitively, the SOAC has
a close relationship with the battery terminal voltage and dis-
charge current. For this reason, they were chosen as the inputs
of the NN for BRC estimation in [33]. However, the intuition
is not as the case as they have been conceived. Fig. 3 illus-
trates the relationships between the SOAC and battery termi-
nal voltage at a temperature of 25° C. It can be observed that
the battery terminal voltage changes considerably with fluctuat-
ing discharge current while the SOAC monotonously decreases
throughout discharging process. These phenomena demonstrate
that the information embedded in battery terminal voltage and
discharge current can not offer a direct contribution to SOAC
estimation. By comparisons, the BAC is greatly influenced by
the discharge current profile. Consequently, the discharged and
regenerative capacity distribution is newly proposed to describe
the discharge current profile for SOAC estimation. Those dis-
charged and regenerative capacities are obtained by integrating
the currents over time, hence, offering the function of low pass
filtering and inherently eliminating the effect of disturbances.
Although an error may be introduced during integration of cur-
rents over time, this error causes insignificant effect on SOAC
estimation because capacity distribution, not capacity, is used
to represent discharge current profile for SOAC estimation. As
shown in Table III, the capacity distribution based on the lower
and upper current bounds of four current ranges, namely, I! and
I' (i =1,...,4),is adopted. The selection of these four current
ranges is to take into account the influence of discharge current
levels on SOAC estimation. As a result, the proposed NN for
SOAC estimation is as shown in Fig. 4.

The proposed NN consists of three layers. The first layer,
namely, the input layer, has six neurons:

e X (t)—discharged capacity for I} < I;(t) < It;
e X, (t)—discharged capacity for I}, < I,(t) < I3;
e X3(t)—discharged capacity for I} < I;(t) < I¥;
e X, (t)—discharged capacity for I} < I;(t) < I¥;
e X5(t)—regenerative capacity;

e Xg(t)—temperature.

Four neurons for the discharged capacity and one for the
regenerative capacity are adopted because of the following two
reasons. First, the regenerative capacity is generally much lower
than the discharged capacity, thus the influence of regenerative
capacity on the BRC is less significant. Second, in order to
reduce the complexity of the NN, the number of neurons at
the input layer should be as small as possible. The use of five
neurons for the discharged and regenerative capacity can satisfy
the predefined error criterion.

Considering the vector X (t) = [X1(t) Xa2(t) Xs(t)
X4(t) X5(t) Xg(t)], the proposed NN can be described as a
function that maps the input vector X (¢) to the output vector
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p(t), namely the SOAC at time ¢t. Mathematically, it can be
expressed as

n

p(t)=> WiF(y)+0b )
i

1 — exp(—2y;)
Fly)= —"—= 6
(yi) T+ oxp(—2y1) (6)
where p (t) represents the value of SOAC estimation, n is the
number of neurons at the hidden layer, W; (i = 1, ..., n) are the
weights between the hidden layer and output layer, 49 is the bias
at the output layer, and y; (¢ = 1,...,n) is the input to the ith

neuron at the hidden layer and is given by

6
i =y WyX;(t) + b (M
j=1

whereW;; (i =1,...,n,j5 =1,...,6) are the weights between

the input layer and hidden layer, and b (i = 1,...,n) are the
biases at the hidden layer. To determine the necessary number
of hidden layer neurons, different numbers with n ranging from
7 to 12 are examined. It can be found that the NN with 10
hidden layer neurons is preferred because there is no significant
improvement in the estimation accuracy when n is greater than
10.

The learning algorithm of the NN is a numerical process
which determines the connection strength, namely, the weights
between layers and the biases in neurons. During the learn-
ing process, the validation data set is incorporated to improve
the generality of the NN. Based on the validation data set, the
learning process is terminated when the error function begins
to increase or becomes smaller than the convergence tolerance,
whichever is reached first. In this paper, the convergence toler-
ance is set to 1072, The error function E is defined as
m
> (k)= p (k) ®)

k=1

E:

DN | =

where m is the number of training data, p(k) is the SOAC calcu-
lated from experimental data, and p (k) is the SOAC estimated
by the NN.

The parameters of this NN are optimized by using the
Levenberg-Marquardt algorithm, which is an improved back-
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propagation algorithm [34]. Since this algorithm is a kind of
Newton’s method for minimization of the sum of squares of
nonlinear functions, it is well suited to minimize the error func-
tion as defined in (8). Thus, E can be expressed in terms of the
following parameters:

H={W;,b,W;;,bl} (i=1,....,n,j=1,...,6). (9

The corresponding optimum parameters can be obtained
through the following iterative process:

H.i1=H, — A7lg, (10)

where A, = V2E(H)|y—pn, and g, = VE(H)|g—p, are the
Hessian matrix and gradient vector of E to the rth iteration,
respectively.

IV. RESULTS

The data obtained from the experimentation described in Sec-
tion II are used to train, validate, and verify the proposed NN.
First, all data are normalized by the following equation:

X;j(t) — Xjmin
X jmax X j min
where X, (t) is the normalized value and X ax and X in
are the maximum and minimum values of X (¢), respectively.
After normalization, the whole data set, having a total of 5789
samples, is divided into three separate data sets, namely, the
training, validation and testing data sets. The training data set
is used to train the NN, the validation data set is to improve
the generality of the NN, whereas the testing data set is used
to verify the accuracy and effectiveness of the trained NN for
SOAC estimation.

To assess the accuracy of SOAC estimation, the average rel-
ative percentage error (ARPE) is defined

Xjn(t): (]:1776) (11)

1 < |pe(§) = pe(j)]
e - VMc
ARPE = v j§71 e, VU % 100% (12)

pe(7)]

where NV is the number of training or testing data, p. and p,. refer
to the estimated SOAC resulted from the trained NN, and the
actual SOAC calculated from experimental data, respectively.
Fig. 5 shows the actual SOAC and the estimated SOAC based
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on the same training data set. As expected, the SOAC estimation
is very accurate and the corresponding ARPE is only 2.26%.
To testify the effectiveness of the trained NN for SOAC es-
timation, the testing data of each test are utilized to assess the
accuracy. Fig. 6 shows a comparison between the actual SOAC
and the estimated SOAC at the temperature of 25° C under dif-
ferent EV discharge current profiles. It can be found that all
estimated SOACs closely agree with the corresponding actual
SOACs, hence confirming that the proposed NN can provide
accurate SOAC estimation for EVs. It should be noted that the
ARPEs of all 32 tests are plotted in Fig. 7, where the maximum
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ARPE is only 2.67%. This demonstrates that the ARPE of the
proposed NN takes an advantage over that of the NN in [33]
which adopted the same battery type and was also assessed by
an EV discharge current profile.

Moreover, the proposed NN can be easily implemented by a
low-cost microcontroller. Fig. 8 shows the implementation di-
agram of a SOAC indicator based on the proposed NN. This
indicator consists of four major units, namely the classification,
integration, normalization and NN units. First, the classification
unit is to categorize the discharge current into the predefined
four current ranges as listed in Table III. Second, the integration
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unit is to integrate the discharge and regenerative currents, hence
obtaining the discharged and regenerative capacity distribution.
Third, the normalization unit is to normalize the capacity dis-
tribution and temperature by using (11). Finally, the NN unit is
to estimate the SOAC by using (5)—(7). All these functions can
be easily realized based on the assembly language embedded in
the microcontroller.

V. CONCLUSION

In this paper, a new NN approach has been developed for
BRC estimation of Ni-MH batteries in EVs. The key is to define
the SOAC as the output of the NN, as well as to introduce the
discharge and regenerative capacity distribution as its inputs.
The SOAC can incorporate the effect of EV discharge current
profiles to accurately represent the BRC of Ni-MH batteries in
EVs. The discharged and regenerative capacity distribution can
readily describe various discharge current profiles to adapt dif-
ferent EV driving cycles or sophisticated battery characteristics
by easily adjusting the number of the current ranges and the
corresponding upper and lower current bounds.

Comparisons between the estimated SOACs and the actual
SOACs demonstrate that the proposed three-layer NN can pro-
vide accurate SOAC estimation, as the ARPEs obtained for all
32 testing data sets are less than 2.67%. Moreover, this NN can
be easily implemented as an on-board BRC indicator for EVs
by using a low-cost microcontroller.

Further work of the proposed NN can be extended to consider
the behavior of multiple battery modules and the influence of
ageing effect. On the other hand, since some hybrid EVs do not
allow for charging the batteries at the grid and the corresponding
fully charged state is not known, the proposed NN can be fur-
ther extended to those hybrid EVs. Similar to the development
of dynamic models for lead-acid batteries [35], further work of
the proposed NN can also be extended to the development of
dynamic models for Ni-MH batteries.
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