522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

An Overview of Packet Reordering in
Transmission Control Protocol (TCP):
Problems, Solutions, and Challenges

Ka-Cheong Leung, Member, IEEE, Victor O.K. Li, Fellow, IEEE, and
Daiqgin Yang, Student Member, IEEE

Abstract—Transmission Control Protocol (TCP) is the most popular transport layer protocol for the Internet. Due to various reasons,
such as multipath routing, route fluttering, and retransmissions, packets belonging to the same flow may arrive out of order at a
destination. Such packet reordering violates the design principles of some traffic control mechanisms in TCP and, thus, poses
performance problems. In this paper, we provide a comprehensive and in-depth survey on recent research on packet reordering in
TCP. The causes and problems for packet reordering are discussed. Various representative algorithms are examined and compared
by computer simulations. The ported program codes and simulation scripts are available for download. Some open questions are

discussed to stimulate further research in this area.

Index Terms—Computer simulations of TCP, congestion control, flow control, Internet, packet reordering, Transmission Control

Protocol (TCP).

1 INTRODUCTION

THE Internet provides a convenient and cost-effective
communication platform for electronic commerce,
education, and entertainment. The success of the Internet
arises from its capabilities to support survivable, robust,
and reliable end-to-end data transfer services for a myriad
of applications running over a set of end-systems. The
Internet is originated from the Advanced Research Projects
Agency Network (ARPANET) designed to support survi-
vable military communications. Currently, Transmission
Control Protocol (TCP) [1] is the most popular transport
layer protocol for point-to-point, connection-oriented, in-
order, reliable data transfer in the Internet. TCP is the de
facto standard for Internet-based commercial communica-
tion networks.

1.1 Introduction to TCP

TCP is a byte-stream protocol; its flow control and
acknowledgement are based on byte number rather than
packet number [2]. However, the smallest unit of data
transmitted in the Internet is a data segment or packet, each
identified by a data octet number. When a destination
receives a data segment, it acknowledges the receipt of the
segment by issuing an acknowledgement (ACK) with the
next expected data octet number. The time elapsed between
when a data segment is sent and when an ACK for the

e The authors are with the Department of Electrical and Electronic
Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
(SAR), China. E-mail: {kcleung, vli, dqyang}@eee.hku.hk.

Manuscript received 9 Aug. 2005; revised 13 May 2006, accepted 31 May
2006; published online 9 Jan. 2007.

Recommended for acceptance by J. Hou.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0362-0805.
Digital Object Identifier no. 10.1109/TPDS.2007.1011.

1045-9219/07/$25.00 © 2007 IEEE

segment is received is known as the round-trip time (RTT)
of the communication between the source and the destina-
tion, which is the sum of the propagation, transmission,
queueing, and processing delays at each hop of the
communication, and the time taken to process a received
segment and generate an ACK for the segment at the
destination.

The flow control mechanism used by TCP is a credit
allocation scheme. To avoid overwhelming its buffer space,
a destination advertises to the associated source the size of a
window (advertised window) which indicates the number
of data bytes beyond the acknowledged data the source can
send to the destination. This information is included in the
header of each TCP (data or control) segment sent to the
source. Suppose the source knows that, based on ACK(s)
received, Byte z is the last data byte received by the
destination. The source can send data up to Byte = + W,
where W is the size of the advertised window. The scenario
of the source’s sequence number space is exhibited in Fig. 1.

1.2 Congestion Control Operations of TCP

To achieve good performance, it is necessary to control
network congestion so that the number of packets within
the Internet is below the level at which the network
performance drops significantly. Various congestion control
measures [3] have been implemented in TCP to limit the
sending rate of data entering the Internet by regulating the
size of the congestion window cwnd, the number of
unacknowledged segments allowed to be sent. These
measures include slow start, congestion avoidance, fast
retransmit, and fast recovery. When a new connection is
established, TCP sets cwnd to one. In slow start, the value of
cwnd is incremented by one each time an ACK is received
until it reaches the slow start threshold, ssthresh.

Published by the IEEE Computer Society

LEUNG ET AL.: AN OVERVIEW OF PACKET REORDERING IN TRANSMISSION CONTROL PROTOCOL (TCP): PROBLEMS, SOLUTIONS, AND... 523

Sent but unacknowledged

}47 Advertised Window 4)‘

x x+ W

Not yet sent

_— >
Sequence Number

Fig. 1. An illustration of the source sequence number space and
advertised window.

TCP uses segment loss as an indicator of network
congestion. To characterize a segment as being lost in
transit, a source has to wait long enough without receiving
an ACK for the segment. Therefore, a retransmission timer
is associated with each transmitted segment and a timer
timeout signals a segment loss. The retransmission timeout
period (RTO) is determined by the sum of the smoothed
exponentially weighted moving average and a multiple of
the mean deviation of RTT [4]. When a timeout occurs,
ssthresh is set to half of the amount of outstanding data sent
to the network. The slow start process is performed starting
with cwnd equal to one until cwnd approaches ssthresh. The
congestion avoidance phase is then carried out where cwnd
is increased by one for each RTT.

When the data octet number of an arriving segment is
greater than the expected one, the destination finds a gap in
the sequence number space (known as a sequence hole) and
thus immediately sends out a duplicate ACK, i.e., an ACK
with the same next expected data octet number in the
cumulative acknowledgement field,! to the source. If the
communication channel is an in-order channel, the recep-
tion of a duplicate ACK implies the loss of a segment. When
the source receives three duplicate ACKs, fast retransmit is
triggered such that the inferred loss segment is retrans-
mitted before the expiration of the retransmission timer.

Fast recovery works as a companion of fast retransmit. A
fast retransmission suggests the presence of mild network
congestion. ssthresh is set to half of the amount of out-
standing data sent to the network. Since the reception of a
duplicate ACK indicates the departure of a segment from
the network, cwnd is set to the sum of ssthresh and the
number of duplicate ACKs received. When an ACK for a
new segment arrives, cwnd is reset to ssthresh and then
congestion avoidance takes place.

Packet reordering refers to the network behavior where
the relative order of some packets in the same flow” is
altered when these packets are transported in the network.
In other words, the receiving order of a flow of packets (or
segments) differs from its sending order. Recent studies [5],
[6] show that packet reordering is not a rare event. The
presence of persistent and substantial packet reordering
violates the in-order or near in-order channel assumption
made in the design principles of some traffic control
mechanisms in TCP. This can result in a substantial
degradation in application throughput and network per-
formance [7].

1. A cumulative ACK is an ACK that uses the cumulative ACK field in
the TCP header to acknowledge all in-sequence data received by the
destination.

2. The term “flow” is used in a very general manner here. A flow can
correspond to a stream of packets originating from one end system and
departing at another. On the other hand, a flow can be a stream of packets
arriving at and leaving from a switch buffer.

1.3 Organization of the Paper

The objective of this paper is to present to the readers a clear
overview of TCP for packet reordering. The rest of the
paper is organized as follows: In Section 2, we characterize
the causes of packet reordering. Section 3 identifies the
problems packet reordering introduces on TCP. Sections 4,
5, and 6 provide a taxonomy and a survey of existing
solutions to the problems. A performance study of the
surveyed algorithms is presented in Section 7. Section 8
explores some open research issues and challenges. Finally,
we summarize and conclude the paper in Section 9.

2 CAuUsES oF PACKET REORDERING

There are five major causes of packet reordering: packet-
level multipath routing, route fluttering, inherent paralle-
lism in modern high-speed routers, link-layer retransmis-
sions, and router forwarding lulls.

e Packet-Level Multipath Routing: Multipath routing
[8], [9] is a load balancing traffic engineering
technique to spread the traffic load across the
network in order to alleviate network congestion. It
has been shown [10], [11] that multipath routing
balances the load significantly better than single-
path routing and provides better performance in
congestion and capacity over wired/wireless net-
works. Packet-level multipath routing allows pack-
ets of the same traffic flow to be forwarded over
multiple routes to a destination so as to achieve load
balancing in packet-switching networks. This func-
tionality is supported by overlay networks. How-
ever, these packets may be reordered on arrival at
the destination due to the differences in path delays.

e Route Fluttering: Routing fluttering is a network
phenomenon in which the forwarding path to a
certain destination oscillates among a set of available
routes to that destination. This results from route
instability due to shaky links, and heavy loads or
bursty traffic where the link cost metrics used in the
routing algorithms are related to delays or congestion
experienced over the network links. This also results
in topological changes in the wireless environment.
For example, mobile ad hoc networks are associated
with no fixed infrastructure and every mobile node
can be a source, a destination, or a router. Similar to
packet-level multipath routing, route fluttering
causes packets to be forwarded on different paths
and arrive at a destination out of order.

e Inherent Parallelism in Modern High-Speed Routers:
Modern routers support packet striping so that
packets of the same traffic flow can be forwarded
over lower-capacity, but much cheaper multiple
parallel links connecting to the next-hop router for
that flow. To switch packets at high speed, this router
is generally work conserving so that its outgoing ports
connecting to a certain next-hop router are idle only
when there is no outstanding packets to be forwarded
to that router. Since packets may be of different sizes
and the links can be of different bandwidths, packets
may take dramatically different times to transmit, and
hence arrive at the neighboring router in a different
order from they are sent.

524 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

The use of multiple inexpensive application
specific integrated circuits (ASICs) for Internet
Protocol (IP) forwarding gives rise to an opportunity
to speed up the port forwarding speed. Thus, even
when there is only a single outgoing port connecting
to the next-hop router, packets processed by
different ASICs can be reordered [5].

e Link-Layer Retransmissions: Link-layer retransmis-
sion mechanisms [12] have been proposed to effi-
ciently recover transmission losses due to high
channel error rates in wireless networks. Such
retransmitted packets are sent only after the losses
are detected. These packets may then be interspersed
with other packets belonging to the same traffic flow.

e Router Forwarding Lulls: Some routers can pause its
forwarding activity for buffered packets when it
processes a routing update. These buffered packets
are interspersed with new arrivals, thus causing
packet reordering [6].

To summarize, there is a correlation between the causes
and characteristics of packet reordering. Packet-level multi-
path routing and router fluttering induce packet reordering
due to the differences in path delays. The inherent
parallelism in modern high-speed routers produces packet
reordering because of the differences in queueing and/or
transmission times. Link-layer retransmissions incur packet
reordering since retransmitted packets are associated with
an additional round-trip time over a link. Router forward-
ing lulls induce packet reordering due to interspersion of
buffered packets with new arrivals when processing a
routing update. Although they may all lead to persistent
and substantial packet reordering, the different causes of
packet reordering pose a challenge in the design of an
efficient and effective solution that is able to solve different
types of packet reordering.

3 ImpPACT OF PACKET REORDERING ON TCP

TCP relies on the use of a cumulative ACK to announce the
receipt of segment(s). The pace at which a source receives
ACKs drives how fast it can inject TCP segments into the
network and its associated destination. With persistent and
substantial packet reordering, TCP spuriously retransmits
segments, keeps its congestion window unnecessarily small,
loses its ACK-clocking, and understates the estimated RTT
(and, thus, RTO) [5]. These will be described in detail next:

e Spurious Segment Retransmissions: Packet reorder-
ing causes the starting data octet number of some
arriving segments to differ from the ones expected
by a destination. In other words, the destination
finds a sequence hole upon segment reception. It
then generates duplicate ACKs and sends them to its
associated source. When the source receives three
such duplicate ACKs consecutively, an inferred loss
segment (although there is actually no loss) is
retransmitted. Persistent and substantial packet
reordering often causes some TCP segments to be
retransmitted spuriously and unnecessarily, leading
to classical congestion collapse [13].

e Keeping Congestion Window Unnecessarily Small:
Fast recovery is always triggered with fast re-
transmit. A spurious fast retransmission not only

A2 A3 Al

Source Destination

Fig. 2. An illustration of forward-path reordering and reverse-path
reordering.

generates additional yet unnecessary workload to
the network and a destination, but also halves the
congestion window. Thus, the congestion window
is kept small relative to the available bandwidth of
its transmission path, with persistent and substan-
tial packet reordering.

o Loss of ACK-Clocking: Packet reordering causes not
only data segments, but also ACKs to arrive at a
destination out of order. The former phenomenon is
called forward-path reordering, while the latter is
known as reverse-path reordering [5]. An illustration
of forward-path reordering and reverse-path reorder-
ingis shown in Fig. 2. Suppose segments are sent from
the source in the order S1, 52, S3, but Segment S1
arrives after Segment S2 at the destination. This
represents a forward-path reordering. ACK Al
arrives after ACKs A2 and A3 at the source. This
depicts a reverse-path reordering.

ACK-clocking or self clocking refers to the
property that the receiver can generate ACKs no
faster than data segments can get through the
network [14]. For forward-path reordering, an ACK
for several new segments, which follows a number
of duplicate ACKs, can in turn allow a source to
inject several pending segments into the networks.
Even when there is no data segment being reor-
dered, disordered ACKs lead to a source transmit-
ting several segments together rather than one or
two segments per ACK. This causes loss of its ACK-
clocking and far more bursty traffic, which may lead
to transient network congestion and congestion
collapse from undelivered packets [13].

e Understating Estimated RTT and RTO: Whenever a
segment is retransmitted, a source cannot determine
whether a received ACK is for the first transmission
or the retransmission of the segment. Karn’s algo-
rithm [15] alleviates the problem by discarding all
measured RTT samples until an ACK acknowledges
a segment that has not been retransmitted. Since a
fast retransmission is likely to correspond to a
segment that experiences a longer path delay, the
use of Karn’s algorithm results in a sampling bias
against long RTT samples [16]. With persistent and
substantial packet reordering, these samples would
be discarded. The estimated RTT and RTO are
therefore understated.

4 TAXONOMY OF REORDERING SOLUTIONS
FOR TCP

For an in-order network environment, a destination receives
segments in the same order as they are sent. The destination

LEUNG ET AL.: AN OVERVIEW OF PACKET REORDERING IN TRANSMISSION CONTROL PROTOCOL (TCP): PROBLEMS, SOLUTIONS, AND... 525

{ Reordering Solutions for TCP]

[Ordinal Approach] [Temporal Approach}

Retransmission
By Timeout

State
Reconciliation

Response
Postponement

Threshold
Adjustment

Fig. 3. The taxonomy of reordering solutions for TCP.

realizes the occurrence of a dropped packet when an
unexpected segment arrives. It can then embed the
information of missing segments into the subsequent ACKs
to a source so that the source can retransmit the lost
segments to the destination.

However, a general network environment can reorder
packets, in addition to dropping packets. Even when an
arriving segment is a newly received segment and it is not
the expected one, a destination cannot determine whether
the expected segment has been dropped in the network or it
is simply reordered. The source and the destination have to
gather additional information from the network to distin-
guish between these two possibilities.

In the following two sections, we survey the solutions
proposed to date for packet reordering in TCP. The
discussed algorithms can be implemented in a TCP client
to generate congestion responses when packet reordering
occurs, and/or in a participating router to report packet
dropping information to a TCP client. The taxonomy used
in our survey is depicted in Fig. 3. We categorize the
reordering solutions for TCP into two different strategies,
namely, the ordinal approach and the temporal approach.
The ordinal approach is a collection of methods that process
the ordering information of segments and ACKs received so
as to infer and generate more appropriate congestion
response when packet reordering occurs. The ordinal
approach can be further divided into the algorithms for
state reconciliation, and the algorithms for threshold
adjustment. For state reconciliation, a TCP client finds out
which segment or ACK has been reordered. It then reacts,
say, by recovering past congestion responses and/or
disabling future congestion responses for a time period.
For threshold adjustment, a TCP client searches for an
appropriate duplicate acknowledgement threshold, dup-
thresh, to proactively avoid, whenever possible, triggering a
spurious fast retransmission and fast recovery as well as a
retransmission timeout at the same time.

The temporal approach represents a group of techniques
that proactively avoid triggering spurious congestion
responses by deferring them for a time period. These
responses will be carried out only when the corresponding
timer fires. The temporal approach can be further classified
into the algorithms for response postponement and the
algorithms for retransmission by timeout. For response
postponement, a TCP client delays triggering a congestion

S S
S:T2 L ’(
ACK

Source Destination

Fig. 4. An illustration of the Eifel algorithm.

response for a time period. During the time period, the
response will be cancelled whenever an event initiating the
response is inferred not to be caused by congestion. For
retransmission by timeout, a TCP client generates an
appropriate congestion response only when a certain timer
expires.

5 ORDINAL APPROACH

We describe the existing algorithms that can be classified as
an ordinal approach in this section. We present these
algorithms, compare them, and discuss their strengths and
weaknesses. Refer to Table 2 for an overview of the
surveyed schemes. Algorithms are referred to by the
authors’ last names unless they have been named.

5.1 State Reconciliation

5.1.1 Eifel Algorithm

Ludwig and Katz proposed the Eifel algorithm [17] to
eliminate the retransmission ambiguity and solve the
performance problems caused by spurious retransmissions.
A source uses the TCP timestamp option [18] to insert the
current timestamp into the header of each outgoing
segment to a destination. When the destination sends
ACKSs, it includes the corresponding timestamps into the
ACKs. To eliminate the retransmission ambiguity, the
source always stores the timestamp of the first retransmis-
sion of a segment. When the first ACK for the retransmitted
segment arrives, the source compares the timestamp of that
ACK with the stored timestamp. If the stored timestamp is
greater, the retransmission is considered spurious.

Fig. 4 illustrates how the Eifel algorithm works. When
the source sends Segment S the first time at Time T1, it
inserts the current timestamp T1 into the header of the
segment. At Time T2, the source initiates a congestion
response by retransmitting Segment S. The original segment
differs with the retransmitted one as the latter one contains
a timestamp T2 instead of T1. When the destination receives
the original Segment S first, it sends an ACK with the
timestamp of the segment, i.e., T1. When the ACK for the
segment arrives, the source finds that the echoed time-
stamp, T1, is smaller than the stored one, T2. The
retransmission is hence identified as spurious.

To solve the problems caused by spurious retransmis-
sions, a source also stores the current values of the slow
start threshold, ssthresh, and the size of the congestion
window, cwnd, when a segment is retransmitted the first
time. When a detected spurious retransmission has resulted
in a single retransmission of the oldest outstanding
segment, the source restores ssthresh and cwnd to the stored
values. It has been shown [17] that this technique is simple
and effective in improving TCP performance with forward-
path reordering. However, bursts of TCP segments may be

526 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

injected into the network when the state is restored. Besides,
the scheme does not work when the original and retrans-
mitted segments are reordered.

5.1.2 TCP-DOOR

Wang and Zhang developed TCP with detection of out-of-
order and response (TCP-DOOR) [19], which can be
considered as an extension of [17]. The out-of-order events
are deemed to imply route changes in the networks, which
happen frequently in mobile ad hoc networks. The TCP
packet sequence number and ACK duplication sequence
number, or current timestamps, are inserted into each data
and ACK segment, respectively, to detect reordered data
and ACK packets. When out-of-order events are detected, a
source can either temporarily disable congestion control or
perform recovery during congestion avoidance. By tem-
porarily disabling congestion control, the source will
maintain its state variable constant for a time period, say
t; seconds, after detecting an out-of-order event. By instant
recovery during congestion avoidance, the source recovers
immediately to the state before the congestion response,
which has been invoked within ¢, seconds ago.

However, TCP-DOOR does not distinguish between
forward-path reordering or reverse-path reordering. The
responses are suitable to alleviate some performance
problems caused by forward-path reordering. They do not
help reduce bursty traffic, and in fact exaggerate network
congestion under reverse-path reordering. Besides, TCP-
DOOR does not perform well in a congested network
environment with substantial persistent packet reordering.
It disables congestion control for a time period every time
an out-of-order event is detected, which may lead to
congestion collapse from undelivered packets [13].

5.1.3 DSACK TCP

Floyd et al. discussed the use of duplicate selective
acknowledgement (DSACK) [20] to detect segment reorder-
ing and retract the associated spurious congestion response.
DSACK is an extension of the selective acknowledgement
(SACK) option [21] for TCP. It aims to use the SACK option
for duplicate segments. The first block of the SACK option
field is used to report the sequence numbers’ of a received
duplicate segment which has triggered the ACK. When
congestion is detected, cwnd is saved before reduction.
When a source finds that it has made a spurious congestion
response based on the arrival of a DSACK, it performs slow
start to increase the current cwnd to the stored cwnd before
congestion avoidance. By performing slow start during
state restoration, it allows TCP to reacquire ACK-clocking
and avoid injecting traffic bursts into the network.

Fig. 5 shows how DSACK is used to detect packet
reordering. Suppose Segment S1 is reordered such that it
arrives after Segment 54 at the destination. The last acknowl-
edged segment is Segment SO. In this case, the destination
sends out three duplicate ACKs Al, A2, and A3 (with the
same cumulative ACK for Segment S0, although the SACK
option fields differ) to the source so that Segment S1 is

3. Due to possible repacketization of a segment, the first sequence
number of the segment and the sequence number immediately following
the last sequence number of the segment are reported in the block.

)

S1 S1 S4 S3 S2
C_
H

SO SO S4 S4
S2 S2-S3| |S2-54 S1 S
Source Destination
Al A2 A3 A4 AS

Fig. 5. An example of detecting packet reordering through DSACK for
TCP.

retransmitted (assuming dupthresh is three). When the
destination receives the retransmitted Segment S1, it sends
a duplicate ACK A5 for Segment 54, but the first block of the
SACK option field acknowledges an arrival of a duplicate
Segment S1. The source then knows that Segment S1 has been
retransmitted spuriously due to packet reordering.

This method can be easily coupled with a scheme using
the DSACK information to adjust dupthresh to proactively
prevent triggering spurious congestion responses in the
future. The Blanton-Allman algorithm [22], RR-TCP [16],
and the Leung-Ma Algorithm [23], have adopted this
technique for detection of forward-path reordering and
state reconciliation.

5.2 Threshold Adjustment

5.2.1 Lee-Park-Choi Algorithm (Sender-Side Solution)

Lee et al. [24] proposed a sender-side solution to improve
TCP performance for forward-path reordering over multi-
ple paths. dupthresh is set to increase logarithmically with
the number of paths used. Thus, a source has to receive a
larger number of duplicate ACKs before a congestion
response is triggered, when more paths are used concur-
rently to transmit a single TCP flow.

However, when packet-level multipath routing is used
for data transmission, the level of packet reordering may
depend on the differences in path delays and how the
packets belonging to a single flow are distributed to these
paths [25]. Hence, there exists no direct correlation between
dupthresh and the number of participating paths.

5.2.2 Blanton-Allman Algorithms

Blanton and Allman [22] proposed three alternatives to
dynamically adjust dupthresh. The first alternative, denoted
as Blanton-Allman:INC, is to increase dupthresh by some
constant every time a spurious fast retransmission is
detected. The second alternative, denoted as Blanton-
Allman:AVG, is to increase dupthresh by taking the average
of the current dupthresh and the number of duplicate ACKs
required to disambiguate reordering from loss when a
spurious fast retransmission is detected. The third alter-
native, denoted as Blanton-Allman:EWMA, is to assign
dupthresh to an exponentially weighted moving average
(EWMA) of the length of perceived reordering events. For
all these algorithms, dupthresh is reset to three upon the
expiration of the retransmission timer in order to reduce
future costly retransmission timer expirations. The authors
also extended the limited transmit algorithm [26], which
allows a source to send a new segment upon the receipt of
the first two duplicate ACKSs, so that a new segment could
be sent on every two duplicate ACKs received afterward.
This helps to maintain ACK-clocking and avoids injecting

LEUNG ET AL.: AN OVERVIEW OF PACKET REORDERING IN TRANSMISSION CONTROL PROTOCOL (TCP): PROBLEMS, SOLUTIONS, AND... 527

traffic bursts when an ACK for a new segment arrives.
Furthermore, they employed the approach proposed in [20]
by using DSACK information to detect forward-path
reordering and state reconciliation.

Their simulation results [22] showed that, when com-
pared with the default dupthresh of three, the proposed
techniques improved connection throughput and reduced
the number of unnecessary retransmissions. However, their
algorithms have three major shortcomings. First, the
adjustment of dupthresh for some proposed algorithms is
not adaptive enough to the dynamic behavior of the
reordering events. For example, it takes 17 detected
spurious fast retransmissions for dupthresh to grow from 3
to 20, when the first algorithm with the increment being set
to one is used. Second, there is no adaptive mechanism to
reduce dupthresh dynamically, except for the third algo-
rithm. These algorithms thus fail to adapt a suitable
dupthresh that strikes a balance between the cost of a
spurious fast retransmission and that of a retransmission
timeout expiration. They are also unable to search for an
appropriate but reduced value of dupthresh when the extent
of reordering decreases. Third, the reset of dupthresh to three
upon the expiration of the retransmission timer destroys all
historical information about the level of forward-path
reordering in the networks. It takes another time period to
allow dupthresh to increase to the desired value.

52.3 RR-TCP

Zhang etal. devised the reordering-robust TCP (RR-TCP) [16]
as an extension of the Blanton-Allman algorithms [22], but
they differ in three ways. First, RR-TCP uses a different
mechanism to adjust dupthresh dynamically. The authors
formulated a combined cost function for retransmission
timeouts, spurious fast retransmissions, and limited transmit
to adapt the false fast retransmit avoidance ratio (FA radio).
The FA ratio, which represents the portion of reordering
events to be avoided in order to minimize the cost, can then be
used to find the corresponding dupthresh. Thus, this provides
a mechanism to raise or reduce dupthresh dynamically, by
changing the FA ratio based on the current network
conditions. Second, the authors considered another extended
version of the limited transmit algorithm [26]. This extension
permits a source to send up to one ACK-clocked additional
congestion window’s worth of data. Third, the authors
suggested an idea to correct the sampling bias against long
RTT samples for the RTT and RTO estimations. Instead of
skipping the samples for retransmitted segments in the
Karn’s algorithm [15], an RTT sample is taken for each
retransmitted segment by taking it as the average of the RTTs
for both the first and the second transmissions of that
segment.

The simulation results in [16] showed that RR-TCP could
significantly improve TCP performance over reordering
networks. When 1-2 percent of segments were randomly
selected to experience a longer delay (according to a normal
distribution), RR-TCP could improve the connection
throughput by more than 50 percent and 150 percent when
compared with the Blanton-Allman algorithms [22] (includ-
ing the time-delayed fast retransmit algorithm) and SACK
TCP [27], respectively. However, RR-TCP needs to maintain a
reordering histogram to store the reordering information. Itis

also required to scan and update the histogram for every
reordered segment.

5.2.4 Leung-Ma Algorithm

Leung and Ma [23] proposed to improve the TCP robust-
ness to persistent packet reordering by extending the
Blanton-Allman algorithms [22]. First, Leung and Ma
suggested using an EWMA and the mean deviation of the
lengths of the reordering events. By including the mean
length deviation, dupthresh is selected to avoid triggering a
certain portion of spurious fast retransmissions and prevent
costly retransmission timer expirations. This shares the
same design philosophy as RR-TCP [16] but incurs fewer
computational and storage overheads. Second, an upper
bound of dupthresh was introduced to avoid retransmission
timeouts. To avoid the timer expiration for a lost segment,
an ACK for the retransmitted segment must be received by
a source before the timer fires. The maximum number of
duplicate ACKs received before triggering a fast retrans-
mission can then be estimated to satisfy the aforementioned
criteria. Third, Leung and Ma also suggested a mechanism
to exponentially reduce dupthresh for the retransmission
timer expiration, since an occurrence of a retransmission
timer could imply that dupthresh has been too large.

The simulation results in [23] demonstrated that the
Leung-Ma algorithm could improve the connection through-
put by at least 35 percent and reduce the unnecessary fast
retransmissions by 6 percent when compared with the
Blanton-Allman algorithms (including the time-delayed fast
retransmit algorithm). When compared with RR-TCP, the
Leung-Ma algorithm achieved similar performance in terms
of connection throughput and unnecessary fast retransmis-
sions, but it takes much fewer computations and storage
space.

52.5 RN-TCP

Sathiaseelan and Radzik developed the reorder notifying
TCP (RN-TCP) [28] to use the information about dropped
segments at the routers along the transmission paths
connecting a source to a destination. If a router has dropped
some data packets belonging to a flow, it is responsible to
remember the known maximum and minimum sequence
numbers of the dropped packets belonging to that flow.
This means that the router has dropped some, if not all,
packets of that flow with sequence numbers within this
range. When a data packet passes through the router and
there is a dropped entry for the flow of that packet, the
router inserts a dropped entry into the packet and the
dropped entry is then removed from the router. In case the
packet contains a dropped entry collected from upstream
routers, the router in question will compute an appropriate
range of sequence numbers with dropped packets before
inserting it into the captioned packet.

A destination sends an ACK for a segment arrival. It may
set a “reordered” bit of the ACK depending on whether the
gap between the reordered segments are caused by
forward-path reordering or not. When the destination
receives a data segment, it uses the sequence number of
the incoming segment, the dropped entry stored in the
incoming segment, and the sequence number of the last
received segment in the buffer queue to find out which

528 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

segments have been reordered or dropped. If the destina-
tion considers the gap between the reordered segments are
caused by segment reordering, the “reordered” bit of the
corresponding ACK will be set.

A source uses two different rules to trigger a fast
retransmission, depending on whether the “reordered” bit
is set or not. If the third duplicate ACK has a reordered bit
set, the source contemplates that the expected segment has
been reordered. The source will trigger a retransmission
when it receives k£ more duplicate ACKs with the
“reordered” bit set or a duplicate ACK without the
“reordered” bit set. Otherwise, the source retransmits the
inferred loss segment immediately.

However, RN-TCP has three shortcomings. First, RN-
TCP requires all participating routers to store, compute, and
insert the dropping information into forwarded packets. It
is not practical in a heterogeneous network environment,
such as the Internet, where network devices are maintained
by different organizations and they are generally upgraded
incrementally. Second, the value of k is dependent on the
extents of segment dropping and reordering in the net-
works. A mechanism is still needed to dynamically
determine an appropriate value of k. Third, RN-TCP does
not consider its robustness to reverse-path reordering. The
sender algorithm is sensitive to the order in which ACKs
are received, as different order of these ACK arrivals can
trigger different rules for fast retransmissions, thereby
impeding the effectiveness of RN-TCP to improve TCP
performance for packet reordering.

6 TEMPORAL APPROACH

We describe the existing algorithms that can be classified as
a temporal approach in this section. Refer to Table 2 for an
overview of the surveyed schemes. Algorithms are referred
to by the authors’ last names, unless they have been named.

6.1 Response Postponement

6.1.1 Lee-Park-Choi Algorithm (Receiver-Side Solution)

Lee et al. [24] proposed a receiver-side solution to improve
TCP performance for forward-path reordering. A destina-
tion sends delayed ACKs for reordered segment arrivals. It
generates an ACK at every two segment arrivals or when a
delayed ACK timer fires. In addition, a destination sends
ACKs immediately for a retransmitted segment so as to
avoid retransmission timer expiration.

However, since the time between two successive seg-
ment arrivals may depend on the bottleneck link of a
participating path, there exists no direct correlation between
the bottleneck path bandwidth and the differences in path
delays. Thus, the presented response postponement is not
adaptive to the extent of packet reordering due to packet-
level multipath routing.

6.1.2 Paxson Algorithm

Paxson [6] outlined an idea of introducing an additional
waiting time before a destination generates a duplicate
ACK upon the advance of a sequence hole. The delay in
ACK generation provides an opportunity for the destina-
tion to see if sending a duplicate ACK is necessary.
However, it does not provide a mechanism to determine

how to set a proper time interval to adapt to the level of
packet reordering experienced.

6.1.3 Time-Delayed Fast Retransmit Algorithm

Blanton and Allman developed the time-delayed fast
retransmit algorithm [22], denoted as Blanton-Allman:DEL,
to postpone congestion response with the presence of
forward-path reordering. Upon receiving three duplicate
ACKs, a source waits for an additional time period before
triggering a congestion response. It can be viewed as an
extension of [6]. However, they differ as the Paxson algorithm
is a receiver-based algorithm, but the time-delayed fast
retransmit algorithm is a sender-based algorithm. When an
ACK for the inferred loss segment arrives, the pending
congestion response is cleared. The time period is increased
by some constant each time a spurious retransmission is
detected. Thus, this method is similar to the algorithms
proposed in [22] to adjust dupthresh dynamically, and shares
their associated merits and limitations.

6.1.4 TCP-DCR

Bhandarkar and Reddy devised the delayed congestion
response TCP (TCP-DCR) [29] to meliorate the TCP
robustness to noncongestion events. It advances the time-
delayed fast retransmit algorithm [6] by delaying a
congestion response for a time interval after the first
duplicate ACK is received. The authors suggested to set
this interval to one RTT so as to have ample time to deal
with forward-path reordering due to link-layer retransmis-
sions for loss recovery. To maintain ACK-clocking, TCP-
DCR sends one new data segment upon the receipt of each
duplicate ACK.

The simulation results in [29] demonstrated that TCP-
DCR performed significantly better than SACK TCP [27].
TCP-DCR achieved 10 times more in connection throughput
than SACK TCP when more than 5 percent of packets are
delayed according to a normal distribution with negligible
congestion loss. However, the chosen bottleneck link delay
is at least equal to the highest possible reordered delay for
their experiments. This implies that a reordering event is
unlikely to last longer than the interval for delaying the
congestion response. The suggested interval may not be a
proper choice for multipath routing since packets are
reordered mainly based on the differences in path delay,
while the estimated RTT is a weighted average of RTT
based on the traffic distribution to the participating paths.
Further study is needed to find a proper choice of the
delayed interval for congestion response with the presence
of packet reordering.

6.2 Retransmission by Timeout

6.2.1 TCP-PR

Bohacek et al. proposed TCP for persistent packet reorder-
ing (TCP-PR) [30] to devise the RTO timer to enhance TCP
performance for persistent packet reordering. Instead of
keeping track of the EWMA of the mean RTT, TCP-PR
utilized a nonsmoothed, exponentially weighted maximum
possible RTT. By doing so, spikes in RTT can be promptly
reflected in the estimated RTT for some time. When a
segment drop is detected, cwnd is set to half of cwnd at the

LEUNG ET AL.: AN OVERVIEW OF PACKET REORDERING IN TRANSMISSION CONTROL PROTOCOL (TCP): PROBLEMS, SOLUTIONS, AND... 529

10 Mbps
1 ms

R1

3 Mbps
Configurable delay

10 Mbps
1 ms

R2

Fig. 6. The network topology used in the simulation study.

time the segment has been sent. Congestion avoidance is
then carried out. Subsequent occasional segment drops
detected in the same congestion window will not cause any
further reduction of cwnd to avoid over-reaction to conges-
tion. When more than half of a congestion window’s worth
of segments are inferred to be lost, cwnd is set to one and the
slow start process is performed.

The major advantage of TCP-PR is that the new RTT and
RTO estimators are very effective in shielding the effect of
packet reordering due to differences in path delays, since
they are devised from the sampled maximum possible RTT.
Another merit for TCP-PR is that it is able to maintain ACK-
clocking with the presence of packet reordering. The reason
is that a pending segment can be sent so long as the number
of outstanding segments to be acknowledged is less than
the size of the congestion window.

There are two limitations for TCP-PR. First, in order to
maintain a constant scaling (which is less than one) of the
RTT spikes per RTT, the scaling factor is raised to the factor
of Cu}n -. However, this makes TCP-PR computationally
expensive since a series of exponentiation computations
have to be performed on every ACK arrival. Second, the
proposed RTT estimator may be overly sensitive to spikes
in RTT. A sudden high RTT samples, which can be caused
by routing loops due to topological changes, can greatly
enlarge the estimated RTT for some time. This can
substantially defer segment retransmissions if they are
indeed dropped during that time.

7 PERFORMANCE EVALUATION

In this section, we present our simulation results and
compare the surveyed algorithms. Section 7.1 discusses the
experimental setup for our simulation study. Simulation
results are exhibited in Section 7.2. Section 7.3 gives further
discussion and comparison of these algorithms.

7.1 Experimental Setup

The network topology used for the study is shown in Fig. 6.
It involves two end-systems (S and D) and two routers (R1
and R2). The path between R1 and R2 models the
underlying network path connecting Rl and R2. A
transmission path usually consists of multiple hops. It has
been shown [31] that the average hop-count for an Internet
path is 16.2. The central limit theorem [32] suggests that the
end-to-end delay over a multihop path, which is the sum of
a large number of independent hop-delays, is approxi-
mately normally distributed. To simulate packet reordering

TABLE 1
Simulation Parameters

Value
(2007 + 50) ms, T € [0, 2]
207 ms, T € [0,2]
50 ms or 250 ms
300 segments
500 segments
1500 bytes

Parameter
Mean of RI-R2 path delay
Standard deviation of path delay
Inter-switching time, &
Buffer size in a router
Maximum cwnd
Segment size

(such as those caused by route fluttering), we repeatedly
change the R1 — R2 path delay according to a truncated
normal distribution such that every path delay sample is at
least 50 ms. The mean and standard deviation of the path
delay are (2007 + 50) ms and 2~ ms, respectively, where 7
is the path delay factor ranging from 0 to 2 in our study. A
larger 7 will induce more variation in the path delay,
thereby increasing the degree of packet reordering.

The time interval between two successive changes on the
path delay, denoted as the interswitching time, dictates the
frequency of the reordering events. In our simulation study,
the interswitching time, 0, is exponentially distributed with
mean 50 ms or 250 ms. The smaller the interswitching time
is, the more frequently reordering events are produced, and
vice versa.

The simulation parameters are summarized in Table 1.
Our simulation study has been performed using the Network
Simulator (ns) Version 2.29 [33]. Except for the Lee-Park-Choi
algorithms [24] and the Paxson algorithm [6], the program
codes of all algorithms under study are ported to the same
version of the simulator for fair comparison. The Lee-Park-
Choi algorithms are engineered to packet-level multipath
routing, whereas the Paxson algorithm is merely an outline of
thought. Hence, they are not considered for this simulation
study. The ported program codes and simulation scripts can
be obtained at http://www.eee.hku.hk/~kcleung/re
search/TCP_reordering_survey.html.

A single, long-lived TCP flow from S to D is simulated
for 1,100 seconds. We take the goodput of a flow, which
represents the rate of useful data (that can be acknowledged
cumulatively) delivered to the destination successfully, as
the performance metric of the surveyed algorithms. For
each simulation run, the statistics for computing the
performance metric are collected after the trial period of
the first 100 simulated seconds. A total of 30 runs have been
done to compute an average value of the performance
metric, and a 95 percent confidence interval for each
average value of the metric is also calculated. The quality
of an algorithm depends on how well the goodput of the
flow can be sustained with various degrees of packet
reordering.

7.2 Simulation Results

The results are provided in two sets. The first set examines the
effect of forward-path reordering on the performance of TCP
implemented with various surveyed schemes. The reverse
path from R2 to R1 is an in-order channel with a constant
delay of 50 ms, i.e., 7 = 0. Fig. 7 shows the goodput of the flow
when the path delay factor, 7, varies between 0 and 2. Except
for TCP-PR [30], the goodput generally drops as 7 increases
from 0 to 2. A larger value of 7 implies a larger mean and

530

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

TABLE 2
An Overview of Surveyed Reordering Solutions for TCP
Additional Information Needed i Sustaini
Devices Involved iona’ Sormation -ee ¢ Reduc[hxon of Maintaining l;j;::: & Fairer
Algorithms Solution Strategy Reordered Timestamp / Spun9u§ ACK-Clocking Congestion Estimation
Source Destination Router | DSACK Bit Sequence | Retransmissions Window of RTT/RTO
Number
Threshold Adjustment

Blanton—Allman Algorithms esho Justmen \/ \/ \/ \/ \/

Response Postponement \/ \/ \/ \/ \/
DSACK TCP State Reconciliation v v/
Eifel Algorithm State Reconciliation \/ \/

Threshold Adjustment

Lee—Park—Choi Algorithms esho Justmen \/ \/ \/

Response Postponement \/
Leung—Ma Algorithm Threshold Adjustment \/ \/ \/ \/ \/
Paxson Algorithm Response Postponement \/ \/ \/
RN-TCP Threshold Adjustment Vv v Vv Vv V4 v
RR-TCP Threshold Adjustment \/ \/ \/ \/ \/ \/
TCP-DCR Response Postponement \/ \/ \/ \/
TCP-DOOR State Reconciliation Vv Vv V4 Va4
TCP-PR Retransmission by Timeout \/ \/ \/ \/ \/

standard deviation of the path delay. This results in a higher
degree of packet reordering. Hence, it is more likely to trigger
spurious fast retransmissions. In addition, the goodput
ordinarily soars when ¢ rises from 50 ms to 250 ms, because
the reordering events occur less often.

The algorithms for threshold adjustment and those for
the temporal approach generally perform better than those
for state reconciliation. The latter class of algorithms is only
able to recover the congestion state just before a congestion
response is taken. Hence, these algorithms do not alleviate
performance problems due to persistent and substantial
segment reordering. By suspending the congestion response
for a certain time period instead of initiating state recovery
upon detecting a spurious fast retransmission, TCP-DOOR
[19] outperforms DSACK TCP [20], the Eifel algorithm [17],
and SACK TCP [27] by at least 89.4 percent in connection
goodput when 7 is two.

The algorithms for threshold adjustment and those for
the temporal approach can help TCP reduce spurious
retransmissions due to segment reordering, thereby main-
taining a larger congestion window and sustaining a higher
connection goodput. The Leung-Ma algorithm [23], RR-TCP
[16], and TCP-DCR [29] give similar performance. They
outperform the Blanton-Allman algorithms [22] and RN-
TCP [28] when 7 is larger than a certain value, say, one,
since they provide effective mechanisms to either dynami-
cally adapt to the reordering conditions in the network or
wait sufficiently long to avoid triggering fast retransmis-
sions unnecessarily. TCP-PR sustains a good connection
goodput at various levels of packet reordering, since its RTT
and RTO estimators are very effective in shielding the effect
of packet reordering.

The second set investigates the effect of reverse-path
reordering on TCP performance. As in the first set, the
forward path from R1 to R2 is an in-order channel with a
constant delay of 50 ms so that no packet reordering is
possible in the forward path. Fig. 8 exhibits the goodput of

the flow when the path delay factor, 7, varies between 0 and
2. Except for TCP-PR, the connection goodput falls as 7
increases from 0 to 2. All algorithms except TCP-PR
perform more or less the same. When 7 is large, TCP-PR
can still maintain a high connection goodput since its RTT
and RTO estimators are highly effective in covering any
adverse effect due to packet reordering. However, other
surveyed algorithms are not very effective in maintaining
the connection goodput with the presence of reverse-path
reordering, because reordered ACKs can lead to the loss of
ACK-clocking and burst injection.

7.3 Further Discussion and Comparison

We summarize the properties of the presented algorithms
in Table 2. These properties have already been discussed in
the previous sections. For the ordinal approach, we find
that the algorithms for state reconciliation are only able to
recover the congestion state just before a congestion
response is taken. These algorithms alone are therefore
not adequate at alleviating performance problems due to
persistent and substantial packet reordering, but they can
be complemented by the algorithms for threshold adjust-
ment. The latter class of algorithms can help TCP reduce
spurious retransmissions, maintain ACK-clocking with the
use of an extended limited transmit algorithm for segment
reordering, and sustain a larger congestion window.

For the temporal approach, we discover that the
algorithms for response postponement are able to reduce
spurious retransmissions and, thus, maintain a larger
congestion window, but all except TCP-DCR fail to clock
out traffic during the deferment of congestion response. We
note that the algorithm for retransmission by timeout is able
to resolve all four problems stated in Section 3 for packet
reordering, except for the computational and stability issues
mentioned when the algorithm was presented.

Nevertheless, none of the existing algorithms attempts to
resolve the potential loss of ACK-clocking due to reverse-
path reordering. In addition, none of the existing algorithms

LEUNG ET AL.: AN OVERVIEW OF PACKET REORDERING IN TRANSMISSION CONTROL PROTOCOL (TCP): PROBLEMS, SOLUTIONS, AND... 531

3 . ; . r : : . : r 3 . . : . r
8 A DSACK 4 A DSACK
—— Eifel —— Eifel
—%— SACK —%— SACK
25} —6— TCP-DOOR 25k —6— TCP-DOOR

N
T
N
T

Goodput (MBytes per Second)
(5]

Goodput (MBytes per Second)
o

05f 051 v
x
<
0 .) ! . 0 \
0 0.2 0.4 06 08 1 12 14 16 18 2 0 0.2 04 06 0.8 1 1.2 14 16 18 2
Path Delay Factor Path Delay Factor
(a) (b)

——7— Blanton-Allman:AVG
—O©— Blanton-Allman:EWMA
——+—— Blanton-Allman:INC
——— Leung-Ma

—=4A— RN-TCP
—%— RR-TCP

g
o

25

N
T
N
T

—— Blanton-Allman:AVG L
—6&— Blanton-Allman:EWMA S ’ =
—+— Blanton-Aliman:INC Y

Goodput (MBytes per Second)
>

Goodput (MBytes per Second)
[,

05 L 05 | —%— Leung-Ma
—~A— RN-TCP
+ —%— RR-TCP
[L L L L ; 1 1 1 L 0 L . L L L L L L L
0 02 04 06 08 1 12 14 16 18 2 0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Path Delay Factor Path Delay Factor
(c) (d)

25

N
N

o
T
o
T

T
L

Goodput (MBytes per Second)

Goodput (MBytes per Second)

0.5 | —©&— Blanton-Allman:DEL q 0.5 | —&— Blanton—-Allman:DEL q
—~A— TCP-DCR —~4A— TCP-DCR
—<— TCP-PR —»— TCP-PR
0 | | \ | . . . \ | 0 . | . \ \
0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 12 14 1.6 18 2
Path Delay Factor Path Delay Factor
(e) {®

Fig. 7. Goodput against path delay factor for various settings on forward-path reordering. (a) State reconciliation with § = 50 ms. (b) State
reconciliation with 6 = 250 ms. (c) Threshold adjustment with 6 = 50 ms. (d) Threshold adjustment with 6 = 250 ms. (e) Temporal approach with
6 = 50 ms. (f) Temporal approach with 6 = 250 ms.

studies whether the current approach for the RTT and RTO paths. The only exception is TCP-PR which applies an
estimations is still effective for retransmission timer alternative approach to estimate the maximum possible
management when a traffic flow is forwarded over multiple RTT instead of the mean and deviation of RTT. In summary,

532

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

—— Eifel —— Eifel
—%— SACK —%— SACK
251 —6— TCP-DOOR 25¢ ——©— TCP-DOOR

Goodput (MBytes per Second)
o

T T
—A— DSACK

T T
—A— DSACK

N
T

Goodput (MBytes per Second)
- o

051 g 051 g
0 .) .) . \ . ! . 0)
0 02 04 06 08 1 12 14 16 18 2 0 0.2 04 06 0.8 1 1.2 14 16 18 2
Path Delay Factor Path Delay Factor
(@) (b)

Goodput (MBytes per Second)

0.5

—7— Blanton-Allman:AVG
—©&— Blanton-Allman:EWMA
—+—— Blanton-Allman:INC
—%— Leung-Ma T
—~A— RN-TCP
—%— RR-TCP

.
0.2 04 0.6 0.8 1 12 14 16 1.8 2
Path Delay Factor

©

Goodput (MBytes per Second)

25

N

—/— Blanton-Allman:AVG
—O©— Blanton-Allman:EWMA
——+—— Blanton-Allman:INC
—— Leung-Ma B
—A— RN-TCP
—%— RR-TCP

Goodput (MBytes per Second)
»

o
o
T

0 L L L L L L L L L
0 0.2 0.4 0.6 1 1.2 14 1.6 1.8 2

0.8
Path Delay Factor

(d)

25

” N
T

Goodput (MBytes per Second)

0.5 | —o— Blanton-Allman:DEL b 0.5 | —©&— Blanton-Allman:DEL E
—A— TCP-DCR —~A— TCP-DCR
—— TCP-PR —— TCP-PR
0 ! ! !) 0 | | L
0 0.2 0.4 0.6 0.8 1 12 14 16 1.8 2 0 0.2 0.4 0.6 0.8 1 12 14 16 1.8 2

Path Delay Factor

(e)

Path Delay Factor

(f)

Fig. 8. Goodput against path delay factor for various settings on reverse-path reordering. (a) State reconciliation with § = 50 ms. (b) State
reconciliation with 6 = 250 ms. (c) Threshold adjustment with é = 50 ms. (d) Threshold adjustment with 6 = 250 ms. (e) Temporal approach with
6 = 50 ms. (f) Temporal approach with 6 = 250 ms.

these issues need to be considered to resolve the packet We believe the following is desirable in a good

reordering problems for TCP. reordering algorithm for TCP:

LEUNG ET AL.: AN OVERVIEW OF PACKET REORDERING IN TRANSMISSION CONTROL PROTOCOL (TCP): PROBLEMS, SOLUTIONS, AND... 533

1. Operate as a sender-based algorithm so as to yield
high interoperability.

2. Achieve high connection throughput.

3. Minimize spurious segment retransmissions and
avoid retransmissions by timeouts.

4. Maintain ACK-clocking and avoid injecting traffic
bursts into the network.

5. Manage the retransmission timer effectively so that
it can adapt to various network conditions, including
packet reordering due to packet-level multipath
routing.

6. Achieve low algorithm complexity.

8 OPEN RESEARCH ISSUES

Although the existing algorithms provide some possible
solutions to packet reordering in TCP, some issues have not
been discussed in the literature and are potential research
topics. They are listed as follows.

8.1 Integrated Solution for All Types of

Noncongestion Loss

Packet reordering is merely one type of noncongestion loss
TCP has to deal with. When a TCP connection is established
over some wireless networks, it has to deal with other types
of noncongestion packet loss, including the transmission
loss over wireless links and disconnection loss due to host
or network mobility. There have been some research in
enhancing TCP for such noncongestion wireless loss [29],
[34], [35], [36], [37], [38]. TCP-DCR [29] is so far the only
work that deals with performance problems due to both
packet reordering and reliable link-layer retransmissions.
However, all other proposed techniques for dealing with
noncongestion wireless loss are mainly based on the
standard TCP protocol and do not generally take packet
reordering into account. This means that it might not be
possible to have an effective solution for dealing with both
noncongestion wireless loss and packet reordering by
simply bundling the proposed techniques separately
designed for each. Hence, further study is needed to devise
an integrated solution for TCP that can solve all types of
noncongestion loss for wired/wireless networks with
packet reordering.

8.2 Improved Selective Acknowledgement

Mechanism

The DSACK option [20] allows TCP to acknowledge out-of-
order data and duplicate segments. Unlike the standard
cumulative ACK and SACK [21], a notification for a
duplicate segment is sent only once. Thus, this is not a
robust mechanism to report the receipt of a duplicate
segment as an ACK can easily get corrupted and lost in an
error-prone network.

In order to improve its robustness, this information should
be sent repeatedly, say at least k times, in some subsequent
ACKs until a destination considers that the information has
been received, with an acceptable confidence, by the source.
Ways to properly formulate the scheme to choose an
appropriate value of k requires further study.

8.3 Quantitative Assessment on Causes of Packet
Reordering

Recent studies [5], [6] have discussed the occurrence and

causes of packet reordering. Substantial quantitative results

have been provided to justify that packet reordering occurs
normally in packet-switching networks. However, the
discussion about the causes of packet reordering was
somewhat qualitative, without any empirical results to
infer which causes are more likely to happen and their
impact to packet reordering. Thus, a quantitative assess-
ment on the causes of packet reordering warren to be
investigated further.

9 CONCLUSION

In this paper, we have presented a comprehensive and in-
depth survey of current research on packet reordering in
TCP. Packet-level multipath routing, route fluttering,
inherent parallelism in modern high-speed routers, link-
layer retransmissions, and router forwarding lulls are major
causes of packet reordering. With persistent and substantial
packet reordering, TCP spuriously retransmits segments,
keeps its congestion window unnecessarily small, loses its
ACK-clocking, and understates the estimated RTT (and,
thus, RTO).

Existing algorithms were categorized into two different
strategies, namely, the ordinal approach and the temporal
approach. The ordinal approach is a collection of methods
that process the ordering information of segments and ACKs
received so as to infer and generate more appropriate
congestion response with the presence of packet reordering.
We found that an algorithm for threshold adjustment
complemented with state reconciliation can form an effective
solution to deal with packet reordering for TCP.

The temporal approach represents a group of techniques
that avoid triggering spurious congestion responses by
deferring them for a time period. We noted that the
algorithms for response postponement could lose ACK-
clocking and inject bursty traffic into the network. The
algorithm for retransmission by timeout was found to be
effective to deal with packet reordering, except for the
computational and stability issues involved.

We also proposed some future research directions,
including the need of a mechanism to resolve the potential
loss of ACK-clocking due to reverse-path reordering,
improved retransmission timer management, the develop-
ment of an integrated solution for all types of nonconges-
tion loss, the formulation of an improved selective
acknowledgement mechanism, and the quantitative assess-
ment on the causes of packet reordering.

ACKNOWLEDGMENTS

This research is supported in part by the Areas of
Excellence Scheme established under the University Grants
Committee of the Hong Kong Special Administrative
Region, China (Project No. AoE/E-01/99). The authors
would like to thank Sumitha Bhandarkar, Ethan Blanton,
Chansook Lim, Arjuna Sathiaseelan, Morten Schlédger, Feng
Wang, and Ming Zhang for releasing their ns source codes
to the authors” simulation study. The authors would also
like to express their gratitude to the anonymous reviewers
for their valuable comments and suggestions which assisted
them in improving the quality of the paper.

534

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 4, APRIL 2007

REFERENCES

(1]
(2]

B3]
(4
(5]

o]
(7]

(8]

]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(171

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

J. Postel, Transmission Control Protocol, REC 793, Protocol Specifi-
cation, DARPA Internet Program, Sept. 1981.

D.D. Clark, “The Design Philosophy of the DARPA Internet
Protocols,” ACM SIGCOMM Computer Comm. Rev., vol. 18, no. 4,
pp. 106-114, Aug. 1988.

M. Allman, V. Paxson, and W. Stevens, TCP Congestion Control,
IETF RFC 2581, Apr. 1999.

V. Paxson and M. Allman, Computing TCP’s Retransmission Timer,
IETF RFC 2988, Nov. 2000.

J. Bennett, C. Partridge, and N. Shectman, “Packet Reordering is
Not Pathological Network Behavior,” IEEE/ACM Trans. Network-
ing, vol. 7, no. 6, pp. 789-798, Dec. 1999.

V. Paxson, “End-to-End Internet Packet Dynamics,” IEEE/ACM
Trans. Networking, vol. 7, no. 3, pp. 277-292, June 1999.

M. Laor and L. Gendel, “The Effect of Packet Reordering in a
Backbone Link on Application Throughput,” IEEE Network,
vol. 16, no. 5, pp. 28-36, Sept./Oct. 2002.

K.-C. Leung and V.O K. Li, “Generalized Load Sharing for Packet-
Switching Networks I: Theory and Packet-Based Algorithm,”
IEEE Trans. Parallel and Distributed Systems, vol. 17, no. 7, pp. 694-
702, July 2006.

N.F. Maxemchuk, “Dispersity Routing in High-Speed Networks,”
Computer Networks and ISDN Systems, vol. 25, no. 6, pp. 645-661,
Jan. 1993.

S.-J. Lee and M. Gerla, “AODV-BR: Backup Routing in Ad Hoc
Networks,” Proc. IEEE Wireless Communications and Networking
Conf. (WCNC '00), vol. 3, pp. 1311-1316, Sept. 2000.

P.P. Pham and S. Perreau, “Performance Analysis of Reactive
Shortest Path and Multi-Path Routing Mechanism with Load
Balance,” Proc. IEEE INFOCOM 03, vol. 1, pp. 251-259, 2003.

F. Hu and N.K. Sharma, “Enhancing Wireless Internet Perfor-
mance,” IEEE Comm. Surveys and Tutorials, vol. 4, no. 1, pp. 2-15,
Dec. 2002.

S. Floyd and K. Fall, “Promoting the Use of End-to-End
Congestion Control in the Internet,” IEEE/ACM Trans. Networking,
vol. 7, no. 4, pp. 458-472, Aug. 1999.

V. Jacobson, “Congestion Avoidance and Control,” ACM SIG-
COMM Computer Comm. Rev., vol. 18, no. 4, pp. 314-329, Aug.
1988.

P. Karn and C. Partridge, “Improving Round-Trip Time Estimates
in Reliable Transport Protocols,” ACM Trans. Computer Systems,
vol. 9, no. 4, pp. 364-373, Nov. 1991.

M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A
Reordering-Robust TCP with DSACK,” Proc. IEEE Int’l Conf.
Network Protocols (ICNP '03), pp. 95-106, Nov. 2003.

R. Ludwig and RH. Katz, “The Eifel Algorithm: Making TCP
Robust Against Spurious Retransmissions,” ACM SIGCOMM
Computer Comm. Rev., vol. 30, no. 1, pp. 30-36, Jan. 2000.

V. Jacobson, R. Braden, and D. Borman, TCP Extensions for High
Performance, IETF RFC 1323, May 1992.

F. Wang and Y. Zhang, “Improving TCP Performance over Mobile
Ad-Hoc Networks with Out-of-Order Detection and Response,”
Proc. ACM MOBIHOC 02, pp. 217-225, June 2002.

S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, An Extension to
the Selective Acknowledgement (SACK) Option for TCP, IETF RFC
2883, July 2000.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective
Acknowledgment Options, IETF RFC 2018, Oct. 1996.

E. Blanton and M. Allman, “On Making TCP More Robust to
Packet Reordering,” ACM SIGCOMM Computer Comm. Rev.,
vol. 32, no. 1, pp. 20-30, Jan. 2002.

K.-C. Leung and C. Ma, “Enhancing TCP Performance to
Persistent Packet Reordering,” J. Comm. and Networks, vol. 7,
no. 3, pp. 385-393, Sept. 2005.

Y. Lee, I. Park, and Y. Choi, “Improving TCP Performance in
Multipath Packet Forwarding Networks,” . Comm. and Networks,
vol. 4, no. 2, pp. 148-157, June 2002.

K.-C. Leung and V.OK. Li, “Flow Assignment and Packet
Scheduling for Multipath Routing,”]. Comm. and Networks,
vol. 5, no. 3, pp. 230-239, Sept. 2003.

M. Allman, H. Balakrishnan, and S. Floyd, Enhancing TCP’s Loss
Recovery Using Limited Transmit, IETF RFC 3042, Network Work-
ing Group, Jan. 2001.

K. Fall and S. Floyd, “Simulation-Based Comparisons of Tahoe,
Reno, and SACK TCP,” ACM SIGCOMM Computer Comm. Rev.,
vol. 26, no. 3, pp. 5-21, July 1996.

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(33]

(30]

[37]

(38]

Texas, frohw 2001 to 2002. He was an assistant professor

A. Sathiaseelan and T. Radzik, “Improving the Performance of
TCP in the Case of Packet Reordering,” Lecture Notes in Computer
Science, vol. 3079, pp. 63-73, June/July 2004.

S. Bhandarkar and A.L.N. Reddy, “TCP-DCR: Making TCP
Robust to Non-Congestion Events,” Lecture Notes in Computer
Science, vol. 3042, pp. 712-724, May 2004.

S. Bohacek, J.P. Hespanha, J. Lee, C. Lim, and K. Obraczka, “A
New TCP for Persistent Packet Reordering,” IEEE/ACM Trans.
Networking, vol. 14, no. 2, pp. 369-382, Apr. 2006.

W. Theilmann and K. Rothermel, “Dynamic Distance Maps of the
Internet,” Proc. IEEE INFOCOM "00, vol. 1, pp. 275-284, Mar. 2000.
W.W. Hines and D.C. Montgomery, Probability and Statistics in
Engineering and Management Science, third ed. John Wiley & Sons,
1990.

K. Fall and K. Varadhan, “The ns Manual (Formerly ns Notes and
Documentation),” The VINT Project, May 2006.

T. Goff, J. Moronski, D.S. Phatak, and V. Gupta, “Freeze-TCP: A
True End-to-End TCP Enhancement Mechanism for Mobile
Environments,” Proc. IEEE INFOCOM ‘00, vol. 3, pp. 1537-1545,
Mar. 2000.

J. Liu and S. Singh, “ATCP: TCP for Mobile Ad Hoc Networks,”
IEEE]. Selected Areas in Comm., vol. 19, no. 7, pp. 1300-1315, July
2001.

C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang,
“TCP Westwood: End-to-End Congestion Control for Wired/
Wireless Networks,” Wireless Networks, vol. 8, no. 5, pp. 467-479,
2002.

C.P. Fu and S.C. Liew, “TCP Veno: TCP Enhancement for
Transmission over Wireless Access Networks,” IEEE |. Selected
Areas in Comm., vol. 21, no. 2, pp. 216-228, Feb. 2003.

S. Biaz and N.H. Vaidya, “’De-Randomizing’ Congestion Losses to
Improve TCP Performance over Wired-Wireless Networks,” IEEE/
ACM Trans. Networking, vol. 13, no. 3, pp. 596-608, June 2005.

Ka-Cheong Leung (S'95-M’01) received the
BEng degree in computer science from the Hong
Kong University of Science and Technology,
Hong Kong, in 1994, and the MSc degree in
electrical engineering (computer networks) and
the PhD degree in computer engineering from
the University of Southern California, Los An-
geles, in 1997 and 2000, respectively. He
worked as a senior research engineer at the
Nokia Research Center, Nokia Inc., Irving,
in the

Department of Computer Science at Texas Tech University, Lubbock,
Texas, between 2002 and 2005. Since June 2005, he has been with the
University of Hong Kong, Hong Kong, where he is a visiting assistant
professor in the Department of Electrical and Electronic Engineering. His
research interests include wireless packet scheduling, routing, conges-
tion control, and quality of service guarantees in high-speed commu-
nication networks, content distribution, high-performance computing,
and parallel applications. He is a member of the IEEE.

LEUNG ET AL.: AN OVERVIEW OF PACKET REORDERING IN TRANSMISSION CONTROL PROTOCOL (TCP): PROBLEMS, SOLUTIONS, AND... 535

Victor O.K. Li (S’80-M’81-SM’86-F’'92) received
the SB, SM, EE, and ScD degrees in electrical
engineering and computer science from the
Massachusetts Institute of Technology, Cam-
bridge, Massachusetts in 1977, 1979, 1980, and
1981, respectively. He joined the University of
Southern California (USC), Los Angeles in
February 1981, and became a professor of
electrical engineering and director of the USC
Communication Sciences Institute. Since Sep-
tember 1997, he has been with the University of Hong Kong, Hong
Kong, where he is Chair Professor of Information Engineering in the
Department of Electrical and Electronic Engineering. He also served as
managing director of Versitech Ltd., the technology transfer and
commercial arm of the university, and on various corporate boards.
His research is in information technology, including all-optical networks,
wireless networks, and Internet technologies and applications. He is a
principal investigator in the area of excellence in information technology
funded by the Hong Kong Government. He is now serving as an editor of
ACM/Springer Wireless Networks and IEEE Communications Surveys
and Tutorials. He has received numerous awards, including, most
recently, the Changjiang Chair Professorship from the Ministry of
Education, China, UK Royal Academy of Engineering Senior Visiting
Fellowship in Communications, the Outstanding Researcher Award of
the University of Hong Kong, the Croucher Foundation Senior Research
Fellowship, and the Order of the Bronze Bauhinia Star, Government of
HKSAR, China. He was elected an |IEEE fellow in 1992. He is also a
fellow of the HKIE and the IAE.

Daigin Yang (S’04) received the BE and ME
degrees from the Department of Electronic and
Information Engineering, Huazhong University
of Science and Technology, Wuhan, China, in
1999 and 2002, respectively. She is currently
pursuing the PhD degree in the Department of
Electrical and Electronic Engineering, the Uni-
versity of Hong Kong, Hong Kong. Her current
research interests include scheduling and flow
control in the Internet and wireless networks.
She is a student member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

