
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007 165

Uniform Concentric Circular Arrays With
Frequency-Invariant Characteristics—Theory,

Design, Adaptive Beamforming and DOA Estimation
S. C. Chan, Member, IEEE, and H. H. Chen, Student Member

Abstract—This paper proposes a new digital beamformer for
uniform concentric circular arrays (UCCAs) having nearly fre-
quency-invariant (FI) characteristics. The basic principle is to
transform the received signals to the phase mode and remove
the frequency dependency of the individual phase mode through
the use of a digital beamforming or compensation network. As a
result, the far-field pattern of the array, which is governed by a set
of variable beamformer weights, is electronically steerable, and
it is approximately invariant over a wider range of frequencies
than conventional uniform circular arrays (UCAs). This also
makes it possible to design the compensation network and the
beamformer weights separately. The design of the compensation
network is formulated as a second order cone programming
(SOCP) problem and is solved optimally for minimax criterion.
By employing the beamspace approach using the outputs of a
set of fixed UCCA frequency-invariant beamformers (FIBs), a
new beamspace MUSIC algorithm is proposed for estimating
the direction-of-arrivals (DOAs) of broadband sources. Since
the beampatterns of the UCCA-FIB is approximately invariant
with frequency and is governed by a small set of weights, a very
efficient adaptive beamformer using the minimum variance beam-
forming (MVB) approach can be developed. Simulation results
using broadband Gaussian and multisinusoidal inputs show that
the proposed adaptive UCCA-FIB is numerically better condi-
tioned than the conventional broadband tapped-delay-line-based
adaptive beamformers, due to the FI property and significantly
fewer numbers of adaptive parameters. Consequently, a higher
output signal-to-inference-plus-noise ratio over the conventional
tapped-delay-line approach is observed. The usefulness of the pro-
posed UCCA-FIB in broadband DOA estimation is also verified
by computer simulation.

Index Terms—Array processing, beamspace, broadband adap-
tive beamforming, broadband direction-of-arrival (DOA) estima-
tion, design method, frequency invariant (FI), uniform concentric
circular array (UCCA).

I. INTRODUCTION

BEAMFORMING using sensor arrays is an effective
method for suppressing interference whose angles of ar-

rival are different from the desired looking direction. They find

Manuscript received May 12, 2005; revised March 8, 2006. The associate ed-
itor coordinating the review of this manuscript and approving it for publication
was Prof. Mats Viberg. Parts of this work are presented in the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadel-
phia, PA, March 18–23, 2005, and IEEE International Symposium on Circuits
and Systems (ISCAS), Kobe, Japan, May 23–26, 2005.

The authors are with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong (e-mail: scchan@eee.hku.hk;
hhchen@eee.hku.hk).

Color versions of Figs. 4, 6, 7, and 8 are available online at http://ieeexplore.
ieee.org.

Digital Object Identifier 10.1109/TSP.2006.882109

important applications in radio communications, sonar, radar,
and acoustics [1]–[3]. Traditional adaptive broadband beam-
former usually employs tapped-delay lines or linear transversal
filters with adaptive coefficients to generate appropriate beam
patterns for suppressing undesirable interference. Since the
response of the array is frequency dependent, the number of
coefficients of the tapped-delay lines required will increase with
the signal bandwidth. In broadband adaptive beamforming, a
considerable number of adaptive coefficients will be required,
and it translates into increased convergence time, degraded
numerical properties, and high implementation complexity.
To overcome this problem, subband decomposition technique,
partial adaptation, and frequency-invariant beamformers (FIBs)
[4]–[8] have been proposed to reduce either the frequency
band to be adapted or length of the adaptive transversal filters.
In FIB, a fixed beamforming network is used to compensate
for the frequency dependency of the array and generate beam
patterns that are approximately invariant over the frequency
band of interest, hence the name frequency-invariant beam-
formers. There are several techniques for designing FIBs with
fixed beampatterns. In [6], the array aperture is discretized to
obtain FIB with fixed beampatterns using the scale-frequency
relationship of an array aperture. The design and implemen-
tation of such FIBs for linear arrays have been reported in
[7]. Because of the discretization process, the positions of the
sensors are usually nonuniform. In [4], it is observed that the
design of FIBs for uniform linear arrays (ULA) is equivalent to
the design of a two-dimensional (2-D) fan filter with different
orientations. Using a set of fixed FIBs which covers different
spatial angles of a ULA, broadband directional interference
can be suppressed using a generalized sidelobe canceller
(GSC)-based [9] adaptive beamformer with very few number of
adaptive filter coefficients [5] (one coefficient for each beam).
Moreover, compared with a traditional broadband Griffiths
and Jim (GJ) GSC-based adaptive beamformer with four taps
per sensor, significant improvement in convergence speed and
slight improvement in the steady-state signal-to-interference
ratio (SINR) are observed in [5].

Traditionally, the design of FIBs is mainly focused on linear
arrays with fixed spatial-frequency responses [4]–[7], [10], [11].
This is attributed to the attractive linear geometry of the array,
which makes the design tractable and enables many efficient di-
rection-of-arrival (DOA) estimation algorithms to be applied.
For example, the MUSIC algorithm [12], which is a high-resolu-
tion method for detecting the angle of arrival (AoA) of the signal
sources based on the subspace approach, has been proposed for
uniform linear array to detect wideband coherent sources using
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FIBs [8]. Basically, MUSIC is applied to the beamspace gen-
erated by a set of fixed FIBs, with looking directions evenly
distributed from 90 to 90 measured from the normal of
the linear array. A related beamspace technique using discrete
Fourier transform (DFT), called the frequency-domain FIBs, for
wideband DOA estimation was also reported in [13].

Motivated by the potential advantages of FIB and the sym-
metric geometry of uniform circular arrays (UCA), Chan and
Pun [14] developed an electronically steerable UCA in the
digital domain with frequency-invariant (FI) characteristics and
proposed to design the compensation filters using second-order
cone programming (SOCP). Because of the circular symmetric
geometry of UCAs, it was found that by transforming the snap-
shots to phase mode excitation or representation, the frequency
dependency of the array can be equalized by a fixed beam-
forming network or the compensation filters. This gives rise to
a FI array with its spatial response governed by a set of variable
coefficients, one per each phase mode. This is very attractive be-
cause of the small number of adaptive weights required, which
in turns yields faster convergence speed and fewer number
of high-speed variable multipliers. The possibility of using
compensation filters in UCA has recently been experimentally
demonstrated for sonar applications in [15]. Unfortunately, the
passband of a UCA is closely related to its radius and exhibit a
bandpass characteristic (see Section III for details). In order to
obtain a FI characteristic over a large bandwidth, the dynamic
range of the coefficients in the compensation filters will become
very large, and it leads to considerable noise amplification at
the array output.

UCAs with FI characteristics have also been studied in the mi-
crowave communities [15]–[19]. The abovementioned problem
of UCAs was observed in [19], where directional sensors with a
broadband FI beampattern of are employed. Here,
is the azimuth angle of the array as shown in Fig. 3. The inclu-
sion of the additional cosine term yields a final term with unity
magnitude when the radius of the array is sufficiently large.
Hence, the limitation of small phase mode coefficients on the
bandwidth of the array can be alleviated.

In this paper, we proposed an alternative approach and show
that this problem can also be mitigated if uniform concentric cir-
cular arrays (UCCAs) with ordinary omnidirectional sensors are
employed. We find that UCAs with increasing radius will have
their passbands being narrower (please refer to Section III and
Appendix A for more details). Hence, by combining the outputs
of ring subarrays with progressively larger radii in a UCCA, one
can achieve a FI characteristic over a much larger bandwidth
than a single UCA. Similar to the FI UCA in [14], snapshots of
the proposed FI UCCA are transformed to the phase modes via
inverse discrete Fourier transform (IDFT). The transformed data
is then filtered to compensate for the frequency dependency of
the phase modes. Unlike UCA, more nonzero contributions of
phase mode are available from different rings. Therefore, more
usable phase modes and a larger bandwidth can be achieved.
After compensated for the frequency dependency of the phase
modes by the compensation network, the data are then linearly
combined using a set of weights or coefficients to obtain the de-
sired FI beam patterns. These weights, which govern the far-
field pattern of the UCCA, can be designed separately from the
compensation network by conventional one-dimensional (1-D)

digital filter design techniques such as the Parks–McClellan al-
gorithm [20]. Alternatively, different beam patterns can be cre-
ated by varying these coefficients in an adaptive beamformer
with approximately FI characteristics. The compensation filters
are designed using SOCP [21], [22] because of its optimality
and ability to incorporate additional linear and convex quadratic
constraints to the design problem. The compensation filter ap-
proach is also useful to the design of FI UCCA with fixed beam-
patterns because it significantly reduces the number of design
parameters and hence the numerical difficulties by separately
designing the beam weights and the compensation network.

Although the present approach may be more suitable to be
implemented in acoustic applications, we would like to contrast
its principle with the approach in [19], which is for microwave
applications. First of all, the proposed approach requires only or-
dinary omnidirectional sensor elements, instead of specially de-
signed broadband FI directional sensors. Second, the proposed
system is based on optimization technique and it does not re-
quire the radius of the array be very large in order to achieve
the desired frequency-invariance characteristic. In Appendix B,
we also show that the beampattern in [19] can be realized using
a two-ring UCCA. It is because this particular two-ring UCCA
can be viewed as a structure to realize a special circular array
with each sensor element having a characteristic of .
Consequently, one gets a similar result in [19]. It should be noted
that additional design freedom and implementation constraints
may exist in realizing different types of sensing systems.

To demonstrate some of the potential benefits of the pro-
posed UCCA-FIB, new broadband adaptive beamforming and
DOA estimation algorithms using the UCCA-FIB are also
developed in this paper. Thanks to the FI characteristic of the
beamforming network, the variable beamforming weight of
each phase mode can adapt as in a conventional narrowband
adaptive beamformer. Therefore, conventional beamforming
methods such as the minimum-variance beamforming (MVB)
[23] and GSC [9] can be used to suppress the interference from
the received data. Therefore, the length of the tapped-delay line
can be drastically reduced (one per phase mode in our exper-
iment). As a result, the arithmetic complexity associated with
the adaptation of the lengthy tapped-delay lines in traditional
broadband adaptive beamformers can be significantly reduced
and the convergence speed, numerical property and output
SINR can also be improved. Our DOA estimation algorithm
is based on the method in [8], which was originally designed
for ULA-FIB. In particular, narrowband DOA estimation algo-
rithms, such as MUSIC, is applied to the beamspace generated
by a set of fixed FI beamformers with looking directions evenly
distributed from 0 to 360 , because of the FI characteristics of
the FI UCCA arrays.

Several design examples on the design of UCCA-FIBs, the
DOA estimation, and the adaptive beamforming using UCCA-
FIBs are given. Design results show that electronic steerable
beam patterns with approximately FI characteristic over a fairly
large bandwidth can be obtained. The feasibility of the pro-
posed adaptive beamforming and DOA estimation algorithms
are verified by computer simulation using broadband multisi-
nusoidal signals as well as Gaussian signals. Simulation results
suggest that, compared with conventional broadband adaptive
beamformers using the UCCA without the compensation fil-
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Fig. 1. UCCA with P rings. The pth ring has K equally spaced sensors.

ters, the proposed adaptive UCCA-FIB has better numerical
property and output SINR due to the fewer number of adaptive
beam weights and FI property. The proposed DOA and adap-
tive beamforming techniques are also applicable to FI UCAs, if
a smaller bandwidth is acceptable.

The paper is organized as follows: In Sections II and III, the
basic structure of the UCCA and the proposed digital broad-
band UCCA-FIB are presented. The design of the UCCA-FIBs
using SOCP is described in Section IV. The proposed broadband
DOA estimation and adaptive beamforming algorithms using
the UCCA-FIB are presented in Sections V and VI, respectively.
Design examples and simulation results are given in Section VII,
and conclusions are drawn in Section VIII.

II. UNIFORM CONCENTRIC CIRCULAR ARRAYS (UCCAs)

Fig. 1 shows a UCCA with rings and each ring has
omnidirectional sensors located at (rep-
resented as Cartesian Coordinate with the center as the origin)
where is the radius of the ring, ,

, and as shown in Figs. 1 and 2.
In UCCAs, the intersensor spacing in each ring is fixed at ,
where is the smallest wavelength of the array to be operated
and is denoted by . The radius of the ring of the UCCA
is given by

(2.1)

For convenience, this radius is represented as its normalized ver-
sion

(2.2)

Let denote the ratio of the sampling frequency to the max-
imum frequency , the phase difference
between the sensor and the center of the UCCA is

. For notation convenience, let

(2.3)

the corresponding frequency response of the phase difference
can be expressed as , where is the fre-
quency variable, and are the azimuth angle and the elevation
angle respectively, as shown in Fig. 3. The azimuth angle is

Fig. 2. Relationship between intersensor spacing and the radius of the pth ring
of the UCCA.

Fig. 3. Geometry of the reference imaginary frame.

on the horizontal plane where the sensors are situated. It mea-
sures from a reference imaginary axis on this horizontal plane,
while the elevation angle is measured from a reference imagi-
nary axis perpendicular to the horizontal plane. For a plane wave
(i.e., far field) arriving at azimuth angle and elevation angle ,
the steering vector of the ring of a UCCA is

(2.4)

Here, we shall focus our design at an elevation angle of ,
i.e., the horizontal plane.

III. DIGITAL BROADBAND UCCA-FIB

Fig. 4 shows the structure of the FI beamformer for
a UCCA with rings. After appropriate downconver-
sion, lowpass filtering, and sampling, the sampled signals
from the antennas of the ring are given by the vector

, which is called a
snapshot at sampling instance . This snapshot is IDFT
to a set of Fourier coefficients, each coefficient is called a
phase mode. The transformed snapshot is then denoted by

, where is an
IDFT matrix with and

(3.1)

Here, denotes the entry of matrix . We assume
that is an odd number and define ,

. Each branch of the IDFT output is then filtered
by (to compensate for the frequency dependency of
the phase modes as we shall see later in this section), multiplied
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Fig. 4. UCCA-FIB block diagram.

with the variable beamformer weights before combining to
give the beamformer output , as follows:

(3.2)

where denotes discrete-time convolution. To obtain the spa-
tial–temporal transfer function of the beamformer, let us assume
that there is only one source signal with spectrum .
Taking the discrete-time Fourier transform (DTFT) of (3.1), one
gets

(3.3)

Taking DTFT on both size of (3.2) and using (3.3), we have

(3.4)

Hence, the spatial–temporal response of the ring of the
UCCA is

(3.5)

To obtain an FI response, the term inside the bracket, which
is a function of both and , should be independent of

the frequency variable . To this end, we make use of the
Jacobi–Anger expansion [24]

(3.6)

where is the Bessel function of the first kind of order ,
and rewrite (3.5) as

(3.7)

Further, the term inside the bracket is evaluated to be

otherwise
where

(3.8)
Substituting (3.8) into (3.7) gives

(3.9)

From [24], the Bessel function satisfies the following property:

(3.10)

Therefore, for sufficiently large value of , the value of the
Bessel function will be negligibly small. In other words, if the
number of sensors is large enough, we can truncate the infinite
sum in (3.9) and retain the term with (i.e., ). Con-
sequently, can be approximated by

(3.11)
It can be seen that for a ring with given radius , the coeffi-
cient of the phase mode before compensation is given by

. Hence, the bandwidth is limited by the spacing of
successive zeros of the Bessel function, which is fixed. Since
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decays as increases, rings with larger radii will have a
lower center frequency and bandwidth, while rings with smaller
radii usually have better high frequency responses. A more de-
tailed discussion is given in Appendix A. Therefore, to obtain
an FI beamformer with large bandwidth using a UCA, small
responses of at certain frequencies have to be com-
pensated by . This is undesirable in general because
the dynamic range of the coefficients of will increase
rapidly with the signal bandwidth. Consequently, it may lead
to considerable noise amplification in the array. Fortunately, by
employing more rings in a UCCA, it will be shown below that

is required to compensate for a sum consisting of terms
like , each coming from a phase mode of each ring. As
mentioned earlier, rings with smaller radii have better high-fre-
quency responses while rings with larger radii have better low-
frequency responses. Therefore, by combining rings with appro-
priate radii, the response of the UCCA over the band of interest
will not be vanishing small, although some of the phase mode
coefficients with very small magnitude from certain rings will
be discarded. As a result, the sum mentioned above, which is
the frequency response of the array at different frequencies, will
not be too small. Hence, it is possible to equalize this sum using
numerical well-behaved compensation network ’s and
frequency invariance over a wider bandwidth can be achieved.

In a UCCA-FIB, the outer rings have more phase modes than
the inner ones. For simplicity, we assume that the weighting
vectors of the rings are identical, i.e., , .
The overall response of the beamformer can be written as:

(3.12)

From (3.12), it can be seen that if the filters are de-
signed in such a way that

for

(3.13)

where and are, respectively, the lower and upper frequen-
cies of interest, then the beamformer in (3.12) will be approxi-
mately FI within and

(3.14)

Furthermore, the far-field beam pattern is now governed by the
spatial weighting alone. For notational convenience, we
shall just write for the left-hand side of (3.14). It can also
be seen from (3.14) that the far-field spatial response is similar
to that of a digital FIR filter with impulse response . There-
fore, can be designed by conventional filter design algo-
rithms such as the Parks–McClellan algorithm [20] or SOCP

[21] if convex quadratic constraints are to be imposed. Alter-
natively, real-time adaptation of the beam pattern through the
spatial weighting can be employed to suppress undesired
interference as will be seen in Section IV. To design the compen-
sation network, we first notice that the left-hand side of (3.13)
is a linear function of the filter coefficients in ’s. There-
fore, the design problem in (3.14) can be treated as a digital FIR
filter design problem with all the filter outputs adding up to a
desire response having a value of one. This will be discussed
later in Section IV.

Before proceeding to the design of the compensation filters,
we remark that there is usually mutual coupling between sensors
in sensor arrays. It is beyond the scope of this paper to address
further this problem for UCCAs. Interested readers are referred
to [25] for more information of the mutual coupling effect of
phase-mode-excited circular arrays and compensation method
by modifying the amplitude and phase of each far-field phase
mode pattern. The mutual coupling effect for narrowband UCA
was also discussed in [26].

IV. DESIGNING UCCA FIBs WITH SOCP

As mentioned in Section III, the problem of determining the
filter coefficients of can be formulated and solved using
SOCP [21], [22]. SOCP is a convex programming problem and
the global optimal solution is guaranteed if it exists. Another
important advantage of SOCP is that it is very convenient to
include additional linear or convex quadratic constraints, such
as the norm constraints of the variable vector, to the design
problem. It has been used in the optimal design of digital FIR
filters and fixed beam broadband ULA FIBs [21]. A standard
form of SOCP can be written as follows:

minimize

subject to (4.1)

where is the variable vector; , ,
, and are constant vectors;

are constant matrices; and denotes the Euclidean
norm of the vector . To begin with, let be
the coefficients of the compensation filter , i.e.,

. The approximation error is

. If
the minimax criterion is used, the design problem in (3.13) can
be formulated as
mimimize

subject to

(4.2)

where is the order of the filter . Since is a com-
plex quantity, we need to evaluate its real and imaginary parts
first. Because the value of is dependent on , we shall make
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the substitution of variable and solve the
following problem in :

minimize

subject to

(4.3)

Using the identity , (4.3) can be
rewritten in a more compact matrix form as follows:

minimize

subject to

(4.4)

where ,
, and

. By stacking together and the coefficients of the
compensation filters ’s into a vector , (4.4) can be

rewritten in the following form:

minimize

subject to

(4.5)

where

Finally, (4.5) can be written in a matrix form as follows:

minimize

subject to

(4.6)

By discretizing uniformly in with sufficient number of
points, say , each continuous constraint above for each

will yield different constraints. The resulting problem is
now in the form of a standard SOCP problem in (4.1), which
can be solved efficiently using optimization toolbox such as Se-
DuMi [27].

It should be noted that the above two-stage method for de-
signing separately the compensation filters and beam weights
is also very useful to the design of fixed beam patterns with
FI characteristics. Ideally, one can employ SOCP to design the

compensation network and the beam weights jointly using (3.7),
since it is also a linear function of the variables. However, we
found that the number of variables and constraints for this direct
approach is so large that both SOCP and semi-definite program-
ming (SDP) solvers will encounter difficulties in convergence
for arrays with only moderate number of elements and filter taps.
On the other hand, the two-stage method decomposes the de-
sign problem into two independent problems of much smaller
sizes. Consequently, it suffers from less numerical problem and
consistently yields excellent results even with large number of
elements and filter taps.

V. BROADBAND DOA ESTIMATION USING UCCA-FIB

The UCCA-FIB designed in previous sections can be used in
broadband DOA estimation. Following the method in [8], which
is proposed for broadband DOA estimation using FI linear ar-
rays, we use a set of UCCA-FIBs with fixed beampatterns and
apply the MUSIC algorithm to its outputs to estimate the DOA’s
of the broadband sources. Consider broadband signals im-
pinging a -ring UCCA at azimuth angles , .
The output signal at each element of the array can be written as

(5.1)

where , are the arriving signals that impinge
the array at angle , . is the additive white
Gaussian sensor noise at the element of the th ring. As de-

fined in Section III, the vector
is called a snapshot at sampling instance . The frequency re-
sponse of the array output can be written as

(5.2)

where is the
source direction matrix for the th ring, ,

, is the steering vector for the th ring in (2.4),
is the source signal vector

and is the vector of the
Gaussian noise at the sensors of the th ring. After transforming
to phase mode by IDFT, the outputs are

(5.3)

where

...
...

...
...

...
...

...
...

Taking the DTFT of (5.3), the frequency response of the phase
modes vector is given by

(5.4)
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After passing through the compensation filters and the beam
weights, the output of the th ring of the beamformer is given
by (3.2) and its frequency response is given by (3.4). In matrix
form, (3.4) can be written as

(5.5)

where and

is the beam-
former vector. Using (5.2) and (5.4), the following frequency
domain input–output relationship of the th ring is obtained:

(5.6)
From (3.3), (3.4) and (3.5), we can see that

and (5.6) becomes

(5.7)

where . By adding the outputs of the
rings together, the overall frequency response of the beam-

former is

(5.8)

where ,
, ,

, and . To estimate
the DOAs, we use such beamformers to cover uniformly
a given angular sector of interest , where the sources are
assumed to lie in. Denote the output of these beamformers by

, and stack them together, one gets

...
...

(5.9)

where and are respectively the gain
of the signal and noise components in (5.8) for the th
beamformer. Since has been designed to be approx-
imately frequency invariant in the interested band, we have

, . Assuming that the
arriving signals and the noise are uncorrelated, the UCCA-FIBs
data correlation matrix is given by

(5.10)

where is the expectation operator, the superscript de-
notes the Hermitian transpose, and

and are the source and FIB noise
correlation matrices. Integrating over the frequency band
of interest, we get the frequency-independent broadband FIB
data correlation matrix

(5.11)

where and are the
broadband FIB source and noise correlation matrices respec-
tively. Denoting the IDFT of as and using the
Parseval’s theorem, can be computed from

as follows:

Here, we have assumed the out of band noise and signals have
been appropriately filtered. The broadband FIB data covariance
matrix , which contains the DOA information of the
sources, can be used with conventional eigen-based DOA
estimators such as MUSIC [12] to determine , the DOA.

Denote the eigendecomposition of as
, where is a diagonal matrix of sorted eigenvalues and

, where and are the eigenvectors of the
signal and noise subspaces, respectively. The source directions
can be determined by searching for the peak positions of the
following FIB-MUSIC spatial spectrum [8]:

(5.12)

The fixed beamformers, in (5.9), can be
obtained by modulating the beamformer weight of a pro-
totype beamformer focused at with sinusoids at appro-
priate frequencies. For example, if the shift is , then the mod-
ulation is , . The UCCA-FIB can
also be used in adaptive beamforming to reconstruct the desired
broadband signal and suppress the interference signals. Because
of the FI characteristics of the beamformer, the length of the
adaptive tapped-delay line can be largely reduced. Details of
these adaptive UCCA-FIBs will be described next.

VI. ADAPTIVE BEAMFORMING USING UCCA-FIB

Consider broadband signals impinging a -ring UCCA at
angles , and . The frequency response of the array is
given by

(6.1)
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where is given by (3.4). Using (5.2), (5.4), and (3.4),
can be rewritten as

(6.2)

where ,

and is the row of the
transformation matrix . From Section III, we know that

is designed to be frequency invariant, and hence
, . Thus, the frequency

response of the beamformer output is simplified to

(6.3)

Taking the IDFT, one gets the time-domain expression of the
output as follows:

(6.4)

where , with Fourier transform (FT) , is the
output noise of the phase mode of the beamformer, and

is the compensated phase mode. Equation (6.4)
can also be written compactly in matrix form as follows:

(6.5)

where
is an source direction matrix with

given by (6.2)

(6.6)

is the compensated phase mode vector, and
is the noise vector con-

taining the noises at the compensated phase modes of the
beamformer.

Assume that the desired signal impinges the array at an
azimuth angle . To recover the desired signal from the array
output, we employ the classical minimum variance beamformer
(MVB) [23] (or minimum variance distortionless response
MVDR beamformer). The basic idea of MVB is to choose the
beamformer weight vector such that the output energy of the
array is minimized, while requiring the response of the array
in the looking direction to be 1, hence the name MVDR.
Mathematically, this means

with

or, after using (6.5)

minimize

subject to (6.7)

where is the autocorrelation
of the compensated phase mode vector. This constrained opti-
mization can be solved analytically and the optimal solution is

(6.8)

Given a series of snapshots , say ,
the autocorrelation matrix can be estimated as

. Thus, can be obtained by
inverting the matrix and substituting it into the
right-hand side of (6.8). This is called the sample matrix inver-
sion (SMI) method. Alternatively, can be solved recursively
using the adaptive filtering method such as the generalized
sidelobe canceller (GSC) [28]. For simplicity and ease of
comparison, the SMI method is used in this paper to assess
the ultimate performance of the various approaches. Although
the derivation above is based on one tap per phase mode,
it can readily be generalized to include multiple taps as in
traditional broadband beamformers, except that the input to the
tapped-delay line, like the derivation above, is the compensated
phase mode vector .

We now roughly compare the arithmetic complexity of the
adaptive beamformers using FI UCCA and the one employing
tapped-delay line (TDL) UCCA. The arithmetic complexity of
a digital beamformer usually consists of the complexities for
the fixed filtering and the adaptive filtering parts. The order of
the arithmetic complexity per sample for the fixed filtering part
is usually linear in the filter length, while the order of arith-
metic complexity per unit time for the adaptive filtering part
will depend on the algorithm used. In this paper, the SMI al-
gorithm is employed and the arithmetic complexity per second
is of order , where is the number of adaptive coef-
ficients. Let denote the length of the adaptive tapped-delay
line and denote the length of the compensation filters in a
FI UCCA, the complexity of the fixed and adaptive parts are,
respectively, and , where

, , is the number of the usable phase modes
of the ring. In a TDL UCCA, broad band fractional delay
digital filters are employed to steer the beam to the target direc-
tion. Let denote the length of these filters, the complexity
of the fixed and adaptive filtering parts are respectively given
by and , where ,

, is the number of the sensors in the ring. In
the simulation of Example 3 to be presented in the next section,
the numbers of sensors in the two rings of the UCCA are 10
and 18, respectively. The length of the compensation filters re-
quired is 31 and the number of usable phase modes is 9. On the
other hand, the length of the broadband fractional delay filters
in the TDL UCCA is 121. Therefore, the arithmetic complexity
of this FI UCCA is , while that of a TDL
UCCA is . It was found that the output
SINR of the FI UCCA with is better than that of the TDL
UCCA with for broadband Gaussian as well as multi-
sinusoidal inputs tested. Therefore, the proposed FI UCCA is a
good alternative to traditional TDL UCCAs because of its lower
arithmetic complexity and higher output SINR. We now present
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Fig. 5. Spatial response of the UCCA-FIB with two rings.

Fig. 6. Spatial–frequency response of the UCCA-FIB with two rings (! 2

[0:3�; 0:95�]).

several design examples and simulation results to illustrate the
principle of the proposed UCCA-FIB.

VII. DESIGN EXAMPLES AND SIMULATION RESULTS

Example 1: UCCA-FIB With Two Rings: In this example, a
two-ring UCCA is considered. The inner and the outer rings
have respectively 10 and 18 omni-directional sensors. The re-
quired bandwidth of the UCCA-FIB is . The
numbers of phase modes of the inner and outer rings are 9
and 17, respectively. The desired beam is targeted at 60 , and
the beamwidth of the main lobe is 10 . The center 9 out of the
17 phase modes are chosen to avoid noise amplification, and
the 9 spatial filter weights are obtained from the Parks–
McClellan algorithm according to the direction and width of the
desired beam. It was found experimentally that lower stopband
attenuation at angles farther away from the passband usually
gives a better DOA estimation result. Therefore, the following
weightings [8, 1.6, 2.2, 1.2, 2.2, 1.6] are imposed respectively
on successive spatial bands defined by the following angular in-
tervals: [ 180 61 ], [ 60 21 ], [ 20 20 ], [55 65 ],
[95 135 ], [136 180 ]. These specifications are input to the

Fig. 7. Spatial–frequency response of the UCA-FIB (! 2 [0:38�; 0:52�]).

Fig. 8. Spatial–frequency response of the UCA-FIB in the entire band.

CREMEZ command in Matlab, and the resultant frequency re-
sponses are shown in Figs. 5 and 6. For convenience, the fre-
quency responses of the UCCA-FIB for are
plotted together in Fig. 5 to illustrate the FI property of the
beamformer. It can be seen that the frequency spectrum is ap-
proximately frequency invariant over the desired bandwidth.
Fig. 6 shows the perspective view of the beamformer. As a com-
parison, Fig. 7 and Fig. 8 show respectively the perspective view
of the spatial-frequency responses in the interested band and
the entire frequency band for a UCA with 14 elements and 13
phase modes. We can see that the achievable frequency band
is , which is much narrower than the UCCA, as
explained in Section III and the Appendix A. The spatial–fre-
quency responses of the UCA and UCCA outside the interested
frequency bands are usually much higher than those in the in-
terested bands. Therefore, appropriate bandpass filtering is re-
quired to remove these undesirable responses.

Example 2: UCCA-FIB With Three Rings: A three-ring
UCCA will be considered. The numbers of sensors in each ring
are 10, 18, and 28, respectively, and the desired bandwidth is
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Fig. 9. Spatial response of the UCCA-FIB with three rings.

. The numbers of phase mode of the three
rings are 9, 17, and 27, respectively, and the 17 phase modes
out of the 27 are employed. The desired beam is targeted at

20 , and the beamwidth of the mainlobe is 10 . Again, the
spatial filter weights with length 17 is designed using
the Parks–McClellan algorithm according to the direction and
width of the desired beam using CREMEZ command in Matlab
with weightings [4 1.4 1.0 6 1.0 1.4 4] imposed on the following
successive angular intervals: [ 180 86 ], [ 85 66 ],
[ 65 50 ], [ 25 15 ], [10 25 ], [26 45 ], [46 180 ].
The frequency responses of the FIB so obtained in the range

are shown in Fig. 9. Note that, the stopband
attenuation is increased to 25 dB for the three-ring case because
the number of usable phase modes and hence design freedom
is increased.

Example 3: DOA Estimation Using the UCCA Beamformers:
In this example, the performance of the proposed DOA estima-
tion algorithm is evaluated using computer simulation of two
broadband coherent signals at 35 and 40 . The first signal
is composed of 33 sinusoidal signals with frequencies ranging
from to Hz at an interval of Hz. The
other signal is a ten-sample delayed version of the first signal
and the sampling rate constant is set to 2. The prototype beam-
former is a three-ring UCCA with 10, 26, and 36 elements in
the first, second, and third rings, respectively. The other beam-
formers are obtained by shifting its response equally in the an-
gular domain. The average SNR is 16.3 dB, and the number of
arrays used in the beamspace is 5. The beamspace-MUSIC DOA
estimation method proposed in Section V is employed. Fig. 10
shows the MUSIC spectrum in dB obtained and the estimated
angles are found to be 34.97 and 40.06 , which are very
close to the true values. Fig. 11 shows the root mean square error
(RMSE) of estimating the DOA of a single broadband signal
with different input SNRs. The result at each SNR is obtained
by averaging 100 independent simulations. The performance of
the UCCA-based DOA estimation algorithm is comparable to
the one using linear array in [8]. The DOA estimation result (in

Fig. 10. DOA estimation of two coherent sources based on the three-ring
UCCA-FIB.

Fig. 11. Average RMSE of the DOA estimation for several SNR values.

RMSE) with two coherent Gaussian signals is comparable to
the one using multicomponent sinusoidal signals above and it is
omitted for space limitation.

Example 4: Adaptive Beamforming Using UCCA-FIB:
In this example, the performance of the proposed adaptive
UCCA-FIB is evaluated using computer simulation. The
UCCA-FIB used is the same as the two-ring UCCA in the first
example. The angles of arrival of the desired signal and the
interfering signal are assumed to be 0 and 15 , respectively.
Since the array can be electronically steered to the desired
signal, the angle of arrival of the desired signal is simply
assumed to be 0 . The desired signal is assumed to be com-
posed of 53 sinusoidal signals with frequencies ranging from

to Hz at an interval of Hz. The
interfering signal is also composed of 53 sinusoidal signals but
with frequencies ranging from to Hz at
an interval of Hz. The additive sensor noises are
assumed to be independent and identically distributed Gaussian
random processes with zero means and same power. The input
SNR and SIR are 16.67 dB and 20 dB, respectively. With the
SMI beamforming method using UCCA-FIB described in Sec-
tion VI, the desired signal is reconstructed using
snapshots. The mean square error (MSE) between the output
signal and the desired signal of the proposed UCCA-FIB versus
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Fig. 12. Output MSE of the adaptive beamformers using UCCA and i) conven-
tional tapped-delay line with one tap per sensor element (UCCA), ii) proposed
FI adaptive beamformer with one tap per phase mode (UCCA-FIB).

Fig. 13. Output SINRs versus tap length of the two adaptive beamformers
using UCCA: i) conventional tapped-delay line in broadband (UCCA) and nar-
rowband (UCCA-NI) interference, ii) proposed FI adaptive beamformer under
broadband (UCCA-FIB) and narrowband (UCCA-FIB-NI) interference.

time is plotted in Fig. 12 as the line labeled UCCA-FIB. A
broadband beamformer using the MVB principle and UCCA
without the compensation network is also implemented and
plotted in Fig. 12 as the line labeled UCCA for comparison.
The simulation settings are identical to the UCCA-FIB and the
length of the tapped-delay line is chosen as one to illustrate the
effect of imposing the FI property. The MSE plot is obtained
by averaging 100 independent trials, and it is further averaged
across the snapshots with a window length of 300. From the
simulation results, we can see that the reconstruction MSE of
the SMI method using UCCA-FIB is 38 dB, which is 22 dB
lower than that of the UCCA using a single coefficient, which is
similar to a narrowband UCCA beamformer. The total number
of adaptive coefficients in the UCCA-FIB is only 9.

We now evaluate the effect of varying the length of the
tapped-delay line on the performance of the two adaptive
beamforming methods: UCCA-FIB and conventional UCCA
without the compensation filters. Fig. 13 shows the output
SINR of the arrays versus different number of taps per sensor
and phase mode in the UCCA and UCCA-FIB, respectively.
The line labeled UCCA-FIB shows the beamforming result

using UCCA-FIB, while the line labeled UCCA is for UCCA.
The curves are obtained from averaging 100 independent trials.
The axis is the length of the tapped-delay line. From the
figure, we can see that the performance of using one tap per
phase mode in the UCCA-FIB is much better than that of the
UCCA when the number of taps per sensor is less than 10.
Since the number of sensor elements is 28, the total number
of adaptive coefficients in the UCCA is 280 when the number
of taps per sensor is 10. The performances of the UCCA-FIB
and the conventional UCCA level off as the number of taps is
further increased. The SINR of the conventional UCCA levels
off when the number of taps is larger than 10, and it is slightly
lower than that of the proposed UCCA-FIB. When the length
is greater than 22, the number of adaptive coefficients in the
UCCA is so large (more than 616) that its performance starts to
degrade due to increased numerical errors. In other words, the
proposed UCCA-FIB requires much fewer variable taps (a total
of 9 when the number of tap per phase mode is one) than the
UCCA and this in turns translates to lower complexity in adap-
tation, better numerical property and increased performance in
output SINR. The output SINRs versus different numbers of
adaptive tap for the UCCA and UCCA-FIB are also simulated
with Gaussian input signals. The performances are comparable
to the results of the multisinusoidal signal input case above.
The SINRs are omitted due to page limitation.

Finally, we evaluate the performance of the two adaptive
beamformers under strong narrowband interferences. The
frequency of the interfering sinusoid signal is Hz
and the average SIR is 20 dB. The output SINRs versus the
length of each tapped-delay line are plotted in Fig. 13. The
performances of the UCCA and UCCA-FIB are plotted as lines
labeled UCCA-NI and UCCA-FIB-NI, respectively. We can see
from Fig. 13 that the performance of the proposed UCCA-FIB
is not sensitive to NI, and it is almost identical to the broadband
interference case with the same power. The performance of the
conventional UCCA is much better than that in the broadband
interference case, because a shorter tapped-delay line is able to
annihilate the effect of a narrowband sinusoidal interference.
When the length is increased beyond 5, the condition number
of the system of linear equations becomes worse and the per-
formance will degrade gradually. In all cases, it is at least 8 dB
lower than that of the UCCA-FIB.

VIII. CONCLUSION

The theory and design of UCCAs having nearly FI char-
acteristics are presented. By compensating the frequency
dependency of individual phase modes using a digital beam-
forming network, the far-field pattern of the array is determined
by a set of weights and it is approximately invariant over a
wider range of frequencies than FI UCAs. New broadband
DOA estimation and adaptive beamforming algorithms using
the UCCA-FIB are also proposed. Simulation results using
broadband multicomponent sinusoidal signals and Gaussian
signals show that the proposed adaptive UCCA-FIB is nu-
merically better conditioned than the conventional broadband
tapped-delay-line-based adaptive beamformers, due to the
FI property and significantly fewer numbers of adaptive pa-
rameters. The higher output SINRs achieved by the proposed
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Fig. 14. Bessel function of UCA with normalized radius of 1.1235 (K = 14).

Fig. 15. Frequency responses of the compensation filters H (!),
jmj = 0; . . . ; 6, in Example 1.

approach also suggests that it is a good alternative to the
conventional tapped-delay-line approach.

APPENDIX A
THE FREQUENCY CHARACTERISTICS OF CIRCULAR ARRAYS

Here, we examine the frequency response of a UCA. Consider
a UCA with normalized radius , ,
and hence . The Bessel function of is plotted in
Fig. 14, where . The values of the zero- to third-order
Bessel functions are plotted in the figure. For a UCA, in
(3.13), the compensation filter should be designed to satisfy the
following equation to achieve frequency invariant:

in the frequency band of interest (A.1)

Obviously, the frequency band should not cover those fre-
quencies where the values of the Bessel functions are zero. From
Fig. 14, it can be seen that the possible frequency band is rel-
atively narrow. Fig. 15 shows the frequency responses of the
compensation filters designed in the UCA of Example 1. The
dynamic range of the compensation filters for high order phase

modes are relatively very large and they will amplify the ad-
ditive noise. Therefore, these high-order phase modes should
not be used in DOA estimation and beamforming. On the other
hand, if the array has more than one ring, the frequency response
of the entire UCCA is a combination of individual rings. Even
if some of the rings have a small amplitude response, the other
might not. As a result, if the radii of the ring are chosen appropri-
ately, the compensation filter will not assume large dy-
namic range and hence noise amplification. This is why UCCAs
can achieve a larger bandwidth than UCAs. Higher stopband at-
tenuation of the spatial responses of UCAs can also be obtained
by employing more phase modes with a smaller sensor spacing
of [31]. However, this requires careful optimization of the
ring radius and other circuit parameters. This additional freedom
and design constraints, which may exist in different types of
sensing systems such as microwave array systems, are not ex-
plored in this paper.

Generally speaking, the radii should be chosen according to
the rule that at least one Bessel function value of a given phase
mode coefficient in all the rings is not close to zero, say
or smaller, at the interested frequency band. In the UCCA of
this paper, the distance between two adjacent sensors is fixed at

, so the relationship between the number of sensors in
each ring and the radius is fixed. From our experiments, we find
that satisfactory performance can be obtained if the difference
of sensor numbers between two consecutive rings is set between
5 and 15.

APPENDIX B
RELATIONSHIP BETWEEN THE DIRECTIONAL SENSOR METHOD

AND THE PROPOSED FI UCCA

In this section, the relationship between the method in [19]
using directional sensors and the proposed FI UCCA are de-
scribed. According to (3.12), the phase mode of the UCCA
with two rings is

(A.2)

where the coefficient is omitted here for
simplicity. If the two compensation filters are
chosen as and

, the
phase mode can be written as

(A.3)

which is the form of the UCA using directional sensors with a
beampattern of proposed in [19]. With the UCCA
structure, FI beamformers can be obtained using omnidirec-
tional sensors. The reason for the above relationship is that
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nearby omnidirectional sensors from the two rings and the
compensation filters actually help to realize the required FI
pattern in [19]. In addition, the radius of the circular array needs
not to be very large.
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