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Abstract—In this paper, we extend the load sharing framework to study how to effectively perform flow-based traffic splitting in

multipath communication networks. The generalized load sharing (GLS) model is employed to conceptualize how traffic is split ideally

on a set of active paths. A simple flow-based weighted fair routing (WFR) algorithm, called call-by-call WFR (CWFR), has been

developed to imitate GLS so that all packets belonging to a single flow are sent on the same path. We have investigated how to couple

the proposed basic packet-by-packet WFR (PWFR) and CWFR algorithms so as to permit a traffic splitter to handle both connection-

oriented and connectionless traffic simultaneously. Our simulation studies, based on a collection of Internet backbone traces, reveal

that WFR outperforms two other traffic splitting algorithms, namely, generalized round robin routing (GRR), and probabilistic routing

(PRR). These promising results form a basis for designing future adaptive constraint-based multipath routing protocols.

Index Terms—Computer communications, dispersity routing, high speed networks, inverse multiplexing, load sharing, multipath

routing, multiprotocol label switching, network striping, performance modeling, traffic dispersion, traffic engineering.
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1 INTRODUCTION

IN a companion paper [6], we have proposed a generalized
load sharing (GLS) model to conceptualize how traffic is

split ideally on a set of active paths. A simple traffic
splitting algorithm, called packet-by-packet weighted fair
routing (PWFR), has been devised to approximate GLS with
the given routing weight vector by transmitting each packet
as a whole. We have analyzed and developed some
performance bounds for PWFR and found that PWFR is a
deterministically fair traffic splitting algorithm. In this
paper, we will extend this load sharing framework to
investigate how to effectively perform flow-based traffic
splitting in multipath communication networks.

Since a large volume of traffic in the Internet is
Transmission Control Protocol (TCP) based, an orderly
delivery of packets within the same flow to a destination is
critical to avoid triggering “false losses“ resulting in a
substantial degradation in protocol performance. Thus, all
packets within the same flow should be delivered on the
same path. Hashing-based traffic splitting approaches [1],
[7] have been proposed so that all packets with the same
key, such as the same origin-destination (O-D) pair, will be
routed on the same path. These techniques are usually
simple to implement and scalable in terms of the number of
active paths and flows. However, the accuracy in imple-
menting the requested traffic split depends greatly on the
choices of both keys and hashing functions. Moreover, they
cannot take the granularity of flows into account, as
connection-oriented calls ordinarily demand different
bandwidths and quality of service (QoS) requirements
and they should not be treated equally.

1.1 Our Contributions

The focus of this work, first described in [5], is to extend the
load sharing framework to study how to effectively perform
flow-based traffic splitting in multipath communication
networks. A simple traffic splitting algorithm, called
weighted fair routing (WFR), has been devised at two
different granularity levels, namely, the packet level, and
the call level, to approximate GLS with the given routing
weight vector. The packet-by-packet WFR (PWFR) mimics
GLS by transmitting each packet as a whole, whereas the
call-by-call WFR (CWFR) imitates GLS so that all packets
belonging to a single flow are sent on the same path. We
have investigated how to couple the proposed basic packet-
by-packet WFR (PWFR) and CWFR algorithms so as to
permit a traffic splitter to handle both connection-oriented
and connectionless traffic simultaneously.

A scalable architecture for providing deterministic
guarantees has been developed in [8] to support flow
splitting and aggregation over multiple paths. During the
call establishment process, the authors have suggested three
different methods to route the connection by, namely,
picking the widest outgoing link at each hop, picking the
shortest path, and dividing the request into k smaller equal-
size flows and picking k widest outgoing links at each hop.
All these methods do not consider a targeted routing weight
vector for load balancing. Given an optimal traffic split, our
proposed WFR assumes a given targeted routing vector so
as to achieve a better load balancing of traffic over a set of
active paths.

Our proposed framework differs from the one developed
in [9] in three ways. First, their datagram forwarding does
not discuss which path is chosen when there are two or
more underloaded paths, whereas our PWFR algorithm
picks the most underutilized path with the same time and
storage complexities. Second, the route of each TCP traffic
flow is determined by hashing in [9]. Its optimal perfor-
mance is the same as the call-by-call probabilistic routing
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(CPRR). Our CWFR algorithm attempts to consider the
bandwidth requirement of a flow before its route is
determined. Our simulation results in Section 3 demon-
strate that CWFR outperforms CPRR for all configurations
considered. Third, both their datagram forwarding algo-
rithm and the hybrid forwarding algorithm allow their
working variables to grow unboundedly, while the working
variables of CWFR and MWFR have their ranges limited by
the level of load imbalance. Indeed, we have proved in our
companion paper [6] that, if all packets are bounded in sizes
and the number of paths is fixed, the workload deviation on
every path for PWFR is confined by a certain constant.

1.2 Organization of the Paper

This paper is organized as follows. Section 2 presents both
packetized and flow-based weighted fair routing algo-
rithms to achieve the best load balancing according to the
given traffic split. Section 3 outlines a set of traffic splitting
algorithms for performance studies, defines the perfor-
mance metric that will be used to compare various splitting
algorithms, briefly describes the characteristics of the
traffic traces used for the simulation, and examines the
simulation results of the proposed traffic splitting algo-
rithms. Section 4 concludes and discusses some possible
extensions to our work.

2 WEIGHTED FAIR ROUTING

Like the generalized processor sharing (GPS) approach, the
generalized load sharing (GLS) approach proposed in the
companion paper [6] is an idealized scheme that assumes
input traffic to be infinitely divisible for routing. In reality,
the most common communication networks are packet-
switched networks, such as the Internet, where the smallest
possible data unit for routing is a packet. Therefore, it is
necessary to propose a more practical scheme that can
closely approximate GLS.

The proposed scheme should have the following
objectives: First, it should be able to split traffic on multiple
routes as fairly as possible. This means that, given the
granularity constraints on routing, it should try to approx-
imate GLS according to the routing weight vector as closely
as possible, for every time period. Second, its implementa-
tion should be simple and its applicability does not need a
substantial modifications on existing protocols. To avoid
modifications in TCP, all packets within the same call
should be routed on the same path. Packet-based load
sharing approaches may not work well for TCP flows and
other connection-oriented flows that require packets to
arrive at the destination in order. Yet, a coarser call-based
multipath routing approach can be applied for load sharing.
On the contrary, a User Datagram Protocol (UDP) connec-
tion or any other connectionless traffic allows packets to
arrive at the destination out of order, without affecting the
protocol performance. Therefore, packet-based approaches
can be utilized to realize a fine-grained load sharing on
multiple routes for connectionless traffic.

To satisfy the captioned requirements, a load sharing
approach, called weighted fair routing (WFR), is proposed.
The main philosophy of the proposed scheme is to
minimize the deviation of the actual load distribution from

the given routing weight vector in making each routing
decision. There are two levels of routing granularity,
namely, at the packet level and at the call level. The
packet-by-packet WFR (PWFR) is a packet-level WFR in
which a set of packets is split on a set of (logical) outgoing
channels or links, whereas the call-by-call WFR (CWFR) is a
call-connection level WFR in which a set of connections is
split on a set of outgoing channels and all packets belonging
to the same connection are routed on the same path.

The discussion will proceed as follows. Section 2.1
briefly describes the PWFR algorithm proposed in the
companion paper [6]. Section 2.2 outlines the CWFR
algorithm and discusses how to incorporate it in multi-
protocol label switching (MPLS) for traffic engineering.
Section 2.3 describes how to couple the basic PWFR and
CWFR algorithms so as to permit a traffic splitter to
handle both connection-oriented and connectionless traffic
simultaneously.

2.1 A Packet-Based WFR: PWFR

Suppose there is a sequence of packets, namely, Packet 1,
Packet 2, . . . , to be split on a set of N (logical) paths or
channels. Denote the size of Packet k by SðkÞ bytes. The

routing weight for Path i is given as pi, where
PN

i¼1 pi ¼ 1.
Define the routing weight vector as pppppppp ¼ ð p1 p2 . . . pN Þ.
The residual workload of Path i, where i ¼ 1; 2; . . . ; N , just
before the routing decision for Packet k is made, Rp

i ðkÞ, is
defined as the amount of work (in bytes) that should be fed
on Path i in order to achieve the expected workload.
Packet k is to be sent on Path j when Rp

j ðkÞ is Packet k is to
be sent on Path j when Rp

j ðkÞ is maximized along all
participating paths. Ties are broken by a path with the
largest routing weight, and, if still unresolved, the smallest
path identification number. The complete PWFR algorithm
is summarized in Fig. 1.

2.2 A Call-Based WFR: CWFR

The major drawback of using multiple paths for transmit-
ting a single flow of packets is that these packets may arrive
at the destination out of order, thereby causing a substantial
performance deterioration for some protocols, such as TCP
which is commonly deployed in the Internet. Thus, it is
necessary to devise a simple flow-based load sharing
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Fig. 1. The PWFR algorithm.



algorithm, known as CWFR, to allow using only one path to
send packets of the same flow, as well as to mimic GLS as
closely as possible.

2.2.1 Algorithm

The idea of CWFR is to distribute a set of connections to a
set of paths such that the workload allocated to each path is
as close to the expected workload as possible. Suppose there
is a set of connections, namely Connection 1, Connection 2,
:::, to be distributed on a set of N (logical) paths or channels.
Connections may have different characteristics. For
example, Connection 1 may be established at a time
different from that of Connection 2. Besides, Connection 1
may have a longer holding time or larger bandwidth
requirement than that of Connection 2. To facilitate a fair
distribution of connections to the set of paths, we assume
that the bandwidth requirement of each connection, such as
its equivalent bandwidth or average bandwidth needed, is
known a priori, or can be estimated (such as according to
what application it is to support), during the call establish-
ment phase.

The algorithm works as follows. Suppose each call has a
finite bandwidth requirement. Connection k needs a
bandwidth requirement of QðkÞ units from the captioned
network node. If a call is routed on a certain path or channel
away from that node, the needed bandwidth for this call is
reserved on that path. When the node receives a call
establishment request from an upstream node, it needs to
decide which of the N outgoing channels is to be used for
routing the call. The decision is based on the reserved
bandwidth on each channel during the time the request is
made, as well as the bandwidth requirement for the
incoming call. When a node receives a call termination
request, it will release all bandwidth reservations corre-
sponding to that call.

Define ŴWc
i ðkÞ as the reserved bandwidth on Path i just

before Connection k is established. ŴWc
i ðkÞ can be obtained by

maintaining the counter ŴWc
i as exhibited in Fig. 2. Alter-

natively, ŴWc
i ðkÞ, which represents the measured aggregate

effective bandwidth for all existing flows on Path i, can be
evaluated by, say taking estimates over a set of measure-
ment windows during the call establishment phase [2], [3].
The total reserved bandwidth for all calls, including the
incoming one, on all outgoing channels at the time when
Connection k is established can be computed as

AðkÞ ¼
XN

i¼1

ŴWc
i ðkÞ þQðkÞ: ð1Þ

To enjoy the desired call-level load sharing, we hope that
the total reserved bandwidth can be split according to the
routing weight vector pppp ¼ ð p1 p2 . . . pN Þ, where pi is
the routing weight for Path i, and

PN
i¼1 pi ¼ 1. Denote by

Wc
i ðkÞ the expected reserved bandwidth on Path i at the

time when Connection k is made. This means that, for every
positive integer k and i ¼ 1; 2; . . . ; N ,

Wc
i ðkÞ ¼ pi AðkÞ: ð2Þ

The bandwidth deviation on Path i, where i ¼ 1; 2; . . . ; N ,
just before the routing decision for Connection k is

established, Rc
iðkÞ, is defined as the amount of bandwidth

that should be reserved on Path i in order to have a reserved

bandwidth equal to the expected reserved bandwidth on

Path i. Thus, the bandwidth deviation on Path i can be

written as

Rc
iðkÞ ¼Wc

i ðkÞ � ŴWc
i ðkÞ ð3Þ

for all k ¼ 1; 2; . . . .
We use the value of Rc

iðkÞ to measure the level of load

imbalance on Path i, just before the routing decision of

Connection k is made. Similar to the argument made for the

PWFR algorithm, Connection k is to be routed on Path j

when Connection k is to be routed on Path j when Rc
jðkÞ is

maximized along all active paths. Ties are broken by a path

with the largest routing weight, and, if still unresolved, the

smallest path identification number. The complete CWFR

algorithm is shown in Fig. 2.
As far as the time and space complexities are concerned,

CWFR takes OðNÞ time for each router to determine a

routing decision during call establishment, and Oð1Þ time to

either relinquish the reserved bandwidth during call

termination or forward incoming packets of a call. CWFR

requires OðNÞ counters to store its working variables.

Because the number of paths N is generally small and fixed,
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we expect that the computational and storage costs are
minimal with respect to the number of traffic flows
maintained at each router, nowadays.

2.2.2 Incorporation of MPLS for Traffic Engineering

A potential drawback of the CWFR algorithm is that it may
be necessary to maintain states so that a network node
knows how to forward incoming packets corresponding to
each call, since calls are routed individually at each node. It
seems that it is not scalable with the growing number of
flows in the network. However, with the introduction of a
label switching technique like MPLS, the scalability
problem can be alleviated. All flows sharing the same path
segment can be assigned the same flow label so that they
can be switched together. Specific information with respect
to a flow can be referenced from the label stack, which is a
last-in, first-out stack to store a set of label stack entries. A
label stack entry contains a flow label which can be
employed by a node to choose the path a packet should
be forwarded to. When a packet arrives at a node at the end
of a path segment, the topmost label stack entry will be used
to determine the next hop label forwarding entry, which
contains information to determine the packet’s next hop
and the operation to perform on the packet’s label stack.

The forwarding process can be illustrated by a seven-
node network, as shown in Fig. 3. Consider two groups of
flows. The path taken by the first and second groups of
flows, respectively, are Node 1 ! Node 3 ! Node 4 !
Node 5 ! Node 6, and Node 2 ! Node 3 ! Node 4 !
Node 5 ! Node 7. With the use of MPLS, all packets
belonging to the first group of flows carry A as the flow
label when they are sent from Node 1 to Node 3. Similarly,
all packets belonging to the second group of flows carry B
as the flow label when they are sent from Node 2 to Node 3.
At Node 3, the label A or B is pushed into the label stack
and the flow label is replaced by C, since the two groups of
flows begin to share the same path segment. At Node 4,
packets within the two flow groups are switched and
forwarded to Node 5, and the flow label is taken over by C0.
When such a packet arrives at Node 5, if it carries a flow
label C0, another flow label is popped from the label stack to
determine which path and flow label are to be used next. If
the label A is popped, the packet is assigned with the flow
label D and forwarded to Node 6. If the label B is popped,
the packet is assigned with the flow label E and forwarded
to Node 7.

With the application of flow label and label stack, the
traffic splitter does not need to maintain states for every
active flow. Instead, it needs to maintain states for each

participating flow label. Since a flow label may be shared by
many flow groups, the number of flow labels maintained at
each network node can then be dramatically reduced. Thus,
the system is as scalable as other label-switching networks,
such as Asynchronous Transfer Mode (ATM), which
employs the virtual path/virtual channel concept for
performance enhancement.

2.3 Combining PWFR and CWFR

Generally, packet-switching networks need to handle both
connection-oriented and connectionless traffic. We may
need to couple the basic PWFR and CWFR algorithms to
obtain the combined WFR algorithm.

When a packet is to be forwarded to another node, it is
necessary to determine whether it belongs to connectionless
traffic or connection-oriented traffic. If the former applies,
the PWFR algorithm can be used directly. Otherwise, the
route for that packet has been predetermined and this
information should be retrieved accordingly. However,
routing a packet on a predetermined path may cause even
more load imbalance among a set of paths. To alleviate the
impact to load distribution, the residual workloads on all
participating paths are incremented by their expected
workloads contributed from the packet. The residual
workload on the predetermined path is then reduced by
the size of that packet. The combined WFR algorithm is
depicted in Fig. 4.

As far as the time and space complexities are concerned,
MWFR calls either PWFR or CWFR once to forward an
incoming packet. If the packet belongs to connection-
oriented traffic, MWFR updates all Rp

j counters for any
Path j to keep track of the traffic underloads on all N paths.
Thus, MWFR takes OðNÞ time and OðNÞ counters for traffic
splitting.

3 PERFORMANCE EVALUATION

In this section, we first outline a set of traffic splitting
algorithms for performance studies. A performance metric is
then defined for comparing various splitting algorithms.
Afterward, we briefly describe the characteristics of the traffic
traces used for the simulation and, finally, we examine the
simulation results of the proposed traffic splitting algorithms.
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Fig. 3. A seven-node network.

Fig. 4. The combined WFR algorithm.



3.1 Traffic Splitting Algorithms

We study three basic traffic splitting algorithms, namely,
weighted fair routing (WFR), generalized round robin
routing (GRR), and probabilistic routing (PRR). The WFR
approach, which is described in Section 2, simulates
generalized load sharing (GLS) as closely as possible,
subject to the granularity constraint imposed. The packet-
by-packet WFR (PWFR) simulates GLS with the limitation
that packets are routed as a whole, while the call-by-call
WFR (CWFR) simulates GLS in such a way that all packets
of a single flow follow the same transmission path.

GRR distributes packets or calls to each route such that
the number of packets or calls allocated to each path relative
to the sum on all paths is as close to its routing weight as
possible. The packet-by-packet GRR (PGRR) splits packets
to each path in a cyclical fashion so that the arrival instants
of any two packets to each path are as uniform as possible.
The call-by-call GRR (CGRR) dispatches an incoming call to
a path such that the resulting load distribution, in terms of
the number of active calls, to a set of paths is closest to the
routing weight vector. For dealing with mixed traffic, GRR
performs adjustments on PGRR just as PWFR does. Indeed,
a way to implement GRR is to apply WFR by setting all
packet sizes and bandwidth requirements of all calls to one
unit, or any other constant.

PRR spreads out packets or calls to each route at random
such that the chance for routing a packet or a call to a
specific path is equal to the routing weight for that path.
According to the routing weight vector, the packet-by-
packet PRR (PPRR) divides packets at random, whereas the
call-by-call PRR (CPRR) routes calls at random. Indeed,
PRR is equivalent to a perfect hashing routing scheme,
which provides a performance benchmark to all other
hashing-based traffic splitting algorithms. A list of direct
hashing and table-based hashing schemes for call-based
traffic splitting can be found in [1].

3.2 Performance Metric

Our performance metric for a traffic splitter is the mean
squared workload deviation, which measures the variation
of the actual workloads allocated by the traffic splitter to a
set of N paths from the expected ones distributed under
GLS. A good traffic splitting algorithm should divide traffic
according to the given routing weight vector and, hence, it
should be able to keep the mean squared workload
deviation as small as possible.

Suppose a set of M packets, namely, Packet 1, Packet 2,
. . . , Packet M, which belong to either connectionless or
connection-oriented traffic, are split on a set of paths. Let
Wp

i ðkÞ and ŴWp
i ðkÞ, respectively, be the expected and actual

workloads (in bytes) allocated to Path i, just after the
routing decision for the kth packet has been made. The
mean squared workload deviation for the set of packets is
defined as

E½ðŴWp �WpÞ2� ¼
PM

k¼1

PN
i¼1ðŴW

p
i ðkÞ �W

p
i ðkÞÞ

2

MN
: ð4Þ

3.3 Traffic Traces

The simulation is based on a set of real packet traces
collected on the Internet backbones for the Passive
Measurement and Analysis (PMA) Project over four trunks,
namely, the SDSC FDDI DMZ, the FIX-West facility at
NASA Ames (FDDI interface), the SDSC OC12mon vBNS
connection, and the Indiana University GigaPOP. A total of
seven traces, from July 1994 to August 2001, are employed
for our simulation studies. Denote the maximum packet
sizes in bytes for Transmission Control Protocol (TCP)
connections and non-TCP connections respectively by STCP

max

and Snon-TCP
max . The characteristics and the packet size

distributions of these traffic traces are summarized in
Figs. 5 and 6, respectively.

3.4 Simulation Results

Our simulation experiments are based on a network node
which routes incoming traffic on a set of outgoing paths. Each
simulation run is executed with a complete traffic trace, and
the statistics for computing the performance metric are
collected only when the routes for the first 10,000 packets
have been determined. For WFR and GRR, a single run is
sufficient to determine the mean squared workload deviation
for a certain setting. However, since PRR involves the use of
random numbers, a total of 10 runs have been done to find an
average value of the performance metric, and a 95 percent
confidence interval for each average value of the metric is also
computed. Because of constraints in space, plots showing
similar results are left out and, hence, only plots correspond-
ing to the trace file “IND-20010815” are presented here.

The results are provided in three sets. The first set
examines the performance of different traffic splitters under
two different traffic types, connection-oriented traffic and
mixed traffic, for multipath routing with different numbers
of homogeneous paths used, where the routing weight for
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each path is the same. Connection-oriented traffic consists
of traffic from TCP connections only, while connectionless
traffic comes from non-TCP connections. Mixed traffic is
composed of both connectionless and connection-oriented
traffic. Results for connectionless traffic only have been
reported in the companion paper [6] and they are not
presented here.

Fig. 7 displays the mean squared workload deviation
for connection-oriented traffic and mixed traffic when the
number of paths used varies from one to 10. When there
is only one outgoing path, no traffic splitting is needed
and, thus, the mean squared workload deviation for all
traffic splitters considered is always zero. By using two or
more paths, we find that the mean squared workload
deviation when WFR is employed is often substantially
smaller than when GRR or PRR is used. The performance
of WFR is more or less the same regardless of the number
of paths used.

For connection-oriented traffic, we find the mean
squared workload deviation when WFR is applied is
generally lower than when GRR or PRR is used. Comparing
with the cases for connectionless traffic, its superiority fades
as all traffic within a single call must be transmitted on the
same path once determined. This limits the power of WFR

to balance traffic splitting in proportion to the set of routing
weights. Moreover, the average call bandwidth consumed,
instead of equivalent bandwidth, for simplification pur-
poses, is taken as the bandwidth requirement. This may not
be able to properly identify various call requirements where
traffic characteristics vary substantially for different calls.

For mixed traffic, the mean squared workload deviation
is always the lowest value when WFR is used. Nevertheless,
the level of improvement differs with the proportion of
connectionless traffic. A larger proportion of connectionless
traffic drives a greater performance improvement.

The second set of results compares the effectiveness of
different traffic splitters for heterogeneous multipath rout-
ing, where the routing weight for one path can differ from
that for another path. It is sufficient to consider only three
paths for the extensive study as it has been shown [4], under
a wide range of scenarios, that multipath routing is effective
in using a small number of paths, say, up to three. The
routing weight vector, pppp ¼ ð p1 p2 p3Þ, has been set such
that p3 ¼ 0 or 0:35. When p3 ¼ 0, p1 varies between 0.001
and 0.5, with a total of 11 data points. Due to symmetry, it is
not necessary to perform duplicate experiments when p1 is
greater than 0.5. For instance, the result of p1 ¼ 0:7 is the
same as that of p1 ¼ 0:3 since, for both cases, the routing
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Fig. 6. Packet size distribution plot. (a) All seven traffic traces for TCP connections. (b) All seven traffic traces for non-TCP connections. (c) Trace file

“IND-20010815” for TCP connections. (d) Trace file “IND-20010815” for non-TCP connections.



weight of one path is 0.3 and that of another is 0.7. Similarly,
when p3 ¼ 0:35, p1 varies between 0.001 and 0.3, with a total
of seven data points.

Fig. 8 shows the mean squared workload deviation for
connection-oriented traffic and mixed traffic when the
routing weight for Path 3 is 0, i.e., no traffic will be
routed on Path 3. The routing weight for Path 1 varies
between 0.001 and 0.5. Similar to our first set of results,
we see that the mean squared workload deviation when
WFR is employed is significantly lower than when GRR
or PRR is used.

Fig. 9 shows the mean squared workload deviation for
connection-oriented traffic and mixed traffic when the
routing weight for Path 3 is 0.35, where the routing weight
for Path 1 varies between 0.001 and 0.3. The results are
similar to cases when the routing weight for Path 3 is 0.

The third set of results demonstrates the effectiveness of
our proposed algorithms on load balancing by means of
plotting a set of sample load vectors. Each sample load
vector consists of two sample loads, each corresponding to a
path. A sample load is taken at intervals of 0.001 second. The
routing weight vector is ð 0:35 0:65 0 Þ. Fig. 10 exhibits the

distribution of sample load vectors for connection-oriented

traffic. There are similar patterns of “cloudy” distributions

on sample load vectors for WFR, GRR, and PRR. Yet, it is

still clear that the vectors are slightly more localized when

using WFR. This implies that WFR can provide a better load

balancing of traffic, but its improvement is not as significant

as for connectionless traffic.
Fig. 11 shows the distribution of sample load vectors for

mixed traffic. It can be inferred that, using WFR, the sample

load vectors are much less scattered around the line with

the slope of 1.857, which is equal to the ratio of the routing

weights between Path 1 and Path 2, than for those using

GRR and PRR. This means that WFR gives better

performance on load sharing. However, their shapes can

differ significantly when different traffic traces are used.

Actually, it stems from the fact that there is a better

balancing on workload for traces with a larger component

of connectionless traffic. Nevertheless, the improvement is

still obvious although connectionless traffic constitutes only

28.3 percent of total traffic.
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Fig. 7. Workload deviation plot for homogenous multipath routing. (a) Connection-oriented traffic. (b) Mixed traffic.

Fig. 8. Workload deviation plot with p3 ¼ 0. (a) Connection-oriented traffic. (b) Mixed traffic.



4 CONCLUSIONS

In this paper, we have extended the load sharing frame-
work to study how to effectively perform flow-based traffic
splitting in multipath communication networks. The

generalized load sharing (GLS) model is employed to

conceptualize how traffic is split ideally on a set of active

paths. A simple flow-based weighted fair routing (WFR)

algorithm, called call-by-call WFR (CWFR), has been
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Fig. 9. Workload deviation plot with p3 ¼ 0:35. (a) Connection-oriented traffic. (b) Mixed traffic.

Fig. 10. Sample load plot for connection-oriented traffic with p1 ¼ 0:35, p2 ¼ 0:65, and p3 ¼ 0. (a) Weighted fair routing. (b) Generalized round robin

routing. (c) Probabilistic routing.



developed to imitate GLS so that all packets belonging to a
single flow are sent on the same path. We have investigated
how to couple the proposed basic packet-by-packet WFR
(PWFR) and CWFR algorithms so as to permit a traffic
splitter to handle both connection-oriented and connection-
less traffic simultaneously.

A total of seven historical Internet backbone traces have
been used in our simulation studies. For each of the traffic
traces, we investigated two different scenarios: connection-
oriented traffic and mixed traffic. Connection-oriented
traffic consists of traffic from Transmission Control Protocol
(TCP) connections only, while connectionless traffic comes
from non-TCP connections. Mixed traffic is composed of
both connectionless and connection-oriented traffic. Our
simulation studies, based on these traffic traces, reveal that
WFR outperforms two other traffic splitting algorithms,
namely, generalized round robin routing (GRR), and
probabilistic routing (PRR), in both scenarios. These
promising results form a basis for designing future adaptive
quality of service (QoS) or constraint-based multipath
routing protocols.
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