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AbstractÐIn this paper, we propose an efficient barrier synchronization scheme on networks with arbitrary topologies. We first

present a distributed method in building a barrier routing tree. The barrier messages can be delivered adaptively according to the

hierarchy of the established barrier tree to void congestion and faulty nodes in the network. We then propose a new technique, called

bandwidth-preempting technique, for a blocked barrier message to preempt a channel occupied by a data message so that the latency

of a barrier message can be controlled without affecting much of the overall system performance. We also propose an analytical

performance model and present simulation results for the performance evaluation of the proposed scheme. Performance evaluations

show that the proposed scheme outperforms the existing algorithms for barrier synchronization.

Index TermsÐBarrier synchronization, network topology, tree-based routing, data message, barrier message, bandwidth-preempting

technique.
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1 INTRODUCTION

A barrier is a synchronization point in a parallel program
at which all processes involved must arrive before they

can proceed further [1]. Barrier synchronization is a
fundamental collective communication operation that is
frequently used in parallel systems [2], [3]. It has been
extensively studied in the literature and many schemes
have been proposed for fast barrier synchronization
through software, hardware, or their combination [4], [5],
[6], [7], [8].

Barrier synchronization can be implemented in a
software-based approach [6], [7], which has been used in
IBM SP2, Intel Paragon, and other parallel systems. In the
software method, a total exchange is performed by sending
several phases of messages via the system message-passing
routines. The software-based approach requires no special
hardware support and it is easy to port to a new system.
However, it incurs a high latency for barrier operations. To
reduce the high software latency, several parallel systems,
such as Cray T3D, have implemented dedicated hardware
networks for barrier synchronization and other collective
communication operations [9]. The latency in these systems
is much lower compared with the software method, but at
the expense of having multiple hardware networks. Thus a
compromise is to provide hardware support for barrier
synchronization in the existing data network [10].

In this paper, we focus on distributed-memory scalable
computers with a wormhole routing mechanism. In a
distributed-memory system, a barrier synchronization is

usually performed in two phases. In the reduction phase,
when a process in the barrier group arrives at the barrier, it
informs a selected process in the group, called center. After
the center receives the reduction information from all
processes (including center itself), the distribution phase is
initialized, in which the center sends a message to inform all
other processes to proceed with the following computation.

A path-based approach based on multidestination
worms is proposed for deadlock-free efficient barrier
operations on wormhole networks in [8]. A multidestination
worm is a message that carries multiple destination
addresses so that it can be delivered to multiple
destinations for multiple barrier processes with a single
startup delay. The major problem with this scheme is that
a message header has to carry the information of multiple
destinations. Compared with the barrier message body
that is very short only for synchronization, the message
header is too long, resulting in waste of the network
bandwidth.

A tree-based routing scheme for supporting barrier
synchronization in 2D mesh is developed to avoid the
problem in the multidestination worm method [5]. A
collective synchronization (CS) tree is established at the
barrier group creation time. The barrier message is then
routed through the CS tree. For a barrier group, each router
at a node of the CS tree records the input/output ports
connected to its parent or child in the CS tree. No
destination information is required in the barrier message
after the CS tree is established. In [4], a reliable hardware
barrier synchronization scheme is described. In this
hardware method, each switch in the network is
augmented with a barrier unit that operates on tiny
barrier packets in several phases during a barrier
synchronization. The combine (or reduction), multicast
(or distribution), and acknowledgement packets for the
barrier synchronization are delivered in different phases,
respectively. The tree-based mutlicast algorithm in [11],
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proposed for irregular topology, can be used in the
multicast phase of the barrier scheme in [5]. However,
congestion due to bursty traffic of data messages may occur
to affect the barrier message latency in the proposed
schemes in [4] and [5]. Also, the adaptive routing
techniques for congestion avoidance and fault tolerance
cannot be used because the barrier messages have to be
routed strictly along the established routing tree. How to
obtain the updated global information of the underlying
network topology to initialize the routing tree may be
another problem in using these approaches.

In the past, high-performance distributed-memory
multiprocessor systems usually used regular networks,
such as mesh or hypercube. Recently, irregular topologies
are frequently used in connecting workstations in cluster
and other distributed shared memory systems (DSMs) [12].
In this paper, we propose a new efficient barrier synchro-
nization scheme for networks with arbitrary topologies. We
first present a distributed method in building a barrier
routing tree when the barrier operation is performed for
the first time. The barrier synchronization tree is naturally
formed by the barrier message flows. In the subsequent
barrier operations, the barrier messages can be delivered
adaptively according to the hierarchy of the established
barrier tree to void congestion and faulty nodes in the
network. We then propose a new technique, called the
bandwidth-preempting technique, for a blocked barrier
message to preempt a channel occupied by a data
message, so that the latency of a barrier message can be
controlled without affecting much of the overall system
performance. We also propose an analytical performance
model and conduct a simulation for the performance
evaluation of the proposed barrier synchronization
scheme. Performance evaluations show that the proposed
scheme outperforms the existing algorithms for barrier
synchronization.

The paper is organized as follows: Section 2 describes
how to build a synchronization routing tree when the
barrier synchronization is first performed. The preempting-
bandwidth technique for barrier messages is proposed in
Section 3. The performance of the proposed algorithm is
evaluated and studied in Section 4, followed by the
conclusions in Section 5.

2 BUILDING A BARRIER SYNCHRONIZATION TREE

The switch-based networks we consider are similar to those
in [11]: The network consists of a set of switches connected
in an arbitrary topology. Each switch has some ports that
can be connected to processors (nodes) or other switches.
The wormhole routing mechanism is adopted in transmis-
sion of the data messages. The unicast routing, such as the
Autonet routing algorithm in [13], can be used for message
passing.

As defined in MPI, the membership of a barrier group is
fixed at the group creation time and every group member
has complete information for all the members in the
group [5]. A unique group ID identifies the group. We
assume that one process is executed on one physical node
and, thus, we will not distinguish between the two terms
ªprocessº and ªnode.º A participating node in the barrier
synchronization is referred to as a member node, or even

member, and a message in barrier synchronization is
referred as a barrier message. Also, the words ªlinkº and
ªchannel,º as well as ªswitchº and ªrouter,º will be used
interchangeably.

A tree-based routing scheme can be used for the barrier
message passing. We first define a barrier synchronization
routing tree as follows:

Definition 1. A barrier synchronization tree (or BS tree) for a
given barrier group is a tree in the network that is rooted at a
selected member (or center) and connects all member nodes in
the group together. For a BS tree, a branch node is defined as
the node that has more than one child.

Definition 2. A barrier synchronization routing tree (or
BSR tree) T �V ;E�, for a given BS tree t�V ;E�, is a routing
tree in which the V �T � only contains the member nodes and
the branch nodes in V �t� and a link �u; v� in E�T �, if and only
if there exists a path �u; u1; . . .u2; uk; v� in t�V ;E� and
ui =2 V �T �, 1 � i � k. For convenience, the nodes in V �t�,
but not in V �T �, are defined as the intermediate nodes in
the BS tree t.

In our proposed method, when a barrier synchronization
is first executed, each member sends a reduction message to
a selected center member after it arrives at the barrier. Any
underlying deterministic routing mechanism can be used
for the message transmission. The message passing paths of
these reduction messages will form a BS tree rooted at the
center. For simplicity, we only need to establish a BSR tree
for the BS tree since a node in the BSR tree can deliver a
message to its neighboring node by using the underlying
unicast routing mechanism. Building a BSR tree in the
network is to identify the nodes in the BSR tree, called
BSR node, and record the parent-child relationship for
each BSR node.

In order to establish such a BSR tree in a distributive
fashion, each node in the BSR tree can determine its
parent-child relationship according to the reduction
messages traversing through it. Then, after the center
receives all reduction messages and records the parent-
child information (with no parent for center), it will
send the distribution message to all members along the
BSR tree. The first execution of the barrier synchroniza-
tion, together with building up the BSR tree, is called
initialization. Note that a barrier synchronization operation
is usually performed many times in a parallel program. In
the subsequent barrier synchronization execution, the
established BSR tree can be used repeatedly for routing
the reduction and distribution messages. The adaptive
routing method can be used for the message transmission
after the initialization.

In building a BSR tree, some additional information,
shown in Fig. 2, needs to be carried in the reduction
messages in addition to the original information in the
message header, such as the source, destination, and other
information.

In Fig. 1, the ªGroup IDº identifies the barrier synchro-
nization group, the ªMessage typeº indicates a reduction or
distribution message, the ªNew BSR nodeº is the address of
the new BSR node located during message passing, and the
ªBSR node tagº is used in identifying a branch node and
will be explained later.
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At each router, there is a status table for a barrier group.

Each item of the status table records the parent-child

relationship, such as either parent or child and its address.

It also includes other information, such as which physical

channel goes to the parent or child (Fig. 2). The router

design for the proposed method generally follows that of [4]

and [5]. The status table in each router of a BSR node can be

a register set and is organized as a fully-associative cache

using the group ID as the cache tag.
The process of building a BSR tree is described as

follows: Initially, only the members are marked as

BSR nodes. Each member sends a reduction message,

with its ªBSR node tagº (BNT) being 0, toward the

selected center member. When a reduction message M

arrives at a router of node N , three cases can be identified as

follows:

1. The BNT in M is equal to 0: Which means that no
other reduction message has ever arrived at the
router from the same physical channel from which
M arrives. The source node in the message should be
recorded as a child in the status table. We may
further identify the following two cases:

1.1. N is a non-BSR node: By checking the status
table in the router, if the message is the first
reduction message (with no other child in the
table) arriving at the router, the BNT remains
at 0. Otherwise, node N is marked as the
BSR node. Because N is now found to have
more than one child, the address of N is put into
the ªnew BSR nodeº field of the message
and the BNT is set to 1 to indicate that a
new BSR node N has been located.

1.2. N is a BSR node: BNT is set to 2 to indicate
that message M will no longer be needed to
provide information in subsequent operations
in building the BSR tree.

For example, in the network in Fig. 3, the

reduction message from node 1, m1, has its BNT

equal to 0, initially. When it arrives at node 2, which
is a non-BSR node, the source, node 1, in m1 is
recorded as a child in the status table at the router of
node 2. Since m1 is the first reduction message
traveling through node 2, the BNT of m1 remains at
0. m1 is then forwarded to node 4. When m1 arrives
at node 4, if the reduction message, m3, from node 3,
has not arrived at node 4, the same operations as
those in node 2 will be performed. On the other
hand, if m3 has arrived at node 4 before the arrival of
m1, node 4 should be now marked as a BSR node in
addition to adding node 1 as the child of node 4.
Also, the BNT in m1 is set to 1 to indicate that a new
branch node has been located and the address of
node 4 is put into m1 (its ªnew BSR nodeº field). The
message m1 will be forwarded to node 5 and so on.

Now, let us consider the case that m1 has BNT
equal to 1 and arrives at node 5, which means that
m3 has arrived at node 5 before the arrival of m1,
hence, the router of node 5 has recorded node 3 in
m3 as its child. However, the child should now be
changed from node 3 to node 4 (the new BSR node)
because m1 arrives at the same channel as m3 (from
node 4 to node 5). The BNT of m1 remains 1 at node
5. When m1 reaches node 7, again, the original child,
node 3, in router of node 7, should now be changed
to node 4. Obviously, if the reduction message from
node 6, m6, has already arrived at node 7, node 7
must have been marked as the BSR node since m3

has also arrived at node 7. Thus, the BNT in m1

should be set to 2. On the other hand, if m6 has not
arrived at node 7, the operations are the same as
those performed in node 5. Using this example, it is
easy to understand the operations in Case 2 below.

2. The BNT in M is equal to 1: Which means that
another reduction message m has already arrived at
the router from the same physical channel from
which M arrives. The ªnew BSR nodeº in message
M should be recorded as a child in the status table to
replace the original child recorded from message m.
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If node N is a non-BSR node, there should be no

other reduction messages arriving from other

previous channels, and the BNT remains to be 1.

The BNT is set to 2, if N is a BSR node.
3. The BNT in M is equal to 2: Message M cannot

provide any new information in building the
BSR tree and, therefore, nothing needs to be
changed in the status table and the message itself.

The formal description of the initialization is given

in Fig. 4.

Theorem 1. For any given barrier group on a network with

arbitrary topology, a BSR tree can be established by the

algorithm in Fig. 4.

Proof. As described before, the purpose of building a

BSR tree is to identify the BSR nodes and record the

parent-child relationship in the router of each BSR node

in the network. We will do the induction on the

number of the members in the barrier group. When the

number of members is 1, it is trivial. When the number

of members is 2, a member can send a reduction

message, with its BNT being 0, to another member

(center) to establish the parent-child relation. The

BSR tree for the two nodes can easily be built by using

the algorithm in Fig. 4. Now, suppose that the theorem

is true for any given barrier group with k members. We

prove that it is also true for any given barrier group with

k� 1 members.

For any given barrier group with k� 1 members,
Bk�1, there exists a unique BS tree, as well as its unique

corresponding BSR tree Tk�1�V ;E�, which is formed by
the paths of the reduction message passing in using
the deterministic routing mechanism. Note that a link
�u; v� in a BSR tree corresponds to a path from u to v

in its corresponding BS tree. Now, consider a nonleaf
BSR node p whose child has the maximum distance to
the root in Tk�1�V ;E�. Suppose that node c1 is the child
of p and, therefore, c1 is a leaf BSR node and a member.
Without loss of generality, we also assume that the
reduction message from c1 arrives at p after the arrival of
the reduction messages from all other children (if any) of
p. We further assume that node g is the parent of node p
in Tk�1�V ;E�.

In initialization, c1 sends a reduction message M1 with
its BNT being 0, to p (toward the root). M1 may travel
through a number of intermediate nodes to reach p and
its BNT remains 0 according to the operations of Step 2,
Case 2.1b, in the algorithm. The following three cases can
be discussed:

1. Node p has only one child, c1 (see Fig. 5a): p
must be a member, otherwise it would not be a
BSR node in Tk�1�V ;E�. For the barrier group
Bk � Bk�1 ÿ fc1g, by the induction hypothesis, a
unique BSR, Tk�V ;E�, can be built by using the
algorithm in Fig. 4. Apparently, we must have
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V �Tk� � V �Tk�1� ÿ fc1g
and

E�Tk� � E�Tk�1� ÿ f�c1; p�g:
When M1 arrives at p, in terms of Step 2,

Case 2.1, in the algorithm, node c1 will be

recorded as a child of p. Also, the BNT in M1 is set

to 2 because p is a BSR node and, hence, M1 will

no longer be needed to provide further

information in building the BSR tree. There-

fore, Tk�1�V ; E� can be built by the algorithm

in Fig. 4, where

V �Tk�1� � V �Tk� � fc1g
and

E�Tk�1� � E�Tk� � f�c1; p�g:

2. Node p has two children, c1 and c2 (see Fig. 5b): If
p happens to be a member, the proof is the same
as that in Case 1. Now, consider that p is not a
member. For the barrier group Bk � Bk�1 ÿ fc1g,
by the induction hypothesis, a unique BSR,
Tk�V ;E�, can be built by the algorithm in Fig. 4.
The node p should not be in Tk�V ;E� because p is
neither a member nor a branch node in its
corresponding BS tree. Thus, we should have that

V �Tk� � V �Tk�1� ÿ fc1g
and

E�Tk� � E�Tk�1� ÿ f�c1; p�; �c2; p�;
�p; g�g � f�c2; g�g:

When M1 arrives at p, according to Step 2,

Case 2.1, in the algorithm, node c1 will be

recorded as a child of p. Also, the BNT in M1 is set

to 1 (in Step 2, Case 2.1b) because p has another

child, c2, recorded. Node p will be put to the ªnew

branch nodeº field in M1. Then, M1 is forwarded

to g. It may go through some intermediate nodes

and the BNT remains 1 (Step 2, Case 2.2b). When

M1 arrives at g, the p in M1 will be recorded as the

child of g to replace the original child c2 and its

BNT is set to 2 (Step 2, Case 2.2). Therefore,

Tk�1�V ;E� can also be built by the algorithm in

Fig. 5, where

V �Tk�1� � V �Tk� � fc1g
and

E�Tk�1� � E�Tk� � f�c1; p�; �c2; p�;
�p; g�g ÿ f�c2; g�g:

3. Node p has more than two children (see Fig. 5c):
Note that, by our assumption in selecting c1, the
reduction messages from at least two children
have already arrived before the arrival of the
reduction message from c1, therefore, node p
should be included in V �Tk�. The proof for this
case is the same as that in Case 1. tu

After initialization, the subsequent barrier synchroniza-
tions will be performed by using the BSR tree. The router at
each BSR node will send a reduction message to its parent
only if it has received the reduction messages from all its
children and the local processor. After the center (root)
receives the reduction messages from all its children and its
own processor, the distribution message will be sent from
the center down to the members along the BSR tree until all
members receive the message to complete the barrier
synchronization.

Note that the message passing, in the algorithm in
Fig. 4, can be implemented using the underlying unicast
mechanism provided by the system. There are several
advantages to using this method. First, a message's header
for the synchronization may only contain one destination
address to have a short message size. Second, after
initialization, a message can be delivered adaptively to
its destination parent or child since there may be many
paths connecting a member node to its parent or child
member in the BS tree. Finally, an intermediate node in
the BSR tree can just work as usual as for date messages.

Tree-based routing in a wormhole system is susceptive
to deadlock [14]. In our proposed scheme, we may build
buffers inside the router for all barrier messages to support
cut-through routing and, therefore, to avoid deadlocks in
the tree-based routing [5]. It will be shown that the barrier
messages are very short, thus, the amount of the buffers
required in the router is quite small.

3 THE BANDWIDTH-PREEMPTING TECHNIQUE

The barrier messages in our system are transmitted through
the existing data network and, thus, the traffic of data
messages and barrier messages is mixed. A small sized
barrier message may be blocked by a long data message
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transmission in the contention for the same channel in the
network. In this section, we propose a new bandwidth-
preempting technique for a blocked barrier message to
preempt a channel occupied by a data message so that the
performance of the barrier synchronization can be greatly
improved without affecting much of the overall system
performance.

The underlying networks use wormhole routing, a
technique that pipelines message transmission over a
number of channels along its path to reduce the latency.
In such a system, a packet is divided into a number of flits
(flow control units). As the header (or the first) flit with
routing information is routed toward its destination, the
subsequent flits follow the routing path in pipeline
fashion [15]. The basic idea of the proposed bandwidth-
preempting method is to cut the data flits flow to preempt
an occupied channel required for a barrier message
transmission.

For example, in Fig. 6, suppose that the flits of data
message Md are occupying the channels of the path from
ud to vd and barrier message Mb arrives at node c from
node ub toward node vd. The Mb will be blocked because the
channel �c; n� is being used by Md. In our proposed method,
the channel �c; n� will be preempted by interrupting the flit
moving of the data message flow, so that it can be used by
the barrier message Mb. In doing so, the flit of Md at node c
is stopped, channel �c; n� is then preempted for the barrier
message Mb that consists usually of one or two flits. After
the transmission of the short message Mb, channel �c; n� will
be returned to data message Md. In order to resume the
transmission of Md, we must preserve the path from n to vd
since the flit of Md (nonheader flit) currently in c has no

routing information. Thus, a sequence of the padding null
flits will be generated at n and sent out following the
current flit in n, to preserve the path from n to vd, until the
flit flow of Md is resumed. At the destination of the data
message, these padding null flits will be discarded. The
padding technique is first proposed in [15] for deadlock-
free and fault-tolerant compressionless routing.

We assume that a flit has 16 bits. Thus a barrier message
may consist of only one or two flits. Each physical
communication channel can be divided into a number of
independent virtual channels sharing the physical channel
bandwidth [16]. The bandwidth-preempting method, as
well as the barrier tree algorithm in Section 2, requires
necessary hardware supports in the switch architecture.
In this section, we propose three schemes of switch
architecture varying in complexity and performance.

In our first scheme, one �k� 1� � �k� 1� and one
�k� 2� � k crossbars are required, as shown in Fig. 7. In
addition, a padding flit generator is added to the switch.
The purpose of using the two crossbars is that data and
barrier messages can be mixed and put into different input
buffers within the switch.They may progress through the
physical links between two neighboring nodes.

In Fig. 6, when channel �c; n� is required to be preempted
for a barrier message, the router of current node c sends a
padding request to the next node n for the data message Md.
The padding request contains information, such as which
(virtual) channel will be preempted. The switch at the next
node n starts the padding generator after receiving the
request. The padding flits follow the current flit of the
message Md until a padding end message is received from
node c when the preempting is over.
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The padding generator in the switch performs two
functions: Producing padding requests and end messages
and generating padding flits. A padding request, an end
message, and padding flits are messages with fixed formats
and contents. These messages can be directly prestored in
some registers in the router.

The barrier unit is similar to that in [4], which contains a
B-entry SRAM, or register set, and a controller for the
padding generator. Entry i, in the SRAM, stores the current
state of the barrier group i. Each entry should include the
information, such as the barrier group ID, the preempting
channel number, and the channel state. A barrier message
can utilize any output port at the current node and any
input port at the next node selected by the routing
algorithm. In a switch, the barrier messages are stored only
into the barrier buffer.

The zeroth to the kÿ 1th input and output ports at
crossbars I and II (Fig. 7) are used by data messages. The
routing strategy for data messages at crossbar I is input port
i is mapped to input port i0, where 0 � i � kÿ 1, while
barrier and padding messages can only use the k0th input
port. Routing messages that cross crossbar II are deter-
mined by the routing algorithms according to the under-
lying network topologies. Data messages traverse the
switch as if only a single crossbar were used.

An example for preempting a (virtual) channel is
illustrated in Fig. 8. A virtual channel between two
neighboring nodes in wormhole routing may be regarded
as a pair of two flit buffers, respectively, at the switches of
the two nodes [17]. Each of the virtual channels sends a flit,
or a sequence of flits, in turn, either by cycling a token or by
assigning a time slot among the virtual channels on a
physical link. Fig. 8 illustrates an example of a barrier
header flit at the current node that preempts a virtual
channel from the current node to the adjacent next node.
The connection in a crossbar is denoted by a pair of input
and output ports in the crossbar. For simplicity, we only

consider crossbar II (CN-II) at the current node c and

crossbar I (CN-I) at the next node n.
We first consider the operations at the current node c. All

virtual channels to node n are being assigned to the data

messages. The router in node c decides (randomly or by

priority) to preempt the virtual channel, that is, from 1! 00

at CN-II (node c) to 0! 10 at NN-I (node n), as shown in

Fig. 8. The operations related to crossbar CN-II are:

1. Break down connection 1! 00 at CN-II.
2. Set a new connection, 2! 00 at CN-II, send a

padding request generated by the padding generator
to the next node, and break down the connection.

3. Set a new connection, 3! 00 at CN-II, and send flits
of barrier messages.

4. If not any of the new barrier message uses the
channel after an interval T , send a padding end
message to the next node, break down connection
3! 00 at CN-II, and recover the original connection,
1! 00 at CN-II.

The time interval T may be specified by the compiler

or the parallel program on the system if the barrier

synchronization will be performed again in the near

future. We then consider the operations at the next node

n. The operations related to the preempting are performed

on the crossbar NN-I as follows:

1. After receiving the padding request message from
the current node, break down connection 0! 10 at
CN-I.

2. Set a new connection, 2! 10 at CN-I. The padding
flits are attached at the end of the message in the end
of the input buffer 00 at the next node when the
message proceeds.

3. Set a new connection, 0! 20 at CN-I, and put the
received barrier message flits into the barrier unit at
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the next node. Then, a virtual channel for the barrier
message is established.

4. If the padding end message is received, connection
0! 20 at CN-I is broken down and the original
connection, 0! 10 at CN-I, is recovered for data
message.

To reduce the complexity of hardware of the first
proposed switch architecture, we propose the second
switch architecture in Fig. 9. Crossbar I of �k� 1� � �k� 1�
in the first method (Fig. 7) is replaced by a 2� 2 crossbar
but at the expense of the capability of the preempting
bandwidth. In this case, only a single fixed virtual channel
between the two adjacent nodes is allowed to preempt for
barrier messages. The routing for crossbar I is very simple
in Fig. 9 because no routing in the crossbar is required.
The barrier and padding messages are directly put to the
barrier unit. The data messages will not traverse the
additional 2� 2 crossbar if the virtual channels they use
are not preempted.

Without considering that the congestion occurred in the
FIFO input buffers at the switch, we can further simplify the
second switch architecture by removing the 2� 2 crossbar
in Fig. 9. The third proposed switch architecture is shown in
Fig. 10. The capability of preempting is also further
decreased. The preempting can only occur when there is

at least one virtual channel on which the flit flow moves.
Only in this case can a padding message be transferred
successfully to the next router in cases of congestion. The
next router breaks down the connection of the current
virtual channel, according to the received padding message,
establishing a new virtual channel for the barrier message
identical to the operations in the first method.

It is important for a system to determine the bounds on
critical communication operations, such as barrier synchro-
nization on parallel systems [3], especially on the distrib-
uted shared memory systems and clusters with arbitrary
network topologies. The proposed barrier scheme has the
upper bound of barrier synchronization latency on net-
works with arbitrary topologies. By using the preempting
technique, the bound of the proposed scheme can be
independent of the data message traffic on the network. In
our method, we may use the same underlying unicast
routing for the barrier messages. In the BSR tree T described
in Section 2, the distance of two nodes, xi and xj , is denoted
by DT �xi; xj�. If the minimum distance between xi and xj is
known (i.e., by the fully adaptive minimum routing),
Theorem 2 presents the upper bound of the latency of
barrier synchronization.

Theorem 2. For a barrier group fx0; x1; . . . ; xpg, 0 � i � p, on a
network with arbitrary topology, if all operations of preempting
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Fig. 9. The second proposed switch architecture.

Fig. 10. The third proposed switch architecture.



for barrier messages are successful, the upper bound of the
barrier operation is 2 � Tb �max�DT �xi; center��, 0 � i � p,
where ªcenterº is the center node and Tb is the latency for a
barrier message to travel one hop.

Proof. The proposed scheme consists of two phases. In the
reduction phase, each member in the barrier group sends
a reduction barrier message to the center member. The
number of maximum hops in the BSR tree for these
barrier messages is max�DT �xi; center��, 0 � i � p. In the
distribution phase, the center sends a distribution
barrier message to all members in the group along
the BSR tree. The number of hops from the center
member to the most remote members in the BSR tree
is max�DT �xi; center��, 0 � i � p. By using the preempt-
ing technique, the waiting time due to contention for
channel usage with data messages is a small constant
and can be neglected. The latency Tb is a constant
because the size of a barrier message is constant in our
scheme. The overall latency for the barrier operation is
therefore 2 � Tb �max�DT �xi; center��, which is indepen-
dent of the data message traffic. tu

4 PERFORMANCE EVALUATION

In networks with arbitrary topologies, the proposed
bandwidth-preempting scheme for barrier synchronization
should be able to outperform the schemes in [4] and [5], in
the case of congestion, providing a controlled overhead for
barrier synchronization. Intuitively, the performance of the
proposed scheme should approach that of the schemes in
[4] and [5] in cases of no congestion. The use of
additional crossbars and the increase of the flit size of a
barrier message have little effect on the overall system
performance. The unicast routing for the additional
crossbar is completed during the unicast routing for the
second crossbar. No additional overhead is required. The
location of the center member has an impact on the latency
of barrier synchronization [18]. However, it is often difficult
to determine the best location of a center on a network with
arbitrary topology. Therefore, it is more feasible to find a
barrier scheme that has the best average performance.

In this section, we first propose a simple analytical
performance model to analyze the performance of the
proposed scheme in the presence of congestion compared
with the existing barrier schemes, such as those in [4]. We
then present our simulation results to justify our analysis.

4.1 Analysis

In the following analytical performance model, the
initialization overheads for barrier synchronization are
not considered. Thus, we will first focus on the switch
schemes proposed in Section 3. The following parameters
are used in the simple analytical model, which are similar
to those in [16]:

1. Pf : The probability that the flit flow over a virtual
channel between two neighboring switches is
blocked with uniform distribution.

2. P : The probability that a virtual channel between
two neighboring switches serves a data message
with uniform distribution.

3. Tp: The time for preempting a virtual channel
between two neighboring switches.

4. Tb: The latency for a barrier message to traverse one
hop.

5. �: The duration of congestion resulting from data
messages over a virtual channel with uniform
distribution.

6. k: The number of input ports equal to the number of
output ports at a switch, assuming that k > 1.

7. Ts: Software startup, including send and receive for
a processor.

8. LBS : The level of the tree for the proposed barrier
scheme.

9. LSO: The level of the tree for the switched-based
ordering algorithm [4], [11].

We also make the following assumptions similar to those

in [16]:

1. Message destinations are uniformly and randomly
distributed.

2. A message that arrives at its destination is consumed
without waiting.

3. All barrier messages have the same length (one or
two flits).

4. Each virtual channel is associated with a flit buffer
that can store a whole barrier message.

5. Message blocking probabilities are independent.

For simplicity, we will analyze the member with the

largest latency in the group in our scheme and the

switch-based ordering barrier algorithm in [4]. In both

schemes, such a member should be located at the lowest

level of the tree. All communications for barrier synchro-

nization in both schemes will be conducted along a barrier

synchronization tree. The two schemes differ in their ways

of establishing barrier trees and assigning virtual channels

for barrier messages. Implementation of barrier synchroni-

zation consists of two independent communications phases:

reduction and distribution. The effect of congestion in the

distribution phase can be analyzed in the same way as that

in the reduction phase. It is shown, in [19], that the increase

and decrease rates of traffic in all the applications are

especially steep, which implies that all nodes in the network

are blocked and recovered almost at the same time. Thus,

we assume that the members have the identical congestion

interval, p. In our scheme, Tb � Tp since a padding message

has only one flit.
For the proposed three schemes of switch architecture in

Section 3, as the switch architecture complexity decreases,

its performance also decreases in handling congestion.

Case 1. The First Router Architecture (Fig. 7). In this case,

any virtual channel between two neighboring switches

can be preempted for a barrier message. The latency for

the distribution phase is 2 � �LBS ÿ 1� � Tb. Thus, the total

latency T for a barrier synchronization operation is

calculated by

T � Ts � 2�LBS ÿ 1� � Tb �
X2�LBSÿ1�

i�1

�Tb � pk � Tp�: �1�
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Case 2. The Second Switch Architecture (Fig. 9). Com-

pared to Case 1, in which any output ports at a switch are

allowed for preempting a barrier message, only a

preoccupied input port connected to the 2� 2 crossbar

is permitted to serve the barrier message in the second

switch scheme. This feature increases the probability of

congestion over one hop in barrier synchronization from

pk to p. The total latency for barrier synchronization is

T � Ts � 2�LBS ÿ 1� � Tb �
X2�LBSÿ1�

i�1

�Tb � p � Tp�: �2�

Case 3. The Third Switch Architecture (Fig. 10). This case

has the simplest hardware architecture but the worst

performance among the three proposed switch schemes.

The requirement for preempting a virtual channel in this

scheme is that there must be at least one virtual channel

over which the flit flow of data message is moving. The

total latency is affected by �, which is the duration of

congestion resulting from data messages over a virtual

channel with uniform distribution. This means that a

barrier message may have to wait for at least � time for

preempting. The probability for such a congestion is

determined by pk � pf . The range of pf is often dependent

of the parallel applications and the underlying network.

The latency for this scheme is given by

T � Ts � 2�LBS ÿ 1� � Tb�X2�LBSÿ1�

i�1

�Tb�pk � ��1ÿ pf� � Tp � pf ����:
�3�

The latency of barrier synchronization in the scheme [4],
however, is calculated as follows:

T � Ts � 2�LSO ÿ 1� � Tb �
X2�LSOÿ1�

i�1

�Tb � p ���: �4�

Checking the above four formulas, only the scheme in [4]
and the third switch scheme in our scheme are affected by
�. The latency of barrier synchronization in [4] is propor-
tional to p �� while the factor for � in the third switch
scheme is pk � pf . Generally, 1 > p � pf . For k > 1, we have
p� pk � pf . That is, when �!1, the latency for barrier
synchronization in [4] approaches1 at a much faster speed
than that of our third scheme. The latencies of the first and
second proposed schemes increase by a fixed constant
depending only on Tp. We usually have Tp � �. For
example, the time for preempting, Tp, may require 6e10
cycles as summarized in Table 1. We conclude that our
schemes have much better performance than the schemes
in [4] in the presence of congestion.

This analysis will be further verified in the following
simulation. We also consider the special case that the
network topology is a 2D mesh. In an n� n mesh, let
LBS � LSO � nÿ 1. (4) can also describe the worst case in
[5] for a 2D mesh.

Fig. 11 depicts the comparison between the proposed
scheme and the algorithm in [4] for networks with arbitrary
topologies and the comparison between the proposed
scheme and the algorithm in [5] for a 2D mesh. In Fig. 11,
BS_I, BS_II, and BS_III denote, respectively, the proposed
three switch schemes. The scheme in [4] or [5] is specified
by Tree. Fig. 11 illustrates the impact of the ranges of � and
system sizes on performance of the scheme in [4] or [5] and
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TABLE 1
Experimental Parameter Values

Fig. 11. Comparisons among the four analytical results: Ts � 100 cycles, Tb � 16 cycles, p � 0:8, pf � 0:2, k � 16. (a) A switch-based irregular
network. (b) A switch-based irregular network.



our schemes according to the simple analytical model. For
simplicity, we assume that LBS � LSO. The analysis results
show that our schemes outperform the scheme in [4] in
cases of congestion. Fig. 11 shows that the proposed
schemes remain especially stable in front of congestion.
Furthermore, in the first and second switch schemes, the
latency is almost independent of the traffic of data messages
by using the preempting technique.

The tree-based routing in barrier operations may put the
network into saturation when the number of members in a
barrier group reaches a certain threshold value. This
phenomenon implies that the Pf of each node may not be
equal and a root's Pf may be much larger than that of the
other node in the routing tree. It is especially difficult to
calculate the dynamic distribution of Pf of nodes on
networks with arbitrary topologies. The above analysis is
to show the different performance profiles of the proposed
schemes and the schemes in [4] and [5] in case of
congestion.

4.2 Simulation on Networks with Arbitrary
Topologies

A simulator is implemented to run the proposed first
switch scheme in Fig. 7 and the scheme in [4] using the
SO algorithm in [11]. The underlying network has arbitrary
topology in which three ports in one switch are connected
to the three different switches. The simulation is conducted
to evaluate the performance of the two schemes for a range
of system sizes, software startup overhead, number of
members in a barrier group, number of members in
congestion, and the congestion interval. A random number
generator selects the members for a barrier group. The
parameter values used in the simulation, the same as those
in [4], are listed in Table 1. The cycle time is assumed to be
10 ns. We consider the systems with 300 and 1,200 nodes in
cases of ts � 100 and ts � 1; 000 cycles. To measure the
effect of congestion on barrier synchronization, we ran-
domly select a set of members in congestion in a barrier
group. The congestion members cannot forward barrier
messages but can receive barrier messages from other nodes
until the congestion is gone. During the congestion, the
congestion member can only receive barrier messages when
all the input buffers of the member are not full. For
simplicity, we assume that each selected member is
simultaneously in a congestion state that lasts for the same
time interval. Without loss of generality, we further assume
that the congestion occurs at the beginning of the barrier
synchronization and all members are assumed to arrive at
the barrier at the same time.
Initialization Overhead. Initialization refers to establishing
a barrier synchronization tree for barrier synchronization.
The tree for barrier synchronization is statically determined
with the global optimization in [4], [5], and [11]. The
problem with the predetermined trees is how each node
gets the updated global information on a network. The
barrier trees cannot be changed during the barrier
operation. To handle faulty components in the network,
special fault-tolerant protocols have to be applied,
increasing the overhead of barrier algorithms [4]. The
proposed scheme builds a barrier tree in a distributed way.
General adaptive routing algorithms can be directly applied

after the initialization to avoid the faulty components. As
shown in Fig. 12, when the number of members is small
with respect to the network size, the initialization overhead
is very small and can be neglected. However, as the number
of members in the group increases gradually to approach
the network size, the initialization overhead increases
rapidly. In the worst case, the latency of the first round of
a barrier operation is twice as large as that of the nonround
operations. However, the latency of the first round, in the
proposed scheme, is still much less than that of the scheme
in [4].

Fig. 12 shows that the well-known star-based barrier
schemes for networks with arbitrary topologies perform
worse than the proposed barrier scheme without consider-
ing the initialization overhead. Tree-based routing may
cause traffic convergence in networks with arbitrary
topologies [13]. Adaptive routing is able to decrease the
traffic convergence [11]. It is possible that, due to random
barrier message collisions, several barrier messages
destined for different nodes converge in certain nodes
simultaneously. In the worst case, they may request the
same output link from a node. Due to the limited length
of input buffer in the switch, the switch may be blocked
quickly. We assume that the members in the barrier group
reach the barrier at the same time. The traffic for barrier
synchronization is in bursts. The input buffers of switches
in some nodes are quickly filled. This effect propagates
back to form a saturation tree. When the network size is
large and the number of members is also large (i.e., the
number of members is greater than half of the network
size), saturation may happen. For example, in Fig. 12c and
d, when the number of members in a barrier group exceeds
720, the scheme in [4] enters saturation.

The proposed scheme does not enter saturation when the
number of members is greater than 720, as shown in Fig. 12.
Based on the flow of barrier messages in the reduction
phase, the proposed scheme establishes the parent-child
relations among as many members as possible, greatly
decreasing the chances of message collision.
Effect of Startup Overhead. Startup overhead consists of
the software startup and routing startup [9]. Routing
startup refers to the time for a header flit to route for one
hop from the current switch to its destination by using a
routing algorithm. Software startup has a big impact on the
latency of barrier synchronization. Similar to the schemes in
[4], [5], the proposed scheme latency increases gradually as
the startup increases, as shown in Fig. 12. Barrier
synchronization schemes cannot fully eliminate the effect
of software startup.

The proposed scheme can efficiently control the routing
startup in case of no fault or the fault can be handled. The
curves of the proposed scheme in Fig. 13 are quite flat and
fully overlapped. However, the latency of the scheme in [4]
is dependent on �. It suffers performance degradation of
barrier synchronization when the underlying network is in
congestion. The overhead for a flit to cross a congested
switch is independent of the duration of congestion in one
switch. In the simulation, it takes six cycles for a padding
message to arrive at the neighboring switch of the current
switch, two cycles for a flit to cross a physical link, two
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cycles for a flit to cross the two crossbars, and two cycles for
the destination barrier unit to preempt the specified virtual
channel. Note that unicast routing for the two crossbars is
not required because the barrier message is preempted by
an established virtual channel.
Effect of Congestion in a Barrier Group. The effect of
bursty traffic in barrier synchronization can be measured as
the amount of participants congested simultaneously for an
identical interval in a barrier group.

Fig. 13 illustrates the congestion impact on the scheme in
[4] and the proposed scheme. We only consider congestion
on barrier members. Different experiments were performed
for the number of barrier members, the number of
congested barrier members, and the congestion duration.
When the duration of congestion is small, i.e., ten cycles, the
two schemes show little change in the latencies. However,
when the congestion duration increases gradually, the

latencies of the two schemes have completely different
tendencies. The proposed scheme displays a more graceful
degradation in performance than the scheme in [4] in the
presence of congestion. In Fig. 13, the noninitialization
barrier operations are simulated. The two schemes are not
sensitive to change in the number of congested members.
Instead, they are sensitive to the duration of congestion. The
latency of the scheme in [4] changes dramatically with the
variation of congestion duration. On the other hand, the
latency of our proposed scheme remains almost constant.

The proposed scheme can almost eliminate the impact of
congestion from data messages by barrier synchronization
in using the bandwidth-preempting technique. The latency
of a barrier synchronization is determined only by the
maximum number of hops between the center member and
the leaf member in the barrier tree, which is independent of
congestion from data messages. Thus, according to the
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Fig. 13. Effect of congestion in an irregular network with 300 nodes in case of noninitialization turns with Ts = 100 cycles. (a) A barrier group with
60 members. (b) A barrier group with 255 members.

Fig. 12. Effects of startup and system size on latency of barrier synchronization. (a) Ts = 100 cycles, N = 300. (b) Ts = 1,000 cycles, N = 300.
(c) Ts = 100 cycles, N = 1,200. (d) Ts = 1,000 cycles, N = 1,200.



relative locations of members in a barrier group, the latency
for the barrier operation can be effectively controlled in our
barrier scheme.

4.3 Simulation on 2D Mesh Networks

As a special case, a simulator is also developed to run our
first scheme and the scheme in [5] for 2D mesh networks. A
simulation was performed to evaluate the performances of
the two schemes for a range of system size, software startup
overhead, the member number for a barrier group, the
number of congested members, and the congestion interval.
The members in a barrier group are again selected by a
random number generator. The values of the various
parameters used in the experiments are the same as those
shown in Table 1. The cycle time is assumed to be 10 ns.
In the simulation, we consider the systems with 100 and
400 nodes, and ts � 100 and ts � 1; 000 cycles. All simula-
tion assumptions and environments are the same as those
described before for networks with arbitrary topologies.
The detailed simulation implementation and analysis for
2D meshes can be found in [20].
Initialization Overhead. We run the simulation program
on an SGI Power Challenge which is a parallel machine
with 8 nodes. The interaction of many different concurrent
programs on the machine may complicate the measurement

for the exact overhead in building the barrier tree.
Compared to the initialization in [5], the initialization
overhead in our scheme is much smaller. Fig. 9 shows the
initialization overheads for the tree algorithm in [5],
denoted by Tree, and our scheme, denoted by BS, in
systems with 100 and 400 processors, respectively. The fast
increase in the initialization overhead in our scheme results
from the initialization reduction phase. In a 2D mesh, the
effect of the center node as a bottleneck is significant,
because of the small node degree, and each member sends a
reduction message to the center node. However, the cost is
justified because updating global network information is a
time-consuming task. In the simulation, the deadlock-free
X-Y routing in the 2D mesh is applied for simple
implementation of the simulator. After the initialization,
the proposed scheme has the performance approaching that
in [5], as shown in Fig. 14.
Effect of Startup Overhead. Software startup has a large
impact on the latency of barrier synchronization. Similar to

the schemes in [4] and [5], the latency of the proposed
scheme goes up in a stable way when the startup latency

increases, as shown in Fig. 14. Similarly, the routing startup
on 2D meshes can be effectively controlled in our scheme.
However, the schemes in [5] have to incur a heavy loss in

performance when congestion occurs.
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Fig. 14. Effects of startup and system size on latency of barrier synchronization. (a) Ts = 100 cycles. (b) Ts = 1,000 cycles. (c) Ts = 100 cycles.

(d) Ts = 1,000 cycles.



Effect of Congestion in a Barrier Group. Fig. 15 describes
the response to congestion from the scheme in [5] and our
scheme. Without loss of generality, we again only consider
the congestion in barrier members. Different experiments
were performed for a range of the number of barrier
members, the number of congested barrier members, and
the congestion duration. We assume that all congested
members have the same congestion duration. The conges-
tion members are selected randomly in a barrier group.
When the congestion duration is small, i.e., ten cycles, the
two schemes show a little change in latency. However,
when the congestion duration increases gradually, the
latencies of the two schemes show completely different
tendencies. The proposed scheme displays a much better
stable performance than that of the scheme in [5] in the
congestion state. Note that, in Fig. 15, we only consider the
noninitialization barrier operations. The two schemes are
not sensitive to the changes in the number of congested
members. Instead, they are sensitive to the congestion
duration. The latency of the scheme in [5] increases
dramatically in the congestion duration. On the other hand,
the latency of our scheme remains almost constant.

5 CONCLUSIONS

In this paper, we have proposed an efficient barrier
synchronization scheme on networks with arbitrary topol-
ogies. First, we have shown how to build a BSR tree to
reduce the traffic of a barrier operation. In our BSR tree
method, a barrier message's header can only contain one
destination address that is the same as the data message

header. After the initialization, the established BSR tree can
be used repeatedly for routing barrier messages adaptively.
Furthermore, an intermediate node in the BSR tree can work
just as usual as for date messages. A new technique, called
the bandwidth-preempting technique, is then proposed for a
blocked barrier message to preempt a channel occupied by
a data message, so that the latency of a barrier message can
be controlled without affecting much of the overall system
performance. We have proposed three switch architecture
schemes with differing complexity and performance to
hardware support for the BSR tree and bandwidth-
preempting function. Finally, we have also proposed an
analytical performance model and presented simulation
results for the performance evaluation of the proposed
barrier synchronization scheme. Performance evaluations
show that the proposed scheme outperforms the existing
algorithms for barrier synchronization.
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Fig. 15. Effect of congestion at 20� 20 mesh in case of noninitialization turns with Ts = 100 cycles. (a) A barrier group with 20 members.
(b) A barrier group with 200 members.
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